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Suppose we have a given one-variable time series represented by the NV values
{z1, z2, - - -, zN }, where a; is the series value sampled at time ¢. Prediction
then consists to find the future values {&n41, n42, --}. It has been shown
in [6] that if the series is deterministic, there exists an integer d (which is
called the embedding dimension), an integer 7 (which is an arbitrary delay)
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Abstract

In this paper, we propose some improvements for the problem
of time series prediction with neural networks where a medium-term
prediction horizon is needed. In particular, the ionospheric prediction
service of the french Centre National d’Etudes des Télécommunica-
tions needs a six-month ahead prediction of a sunspots related time
series which has a strong influence on wave propagation in ionosphere.
The proposed improvements consist in two different modular architec-
tures and a way to increase the size of the training set. Experimental
results are compared to those of a simple multi-layer perceptron.

Introduction

and a function f(-) such that for every ¢t > (d - 7):



2= f(®t—r, Te—2r, *, T_dr) (1)

Unfortunately, there exists no exact method to find neither d, 7 or f(-)
when the series is too small (less than 10% samples for d and 7).

The ionospheric prediction service of the Centre National d’Etudes des
Télécommunications (CNET) publishes monthly prediction reports about
ionospheric propagation of radio-electric waves addressed to radio-diffusion
services.

Tonospheric state depends directly on solar activity, so in order to make
a prediction of its future state we have to predict the solar activity, which is
here represented as the number of sunspots R [2]. The sunspots time series
is known to be difficult to predict and has served as a benchmark in the
statistics literature [9].

2 Problem Description

The CNET ionospheric prediction service has given us the IR5 time series
which is a non-centered five-month mean of the monthly sunspots number
mean MR:

1
IR5; = S(MRt_B + MRi_9+ MR:_1 + MR, + MRy 41) (2)

where MR; is the mean sunspots number of month ¢. The CNET needs a six-
month ahead prediction of the IR5 index in order to publish and distribute
a report to its users. The time series used in the present work starts in 1849
and ends in 1991, which gives us 1712 monthly data, over which the last
238 are kept for testing and comparison with their own heuristic. Figure 1
shows the IR5 time series.

Sunspots related time series such as the IR5 index are suspected to be
non-stationary but there is not enough data to remove tendency and/or
seasonality. This is very annoying because, when using learning techniques
such as neural networks, to expect a good generalization (prediction) error
while minimizing a training set error, one has to hypothesize the test set
is drawn from the same probability distribution as the training set. As the
series may have a tendency, this may not be the case. This is the reason
why our test set is kept small in comparison to the training set size.

3 A Simple Connectionist Solution

The simplest way to use neural networks for prediction, which has already
been used in many applications [4, 8], is to use a multi-layer perceptron
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Figure 1: The IR5 Time Series

with one hidden layer, trained with backpropagation [5]. All input units
are connected to all hidden units and all hidden units are connected to
all output units. Given a series with N values, an embedding dimension
d, a delay 7 and an horizon h, training data consists of N — (d - 7) — h
input/output pairs such that:

{&emr,@eor, -, Te—gr } —> {Te,+, Tegn} (3)

where z; is the i*” normalized value of the series'. The embedding dimen-
sion d, as well as the hidden layer size are usually set by cross-validation
techniques. In most applications, h is set to 0 and 7 is set to 1.

For the IRb5 series, the best network we found had 40 input units, 23
hidden units, and 6 output units. 7 was set arbitrary to 1. Hidden and
output units used a nonlinear squashing function with output in [—1,1].
Figure 2 summarizes this architecture. Results are reported later in the

paper.

4 Improvements Over a Simple Use of Neu-
ral Networks for Prediction

In this section, we present three improvements over this simple use of a
neural network for time series prediction. All three are based on the fact
that generalization (prediction) error is related to training set error, network
capacity (which itself is related to the number of free parameters), training

! The series is usually normalized to get a zero mean with values in [—1, 1].
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Figure 2: The Simple Multi-Layer Perceptron Solution

set size and the use of prior knowledge in system design [7]. The first two
improvements are architectural: a better system design and less parameters.
The last one shows how to use more training data.

4.1 Mix of Different Output Schemes

When one wants to predict x4, given {@i—r,x¢_27, - - @t—gqr } wWith h > 0,
there are at least three simple ways to do it:

e a multi-layer perceptron (MLP) with one output unit z;4p,
e an MLP with h 4 1 output units z:, xt41, -, Te4n,

e an MLP with one output unit z;. In that case z:4p is predicted
using as input previously predicted values Z:,---, &;45—1, which are
estimates of ¢, -+ -, Teypn_1.

Experimental results tend to show that the latter method is better when
h is big (h > 10) whereas the first two are better when h is small.

We now propose a modular architecture which is composed of three small
interconnected networks: the first two networks try to find independently a
solution and the third one combines their results.

The first network tries to find z:y, while the second tries to find also
intermediate values z¢, - - -, t45—1, using the same input data. The outputs
of the first and the second network are then used as input to a third network,
which try to find #;45. The three networks are trained simultaneously and
supervision is provided to all output units. This means that weights of
the first two networks are influenced both by supervision provided by their
respective network but also by the third network.



Since all three networks are small (the hidden layer sizes for experiments
reported here were respectively 5, 5 and 11 for the three networks), the
total number of free parameters in this model is still half the number of
free parameters in the simple model. Once again , 7 was arbitrary set to 1.
Figure 3 shows this new architecture.
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Figure 3: A First Architectural Improvement: Mix of Different Small Net-
works which have Different Outputs

4.2 Use of Different d/7 Combinations

The time series length being too small to determine adequately good values
for d and 7, an alternate solution is to use a combination of many small
networks each using different d and 7 values. One way of doing this is to
search for a new function which has the form:

Tt4+h = g( fl(xt—TUIt—QTU"'axt—d171)’

f2(rt—7'2a Tt—275,° " " It—dQTQ)J
fn($t_7n’wt_2rn).'.’:Et_dn‘rn) ) (4)
where fi(-), -, fa(:) are simple neural networks trained to predict z;4p

(and maybe intermediate values), each using its own d; and 7;, and g(-) is
another network which is in top of the others and simultaneously trained.
In the experiments we report here with the IR5 time series and a prediction
horizon h =5, we had three functions f;():

e fi(:) used d = 40, 7 = 1 and tried to predict z;4s.



o fa(-) used d = 34, 7 = 2 and tried to predict z¢41, 143 and zyys.
o f3(-) used d = 30, 7 = 3 and tried to predict z;42 and z;4s.

Figure 4 gives the actual architecture used in this paper. Again, the
resulting network still has around half the number of free parameters com-
pared to the simple network.

, supervision

s supervision

output

\ supervision

N -
\ supervision

Figure 4: A Second Architectural Improvement: Use of Different d/7 Com-
binations

4.3 Increase of the Training Set Size

For the particular series of sunspots, data are in fact gathered every day,
but only monthly means are usually used for prediction. We propose here
a way to use more than just monthly means. The IR5 index, computed in
equation (2) can be rewritten as follows:

| tHes
NIRS: = = > R (5)

i=t—105
where NIR)H; for a particular day ¢ represents the IR5 index. The only
difference with the IR5 series is that we now have a longer but daily series
of the very same index. In fact, the IR5 series is a subset of the NIR5 one.
Setting 7 to 30 implies we are searching for exactly the same kind of
function as with the IR5 series with 7 set to 1, except that the database size
is around 30 times the IR5 one?. This is important, given that generalization

2 And of course the fact that a month is not exactly equal to 30 days but this does not
have any real impact on the goal.



error is related to training set size: the more data one have, the more free
parameters one can handle without over-fitting, the more precise could be
the resulting function.

In the experiments we report here, we used the NIR) time series sampled
every 7 days, which makes the database size around 4 times the original one.

5 Experimental Results

We compared the different connectionist models proposed in this paper for
the IR5 time series to the actual heuristic used by the CNET prediction
service.

For all networks, input dimension d, as well as hidden layers sizes, have
been estimated using cross-validation. All experiments used the stochastic
version of backpropagation algorithm, with a small weight decay to keep
network capacity as small as possible. Results in Table 1 give the Average
Relative Cost (ARV) obtained for the last 238 months of the series, which
were not used to train the network. ARV is computed as follows:

11
ARV = — — E (zi — &;)° (6)
ieP

where P is the test set, N is the test set size, 52 is the estimated variance of
the series, #; is the i*" predicted value and z; is the corresponding desired
value. We also give the Strong Error Percentage (SEP) which represents
the percentage of test set examples for which the distance between expected
value and obtained value is more than 30 (for the IR5 time series, values
range from 0 to 230). This statistic is important for the CNET because its
users prefer to make many small errors rather than few important ones.

Table 1: Comparison of the Different Predictors

| | ARV | SEP |
actual CNET heuristic 0.113 | 5.04
Standard MLP 0.088 | 5.04
Modular Architecture (multiple output schemes) || 0.075 | 1.68
Modular Architecture (multiple d/7 schemes) 0.073 | 1.68
Larger Training Set 0.071 | 1.68
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Conclusion

In this paper we proposed three improvements over a simple use of multi-
layer perceptron for time series prediction with a medium-term horizon. All
gave better results for a particular and known difficult time series. We shall
now try to mix some of these ideas, as well as use other models such as
Elman recurrent networks [1] or hierarchical mixtures of experts [3].
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