Use of Modular Architectures for Time Series Prediction

Abstract
Recently, there has been a lot of papers published in the field of time series prediction using
connectionist models. Nevertheless we think that one of the major problem which is rarely
treated in the literature is related to the choice of input parameters (embedding dimension
and delay). In this paper, we propose two modular approaches to this problem and apply
them to a sunspot-related time series. Experimental results are then compared to a simple
multi-layer perceptron in order to estimate performances of these models.

1 Introduction

Suppose we have a given univariate time series represented by the N values {1, 22, -+, N},
where z; is the series value sampled at time ¢. Prediction consists to find the future values {41,
ZN42, - -}. If the series is obtained from a deterministic dynamical system, Takens [1] showed
that there exists an integer d (which is called the embedding dimension), an integer 7 (which is an
arbitrary delay) and a function f(-) such that for any ¢t > (d - 7):

2y = f(@e—r, Temar, -, Ti_dr) (1)

Although one can approximate f(-) using a simple connectionist model such as a multi-layer
perceptron trained by backpropagation [2], there exists no exact method to find neither d nor =
when N is too small (less than 104 samples).

Since the pioneering work of Hu [3] and the first model using backpropagation for time series
prediction by Lapedes and Farber [4], numerous papers have been published on the subject [5].
Most of them have overlooked the subject of input parameter selection (namely d and 7).

In this paper, we do not propose yet another heuristic to select d and 7 (there are in effect
already numerous heuristics, see a good review in [6]), which could lead to suboptimal solution in
case of unsufficient data. We propose to mix many sets of parameters (each chosen using personal
prefered heuristic for instance), using a modular connectionist approach.

2 Problem Description

Solar activity is usually measured as the number of sunspots R [7]. The sunspots time series is
known to be difficult to predict and has served as a benchmark in the statistics and connectionist
literature [8]. The France Télécom CNET ionospheric prediction service involves the IR5 time
series which is a non-centered five-month mean of the sunspots number R:

1
IR5t = E(MRt_g + MRt_g + MRt_l + MRt + AMRt+1) (2)

where MR, is the mean sunspots number of month ¢. Six-month ahead predictions of the IR5
index are requested in order to publish and distribute a report to CNET users. The solar time
series starts in 1849 and ends in 1991, corresponding to 1712 monthly data, over which the last
238 are kept for testing and comparison with standard CNET heuristic. Figure 1 shows the IR5
time series.

3 Use of Different d/7 Combinations in a Modular Model

In this section, we propose a modular architecture which is composed of many small interconnected
networks: each network tries to find independently a solution and the results are combined using
another neural network. Modularity is heavily used in computer science: by decomposing a problem
into modules, one expects each module to be simpler than the overall task; which can be called
the divide and conquer strategy [9].

Since the time series length is too small to adequately determine correct values for d and 7,
an alternate solution is to use on each small networks different d and 7 values. Thus knowledge is
incorporated into the structure. The resulting architecture is as follow:
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Figure 1: The IR5 sunspots series
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where f1(-), -, fa(:) are simple neural networks trained to predict ;45 (and maybe intermediate

values), each using its own d; and 7. g(-) is another network which is on top of the others and
simultaneously trained. In the experiments reported here with the IR5 time series and a prediction
horizon h = 5, there are three functions f;():

e fi(:) uses d =40, 7 = 1 and tries to predict z;45.
o fa(-) uses d = 33, 7 = 2 and tries to predict ¢41, 43 and ziys.
o f3(-) uses d = 24, 7 = 3 and tries to predict @42 and @¢45.

The exact architecture of each module is determined using early stopping via validation set
error. Figure 2 gives the actual architecture used in this paper. The four networks are trained
simultaneously and supervision is provided to all output units. Connections of the first three
networks f1(-) , f2(-) , f3(-) are influenced both by external supervision provided by their respective
network (the cost function is minimized at each output layer) but also by the fourth network g(-),
using the usual chain rule to find the exact error derivatives.

More specifically, let ¢ be an output unit of one of the small intermediate networks, dest(7)
the list of units which are connected to ¢, y(i) the activation of unit ¢, E the total error to be
minimized, £; the error made at unit ¢ and Fj; the error made at the final output unit. Then one
can compute:

oE 0E; oE
~=f—+a J
oy(i)  oy(i) 2 9y(7)

a and § are positive numbers and sum to 1. They represent a weighting factor between the
two terms. A good heuristic is to vary their value: at the beginning of the training, a should be
small and £ large, which will help to train faster, and the ratio should change smoothly in order
at the end of the training to let the global error be the only important term.

(4)

j€dest(i)

4 Adaptative Mixture of Experts

The second modular architecture we propose is an adaptative mixture of experts, as introduced
by Jacobs and Jordan [10]. Since its introduction, many papers has been published using this
model or its extensions (such as Hierarchical Mixtures of Experts) for time series prediction. This
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Figure 2: The modular neural network Figure 3: The adaptative mixture of experts

architecture combines associative and competitive learning. Different networks learn training pat-
terns from different regions of the input space and model the distribution of training patterns. As
illustrated in Figure 3, it consists of two types of modules: expert networks and a gating network.
The expert networks compete to learn the training patterns and the gating network mediates the
competition.

The expert networks have an arbitrary connectivity while the gating network have as many
output units as there are expert networks. The activations of output units must be non negative
and sum to one. During training, the weights of the expert and gating networks are simultane-
ously adjusted using the backpropagation algorithm. The error function is the log probability of
generating the desired output vector under a mixture of gaussians.

The mixture of experts architecture is applied to the IR5 prediction problem. The tested
architecture has three expert networks, each one being a multilayer perceptron with one hidden
layer and viewing a different input window:

Expert 1: d =40, 7 = 1, hidden units = 8.
Expert 2: d = 33, 7 = 2, hidden units = 8.
Expert 3: d = 24, 7 = 3, hidden units = 8.
Gating: uses all three input parameter sets, with 12 hidden units.

The main assumption for the use of this model is that, as it has been suggested in [11], there may
be more than one underlying attractor generating the system; a dynamical noise could locally switch
the system from one attractor to another. The mixture of experts could then select locally the best
reconstruction space. This model has been used for instance in [12, 13] to select automatically the
attractor generating each part of a signal made of random parts of many different signals. The
main difference with our work is our proposition to let each expert have a different view of the
input signal in order to help the specialization of each experts.

The model can also be compared to regime switching models [14, 15]: these models are based
on the idea of piecewise linearization of non linear models over the state space by the introduction
of tresholds. However these models are locally linear, whereas mixtures of experts could combined
arbitrary complex and non linear models.

5 Experimental Results

The connectionist models proposed in this paper for the IR5 time series are compared to the actual
heuristic used by the CNET prediction service and also to a simple model: a multi-layer perceptron
with one hidden layer of units, trained by backpropagation (the best network found has 23 hidden
units, d = 40 and 7 = 1).



Experiments use the stochastic version of backpropagation algorithm. The networks are trained
starting from initial random weights and the training is stop using an early stopping method to
prevent overfitting. Results in Figure 4 give the Average Relative Cost (ARV') obtained for the
last 238 months of the series, which were not used to train the networks. ARV is computed as
follows: 11
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where P is the test set, N is the test set size, 62 is the estimated variance of the series, g; is

the " predicted value and y; is the corresponding desired value. We give also the variance of the
ARV, o2y -
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Figure 4: Comparison of the predictors '

Figure 5: The expert repartition for the test set

Both modular models perform better than a simple multi-layer perceptron, in terms of both
ARV and its variance 0% py,. The mixture of experts gives worse results than the first model,
probably because of the linear nature of the expert combination. However, as it can be seen in
Figure 5, it reveals a strong evidence of input space separation related to the series gradient. This
could help to analyze the series and to select future architectures.

6 Conclusion

In this paper we proposed two modular solutions to the problem of input parameter selection
for time series prediction. Both gave us better results than a simple multi-layer perceptron for a
specific and known to be difficult time series. Other modular architectures could be tested, such
as the newly proposed IOHMM model [16]. Moreover, another direction which should be explored
is related to the stationarity of a time series: there is currently no good method to preprocess a
series such that it always results in a stationary process, which is important in order to expect
good generalization performance.
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