Use of Genetic Programming for the Search
of a New Learning Rule for Neural
Networks

Samy Bengio and Yoshua Bengio and Jocelyn Cloutier

Abstract— In previous work ([1, 2, 3]) we
explained how to use standard optimization
methods such as simulated annealing, gradi-
ent descent and genetic algorithms to opti-
mize a parametric function which could be
used as a learning rule for neural networks.
To use these methods, we had to choose a
fixed number of parameters and a rigid form
for the learning rule. In this article, we pro-
pose to use genetic programming to find not
only the values of rule parameters but also
the optimal number of parameters and the
form of the rule. Experiments on classifica-
tion tasks suggest genetic programming finds
better learning rules than other optimization
methods. Furthermore, the best rule found
with genetic programming outperformed the
well-known backpropagation algorithm for a
given set of tasks.

I. INTRODUCTION

Learning mechanisms in neural networks are usually
associated to changes in synaptic efficiency. In such
models, a synaptic learning rule controls the vari-
ations of the parameters (synaptic weights) of the
network. Researchers in neural networks have pro-
posed learning rules based on mathematical princi-
ples (such as backpropagation [8]) or biological anal-
ogy (such as Hebbian rules [6]), but better learning
rules may be needed to achieve human-like perfor-
mance for many learning problems.

We proposed in [3] (see also [4] for a similar ap-
proach) a method to find new learning rules us-
ing standard optimization techniques. This method
considers the learning rule of a neural network as a
parametric function with local inputs, whose values
vary for each synapse, and a fixed number of pa-
rameters, which are the same for all synapses in the
network.

In this paper, we propose to use genetic program-

Samy Bengio is from Centre National d’Etudes des TéElE-
communications, LAB/RIO/TNT, 22301 Lannion, France, while
Yoshua Bengio and Jocelyn Cloutier are from Université de
Montréal, Département IRO, Case Postale 6128, Succ. “A”,
Montréal (QC) Canada, H3C 3J7, e-mail: bengio@lannion.cnet.fr

0-7803-1899-4/94 $4.00 ©1994 IEEE

ming to find not only the parameters of a learning
rule but also its form. In section II., we introduce
the idea of parametric learning rules. In the next
section, we explain how the use of genetic program-
ming for the optimization of parametric learning
rules could simplify the design of such parametric
functions. Finally in section IV., we show an exper-
imental comparison between the best rules found by
different optimization methods on a set of classifi-
cation tasks and a comparison with the most used
learning rule: backpropagation.

II. PARAMETRIC LEARNING RULES

We describe briefly in this section the basic idea of
optimizing learning rules. More detailed treatment
can be found for instance in [1, 2, 3], but also in
[4]. The principle is straightforward: we consider
the learning rule as a parametric function and we
optimize its parameters using an optimization tech-
nique. Consider the following generic parametric
learning rule:
Aw(i, j) = f(e1, 22, ..., 203 01,02, ...,0p) (1)
where Aw(i, j) is the weight change of the synapse
from neuron i to neuron j and f(-) is a parametric
function of n local variables # and m parameters 6.
Local variables represent informations and mech-
anisms that may influence a particular synapse, such
as presynaptic activity and postsynaptic potential.
Figure 1 shows the interaction between those ele-
ments. Parameters 6 share the same values for all
synapses and are found using optimization methods.
In order for a learning rule obtained through opti-
mization to be useful, it must be successfully appli-
cable in training networks for new tasks (i.e., tasks
other than those used during optimization of the
learning rule). This property of a learning rule is a
form of generalization. We showed in [2] that this
kind of generalization could be described with a for-
malism used to define the generalization property
of learning systems, based on the notion of capac-
ity [9]. This led to several important conclusions.
For example, the expected error of a learning rule
over new tasks should decrease when increasing the

324

Postsynaptic Neuron

Neuromodulatory Synapse

Synapse

Chemical Modulator

Presynaptic Neuron
Facilitatory Neuron

Figure 1: Elements found in the vicinity of a
synapse, which can influence its efficacy.

number of tasks used for learning the parameters.
However, it could increase with the number of pa-
rameters and the capacity of the learning rule class
if an insufficient number or variety of training tasks
are used during optimization.

These remarks help us in the design of such para-
metric learning rules. We need a rule class whose ca-
pacity matches the number and variety of the train-
ing tasks.

I11I. Use oF GENETIC PROGRAMMING

When using standard optimization methods such as
genetic algorithms, simulated annealing or gradient
descent for the optimization of a synaptic learning
rule, one needs to fix the exact form and number
of parameters of the parametric learning rule in or-
der to optimize it. In doing so, one could neglect
a good solution just because its form has not been
expected. A recent optimization technique, genetic
programming [7], could help to correct this design
problem.

Genetic programming is essentially based on the
same principles as genetic algorithms ([5]): an initial
population of individuals, each representing a solu-
tion, is randomly chosen. Then selecting the best in-
dividuals for reproduction and using crossover and
mutation enables one to create a new generation.
Repeating this process causes the whole population
to improve.

With genetic algorithms, each individual is usu-
ally coded as a string of bits. Genetic program-
ming uses a different representation scheme. Each
individual is now represented as a tree where nodes
are operators and leaves are constants or variables.
Crossover now means to randomly swap subtrees
from two parent individuals to create two new indi-
viduals and mutation means to randomly replace a
subtree with a newly created one.

Using this optimization method for our problem
of finding a parametric learning rule enables us to

simplify the design. Now, we only need to select the
appropriate local variables which can influence the
synaptic change, the maximum number of parame-
ters and the basic operators that can be used. We
no longer have to fix in advance the exact form of
the parametric learning rule.

IV. EXPERIMENTS

We performed experiments to compare genetic pro-
gramming to other optimization methods. Exper-
iments were conducted under the following condi-
tions:

o The tasks to solve with a new learning rule were
two-dimensional classification problems. There
were 20 different tasks. Some were linearly sep-
arable (10) while others where non-linearly sep-
arable (10).

e Each task was learned with 800 training exam-
ples and tested with 200 other examples. A
task was said to be successfully learned when
there was no classification error over the test
set.

o We used a fully connected neural network with
two input units, one hidden unit and one output
unit. Furthermore, we added a backward path
of modulator neurons to provide a measure of
the error to each unit [1]. Figure 2 show how
this backward path is created.

Output

N e N s

Figure 2: Architecture transformation to enable lo-
cal evaluation of the network error. A backward
path of modulator neurons is added, which influ-
ence each forward connections.

e For the standard optimization methods, we used
a constrained form for the parametric learning
rule. It had 8 parameters, each modulating a
specific mechanism. For instance we can see
in equation (2) that 6, modulates a Hebbian
mechanism, while #7 modulates a local version

325

of the backpropagation learning rule.

Aw(i,j) = 0o +01 y(i)+ 02 z(j) +

03 y(mOd(j)) +

04 y(i) y(mod(j)) +

05 y(i) x(5) + 06 y(i) w(i,j) +
07 y(i) y(mod(j)) f'(z(j)) (2)

In this equation, w(i, j) is the synaptic efficacy
between neurons ¢ and j, x(j) is the activa-
tion potential of neuron j (postsynaptic po-
tential), y(7) is the output of neuron i (presy-
naptic activity), y(mod(j)) is the output of a
modulatory neuron influencing neuron j, and
f() is the activation function. This rule has
produced good results in previous experiments
([2]). The last mechanism includes backpropa-
gation in the space of learning rules reachable
by optimization. This has been done in order
to see if we could find it by optimization meth-
ods starting from a randomly chosen learning
rule (i.e. a set of random parameters 6).

e For both genetic methods, the population size
was 100 and the number of generations was lim-
ited to 100. Crossover and mutation rate were
60% and we used a rank selection operator [10].

e For the genetic programming method, we used
standard arithmetic operators (+, —, #, /) and
local variables that could be chosen were the
same as in equation (2). We have shown in
[2] that to obtain good generalization results,
the capacity of the learning rule should be con-
trolled. For this reason, we put an upper bound
on the number of parameters ¢ to 10 and an
upper bound on the number of terms of the
learning rules to 40.

e A typical experiment was conducted as follows:

— First we chose an optimization method (ge-
netic algorithms, simulated annealing, or
genetic programming!) and a set of train-
ing tasks (from 1 to 9 different tasks, lin-
early as well as non-linearly separable).

— Then we optimized the rule for a fixed
number of iterations.

— Finally, we tested the new rule over tasks
different from the training tasks.

To learn a task, the weights of the neural net-
work were first initialized to random values (to
be sure that our learning rule is able to solve

! Gradient descent was also tested but there seems to be a lot
of local minima in the space of learning rules which explains why
we were not able to get any good solution with this local method.

the task from many initial conditions) and then,
we modify the weights of the network using the
current learning rule applied to the 800 training
examples of the task. The generalization error
for the current task is then calculated over the
200 other examples.

Figure 3 summarizes these experiments. We can
see that the rule found by genetic programming gen-
eralized better than those found by the other opti-
mization methods. When optimized with more than
one task, it was even better than the backpropaga-
tion learning rule. This new rule has the following
simple form:

Aw(i,j) = y(i) - y(mod(7)) - f'(x(5))> (3)
For comparison, the backpropagation rule can be
written in a local way by the following rule:

Aw(i, j) = y(i) - y(mod(7)) - f'(x(5)) (4)
We can see that the only difference with back-
propagation is the exponent of the activation func-
tion derivative. As the overall sign of this term is
conserved, and since the derivative is a real number
between 0 and 1, the effect of the derivative over the
weight change is thus stronger than in backpropa-
gation, but in a 2-layer net, the resulting weight
change direction is guarenteed to be downhill.

N

AN

Figure 4: Representation of the input space of the
LED task.

Finally we were curious to see if our new learn-
ing rule was able to solve tasks using a different
network architecture. We tested it on a character
recognition task with 7 input dimensions (the LED
representation of figure 4), 10 hidden units and 10
output dimensions (one for each digit). The new
rule was able to learn the task with no generaliza-
tion error. For comparison, backpropagation was
also able to solve perfectly the problem, but with

more iterations?.

2Since the number of iterations is not necessary a good indi-
cator of the quality of a learning rule we do not suggest that our

326

0 I I I
1 2 3 4

5

Number of tasks used during optimization

Figure 3: Comparison between generalization performance of the best rules found by different optimization
methods and backpropagation. ga means genetic algorithms, gp is genetic programming, and sa stands
for simulated annealing. Finally, bp means we used backpropagation instead of an optimized learning rule
(of course in this case, the error does not depend on the number of tasks, which explains why the bp curve
is a straight line). For each optimization method, we show the generalization error F(-) with respect to
the number of tasks used to optimize the rule, where each task is trained using 800 examples and tested

using 200 examples.

V. CONCLUSION

In this article we proposed the use of genetic pro-
gramming for the search of new learning rules for
neural networks. This method greatly simplify the
design of parametric learning rules. Experiments
on classification tasks showed that it can find bet-
ter learning rules than any other optimization tech-
nique. In one case, it even found a rule that is bet-
ter than backpropagation. Of course it has yet to
be shown that the procedure is applicable to more
complex tasks.

REFERENCES

[1] S. BeENGio, Y. BENGIO, J. CLOUTIER, AND
J. GECSEI, On the optimization of a synap-
tic learning rule, in Conference on Optimality
in Biological and Artificial Networks, Dallas,
USA, 1992.

[2] ——, Generalization of a parametric learning
rule, in ICANN ’93: Proceedings of the Inter-
national Conference on Artificial Neural Net-
works, Amsterdam, Nederlands, 1993.

[3] Y. BENGIO AND S. BENGIO, Learning a synap-
tic learning rule, Tech. Rep. 751, Départe-
ment d’Informatique et de Recherche Opéra-

rule is better than backpropagation.

327

tionnelle, Université de Montréal, Montréal
(QC) Canada, 1990.

D. CHALMERS, The evolution of learning: An
experiment in genetic connectionism, in Pro-
ceedings of the 1990 Connectionist Models
Summer School, D. Touretzky, J. Elman, T. Se-
jnowski, and G. Hinton, eds.; San Mateo, CA,
USA, 1990, Morgan Kaufmann.

D. GOLDBERG, Genetic algorithms in search,
optimization, and machine learning, Addison-
Wesley, Reading, MA, USA, 1989.

D. O. HEBB, The Organization of Behavior,
Willey, New York, NY, USA, 1949.

J. R. Koza, Genetic Programming: On the
Programming of Computers by Means of Natu-
ral Selection, Bradford Book, MIT Press, Cam-
bridge, MA, USA, 1992.

D. E. RuMELHART, G. E. HINTON, AND R.. J.
WILLIAMS, Learning internal representations
by error propagation, in Parallel Distributed
Processing: Explorations in the Microstructure
of Cognition - Volume 1: Foundations, D. E.
Rumelhart and J. L. McClelland, eds., Brad-
ford Book, MIT Press, 1986.

V. N. VAPNIK, Estimation of Dependencies
Based on FEmpirical Data, Springer-Verlag,
New-York, NY, USA, 1982.

[10] D. WHITLEY, The genitor algorithm and se-
lection pressure: Why rank-based allocation of
reproductive trials is best, in Proceedings of the
Third International Conference on Genetic Al-
gorithms, San Mateo, CA, USA, 1989, Morgan
Kaufmann, pp. 116-121.

328

