

Training Asynchronous Input/Output Hidden Markov Models

Yoshua Bengio

Samy Bengio

bengioy@iro.umontreal.ca bengio@inrs-telecom.uquebec.ca

Dept. IRO
Universit de Montral
Montral, Qc, H3C 3J7

CANADA

INRS-Tlcommunications
16, Place du Commerce
Ile-des-Soeurs, Qc H3E 1H6
CANADA

http://www.iro.umontreal.ca/labs/neuro/

Abstract

In learning tasks in which input sequences are mapped to out-
put sequences, it is often the case that the input and output
sequences are not synchronous. For example, in speech recog-
nition, acoustic sequences are longer than phoneme sequences.
Input/Output Hidden Markov Models have already been pro-
posed to represent the distribution of an output sequence given
an input sequence of the same length. We extend here this
model to the case of asynchronous sequences, and show an
Expectation-Maximization algorithm for training such mod-

els.

1 Introduction

Supervised learning algorithms for sequential data
minimize a training criterion that depends on pairs
of input and output sequences. It is often assumed
that input and output sequences are synchronized,
i.e., that each input sequence has the same length
as the corresponding output sequence. For instance,
recurrent networks [Rumelhart et al., 1986] can be
used to map input sequences to output sequences, for
example minimizing at each time step the squared
difference between the actual output and the de-
sired output. Another example is a recently pro-
posed recurrent mixture of experts connectionist ar-
chitecture which has an interpretation as a proba-
bilistic model, called Input/Output Hidden Markov
Model ~ (IOHMM) [Bengio and Frasconi, 1996,
Bengio and Frasconi, 1995]. This model repre-
sents the distribution of an output sequence
when given an input sequence of the same
length, using a hidden state variable and a
Markovian independence assumption, as in Hid-

den Markov Models (HMMs) [Levinson et al., 1983,
Rabiner, 1989], in order to simplify the distribu-
tion. IOHMMs are a form of probabilistic trans-
ducers [Pereira et al., 1994, Singer, 1996], with in-
put and output variables which can be discrete as
well as continuous-valued.

However, in many sequential problems where one
tries to map an input sequence to an output se-
quence, the length of the input and output sequences
may not be equal. Input and output sequences
could behave at different time scales. For example,
in a speech recognition problem where one wants
to map an acoustic signal to a phoneme sequence,
each phoneme approximately corresponds to a sub-
sequence of the acoustic signal, therefore the input
acoustic sequence is generally longer than the out-
put phoneme sequence, and the alignment between
inputs and outputs is often not available.

In comparison with HMMs, emission and tran-
sition probabilities in IOHMMs vary with time as
a function of an input sequence. Unlike HMMs,
IOHMMs with discrete outputs are discriminant
models. Furthermore, the transition probabili-
ties and emission probabilities are generally bet-
ter matched, which reduces a problem observed in
speech recognition HMMs: because outputs are in a
much higher dimensional space than transitions in
HMMs, the dynamic range of transition probabili-
ties is much less than that of emission probabilities.
Therefore the choice between different paths (during
recognition) is mostly influenced by emission rather
than transition probabilities.

In this paper, we present an extension of IOHMMs
to the asynchronous case. We first present the prob-

Maximization (EM) algorithm for training asyn-
chronous IOHMMs. For complex distributions (e.g.,
using artificial neural networks to represent transi-
tion and emission distributions), a Generalized EM
algorithm or gradient ascent in likelihood can be
used. Finally, a Viterbi algorithm is presented for
the recognition of new sequences.

2 The Model

Let us note :cl for an input sequence z1, xo,...,TT,
and similarly yf for an output sequence
Y1,Y2,---,Ys. In this paper we consider the case in
which the output sequences are shorter than the in-
put sequences. The more general case is an extension
of this model (using “empty” transitions that do not
“take” any time) and will be discussed elsewhere.
As in HMMs and IOHMMs, we introduce a discrete
hidden state variable, ¢, which will allow us to sim-
plify the distribution P(y;{|zT) by using Markovian
independence assumptions. The state sequence q7
is taken to be synchronous with the input sequence

In order to produce output sequences shorter than
input sequences, states may sometimes not emit an
output symbol, but instead would “emit” a null sym-
bol €. Therefore, there exist many sequences of
states corresponding to the same output sequence,
and a given sequence of states can correspond to
output sequences of different lengths.

When conceived as a generative model of the out-
put (given the input), an asynchronous IOHMM
works as follows. At time ¢t = 0, an initial state
qo is chosen according to the distribution P(gp),
and the length of the output sequence s is initial-
ized to 0. At other time steps t > 0, a state ¢; is
first picked according to the transition distribution
P(q¢|qt—1, 1), using the state at the previous time
step ¢:—1 and the current input z;. A decision is
then taken as to wether or not an output y, will be
produced at time ¢ or not, according to the emit-
or-not distribution. In the positive case, An output
ys is then produced according to the emission dis-
tribution P(ys|q:, z¢). The length of the output se-
quence is increased from s — 1 to s, and the st out-
put ys is emitted with probability P(ys|qg:,z¢). The
parameters of the model are thus the initial state
probabilities, 7(i) = P(qo = 7), and the parameters

tional distribution models, P(emit — or — not|q;, z),
P(ys|qt,) and P(q¢|qi—1,z:). Since the input and
output sequences are of different lengths, we will in-
troduce another hidden variable, 7, specifically to
represent the alignment between inputs and outputs,
with 7; = s meaning that s outputs have been emit-
ted at time t¢.

Let us first formalize the independence assump-
tions and the form of the conditional distribution
represented by the model. The conditional proba-
bility P(y7|zT) can be written as a sum of terms
P(y7,qt,7T|2T) over all possible state sequences g
such that the number of emitting states in each of
these sequences is S (the length of the output se-
quence):

(1)

o)

Z PylaQOa

q() ,T7=S

‘951

All S outputs must have been emitted by time 7', so
7r = S. The hidden state ¢; takes discrete values
in a finite set. Each of the terms P(y;,ql, 7 |zT)
corresponds to a particular sequence of states, and
a corresponding alignment.

We summarize in table 1 the notation we have
introduced and define additional notation used in
this paper.

The Markovian conditional independence assump-
tions in this model mean that the state variable g
summarizes sufficiently the past of the sequence, so
(2)

P(qlgi™", 2t) = Platlge—1,m1)

and
3)

These assumptions are analogous to the Markovian
independence assumptions used in HMMs and are
essentially the same as in synchronous IOHMMs.
Based on these two assumptions, the conditional
probability can be efficiently represented and com-
puted recursively, using an intermediate variable

P(yslqt, zt) = P(ys|ar, z¢).

a(t, s,t)déf (4)

The conditional probability of an output sequence,
can be expressed in terms of this variable:

Z a1, S,T)

icF

P(qg=i, 7i=s,yi|x}).-

def
LEP(y? (5)

jo1) =

414U1T 1. 1NULauvlulil uosttu 111 Liic papcl

e S = gsize of the output sequence.
e T = size of the input sequence.
e N = number of states in the IOHMM.

e a(i,j,t) = output of the module that computes
P(g=i|gi—1=7,¢)

e b(i,1,t) = output of the module that computes
P(ys = l|gg=i,x¢,7s = 8,741 = s—1), the prob-
ability to emit the symbol [at time ¢ in state ¢
givent that state ¢ emits at time ¢.

e ¢(i,t) = output of the module that computes
P(1y = s|—1 = s, q = i), the probability not to
emit at time ¢ in state i.

e 7(i) = P(go=1), initial probability of state 4.

o z;,+ = 1if ¢¢ = 4; 2,y = 0 otherwise. These
indicator variables give the state sequence.

e my; = 1 if the system emits the s'" output at
time ¢, msy = 0 otherwise. These indicator vari-
ables give the input/output alignment.

e ¢;+ = 1 means that state ¢ did not emit at time
t.

e 7, = s means that the first s first outputs have
been emitted at time ¢.

e o, = 1 if the t*" input symbol is k, oz = 0
otherwise.

e v, = 1 if the s'" output symbol is k, s = 0
otherwise.

e pred(7) is the set of all the predecessors states of
state 1.

e succ(i) is the set of all the successors states of
state <.

where F' is a set of final states. These a’s can be
computed recursively in a way that is analogous to
the forward pass of the Baum-Welsh algorithm for
HMMs:

a(i, s,t)
b(ia Ys, t)(l - (E(ia t))

Z a’(i,jat) Oé(j,S—l,t—l)

jEpred(i)
+e(i,t) Y ali g t)a(,s,t—1) (6)
jEpred(s)
where a(i, j,t) = P(q=i|qt—1=j,z¢),
b(i,ysat) = P(ys|qt:iaxtaTtZSaTt—IZS_l)a G(Z,t) =

P(ry=s|1t—1=s,q1=1,z¢) and pred(i) is the set of
states with an outgoing transition to state ¢. The
derivation of this recursion using the independence

3 An EM Algorithm for Asyn-
chronous IOHMMs

The learning algorithm we propose is based on the
maximum likelihood principle, i.e., here, maximizing
the conditional likelihood of the training data. The
algorithm could be generalized to one for maximiz-
ing the likelihood of the parameters given the data,
by taking into account priors on those parameters.
Let the training data, D, be a set of P input/output
sequences independently sampled from the same dis-
tribution. Let 7}, and S, be the lengths of the p'"
input and output sequence respectively:

DE{(a) ()" (P))ip=1...P} (7)
Let © be the set of all the parameters of the model.
Because each sequence is sampled independently, we
can write the likelihood function as follows, omitting
sequence indexes to simplify:

P
L(©; D) = [[Py/"|z1"; ©) 8)
p=1

According to the maximum likelihood principle, the
optimal parameters © are obtained when L(©; D) is
maximized. We will show here how an iterative opti-
mization to a local maximum can be achieved using
the Expectation-Maximization (EM) algorithm.

EM is an iterative procedure
for maximum likelihood estimation, originally for-
malized in [Dempster et al., 1977]. Each iteration
is composed of two steps: an estimation step and a
maximization step. The basic idea is to introduce an
additional variable, g, which, if it were known, would
greatly simplify the optimization problem. This ad-
ditional variable is known as the missing or hidden
data. A joint model of ¢ with the observed variables
must be set up. The set D, which includes the data
set D and values of the variable ¢ for each of the
examples, is known as the complete data set. Cor-
respondingly, L.(0; D,.) is referred as the complete
data likelihood. Since g is not observed, L. is a ran-
dom variable and cannot be maximized directly. The
EM algorithm is based on averaging logL.(©;D,)
over the distribution of ¢, given the known data D
and the previous value of the parameters ©. This

tion:

Q(0;0) = (9)
In short, for each EM iteration, one first computes
Q@ (E-step), then updates © such that it maximizes
Q@ (M-step).

To apply EM to asynchronous IOHMMSs, we need
to choose hidden variables such that the knowledge
of these variables would simplify the learning prob-
lem. Let ¢ be a hidden variable representing the
hidden state of the Markov model (such that ¢; =%
means the system is in state 7 at time ¢). Knowledge
of the state sequence qr{ would make the estimation
of parameters trivial (simple counting would suffice).
Because states sometimes emit and sometime do not,
we introduce an additional hidden variable, 7, rep-
resenting the alignment between inputs (and states)
and outputs, such that 7, = s implies that s outputs
have been emitted at time ¢.

E, [loch(G); D.)|D, (i)]

Here, the complete data can be written as follows:

D (1 (p), 7" (p), 01" (p), 71 (9));p=1... P}
(10)
The corresponding complete data likelihood is (again
dropping (p) indices):
P
Dc) = H P yl ’QI 17—1p|$ 6) (11)
Let z;; be an indicator variable such that z;; = 1 if
gt = i, and z;; = 0 otherwise. Let m,; be an indi-
cator variable such that ms; = 1 if the s output
is emitted at time ¢, and m,; = 0 otherwise. Let
€;+ = 1 if state ¢ do not emit at time ¢, and €;; = 0
otherwise. Using these indicator variables and fac-
torizing the likelihood equation, we obtain:

P T, N
Lo(e;D.) = II1III
p=1t=1¢=1
Sp
II P(ys|CIt=z',wt,ths,Tt—1=S—1)zi’tms’t(1_€i’t)) .
s=1
Sp
11 P(T:S|Qt:i,.'17t,Tt—1:3—1)Zi’tms’t(1_€i’t)> :
s=1
Sp
H P(T:3|Qt=i,$t,Tt—lzs)zi’tms’m’t) :
s=1
N

I1

=1

(12)

P(Qt:i|qt_1 =7, g;t)zi,tzj,tl)

sion for the complete data log likelihood:

P 1
logL.(©;D,) ZZZ
p=1t=14=1
Sp
> zigmis (1 — €i1) log Pys|gi=i, o1, i=s, 7 1=s—1)
s=1

SP

Zzi,tms,tei,t log P(Tt:5|Qt=i,$t,Tt—1=3)> +
s=1

N

> zigzje1log P(gi=ilgs1=7, zt)

j=1

3.1 The Estimation Step

Let us define the auxiliary function Q(©; @) as the
expected value of logL.(0; D,.) with respect to the
hidden variables q and 7, giyen the data D and the
previous set of parameters O:

Q(6;0) =

EQ,T [log LC(G;DC)|D’©] (14)

Sp
> st logP(ys|Qt=i,$t,Tt=S,Tt123—1)> +
s=1
Sp
> §is,tlog P(r=s|q=i, zy, i_1=s—1) | +
s=1
Sp
> fislog P(ry=s|g=i, x4, 711=5) | +
s=1
N A~
> hij i log P(gr=ilg—1=j, x1) (15)
i=1
where, by definition,
. def .
Gist = Boqlg=i,i=s|ri_1=s—1,21 ,y7;0] (16)
: def .
fist= Eqrlqe=i, e=s|m1_1=8, 27 , 97 ; O] (17)
and
hi % Bqlar=i, g1 =3laT , y7; O] (18)

)

p
> zigmg (1 — i) log P(Tt=5|€It=’i,wt,Tt—1=5—1)> +

are computed using the previous value of the param-
eters, ©. In order to compute fZ sty 9i,s,t and h; ivjits
we will use the already defined (i, s,t) (equations 4
and 6), and introduce a new variable, (i, s,t), bor-
rowing the notation from the HMM and IOHMM
literature:

Bli, s,t)%

Like «, B can be computed recursively, but going
backwards in time:

P(yf+1|qt:z', =S, th+1) (19)

B(i,s,t) =
Ja’atﬂ (4, Ys41,t+1)-
]Esucc(z €(i,t+1))B(4, s+1,t+1)
(a(j, i, t+1)e(G, t+1)B(j, s, t+1))(20)
]Esucc i)

where pred(7) is the set of predecessor states of state
i and succ(z) is the set of successor states of state i,
a(4,1,t) is the conditional transition probability from
state 7 to state 7 at time ¢, b(i, ys, t) is the conditional
probability to emit the s** output at time ¢ in state
given that this state emits at time ¢, and €(z, t) is the
probability not to emit at time ¢ in state . The proof
of correctness of this recursion (using the Markovian
independence assumptions) is given in the appendix.
Let o%(i,s,t) be the part of «(i,s,t) computed
when state ¢ emits at time %:

ao(i,s,t) = b(%,ys,t)(1 — €,) -
> ali,g,t) a(j,s—1,t—1)

jéEpred(i)

(21)

Similarly, o (i, s,t) is the part of a(i, s, t) computed
when state 7 does not emit at time ¢:
al(i,s,t) = e(iyt)-
Y ali,jt)a(js,t-1) (22)
jéEpred(i)

We can now express Gist> fis,p and h; ;¢ in terms

of a%(i,s,t), a*(i,s,t) and B(i,s,t) (see derivations
in the appendix):
a(t, 7,1t
hije = %
5 ((.5~ 1,t=1)b(i, s,)-)
1—e€(s,t MR
2\ (12 e, 1)806,5,1) o)

S

—I—Za(j, s, t—1)e(7,t)B(i, s, 1)

s=0

J1,8,1 7 L \==)

and

fi,s,t = I

3.2 The Maximization Step

After each estimation step, one has to maximize
Q(©;6). If the conditional probability distributions
(for transitions as well as emissions) have a simple
enough form (e.g. multinomial, generalized linear
models, or mixtures of these) then one can maximize
analytically @), i.e., solve

9Q(0;6)

a0

(26)
for ©. Otherwise, if for instance conditional prob-
abilities are implemented using non-linear systems
(such as a neural network), then maximization of @
cannot be done in one step. In this case, we can ap-
ply a Generalized EM (GEM) algorithm, that simply
requires an increase in () at each optimization step,
for example using gradient ascent in).

3.3 Multinomial Distributions

We describe here the maximization procedure for
multinomial conditional probabilities (for transitions
and emissions), i.e., which can be implemented as
lookup tables. This applies to problems with dis-
crete inputs and outputs. Let M; be the number
of input symbols, M, the number of output classes,
o1 r = 1 when the #'! input symbol is k, and o), = 0

otherwise. Also, let v, = 1 when the st output
symbol is k, and v, ; = 0 otherwise.
For tramsition probabilities, let w;;; =

P(q=i|g—1=j,z=1). The solution of equa-
tion (26) for w; ;x, with the constraints that transi-
tion probabilities must sum to 1, yields the following
reestimation formula:

T
Z ot khi it
wi:j,k = N T
=1t

=1

ot khi it

For emission probabilities, let w;; =

P(y=l|qt=i,zp4=1), with the constraint w;.; +

the follbWing:

Ut,k’)’s,lgi,s,t

T S
>
t= ls

1
Witk = 7 (28)
Z Z Ot,k"s, mgz syt
m=1t=1 s=
For emit-or-not probabilities, let ;9 =

P(ry=s|i1=s — 1,q4=t,x44=1) and ;1 =
P(ry=s|1—1=s, =1,z 4=1), with the constraint
that ;. 0k + Vi1 e = 1.

ork(l — €¢)Gist

R IE
NN

Yiok = (29)
Ttk (Gis,t + fz‘,s,t)
t=1s=1
T S A
SN orkiifis
Pigg = it (30)

ot k(Gis,t + fist)

™=
M=

-
Il
—
w
Il
—

3.4 Neural Networks or Other Complex
Distributions

In the more general case where one cannot maxi-
mize analytically (), we can compute the gradient
for each parameter and apply gradient ascent in @,
yielding a GEM algorithm (or alternatively, directly
maximize L by gradient ascent). For transition prob-
ability models a(j,%,t) = P(q1=j|q—1=1, z1; w;) for
state ¢, with parameters w;, the gradient of Q) with
respect to w; is

T ;o .

8Qa® @ Z < h’]Zt aag’z’t)) (31)
Wi t=1 jesucc(i) (],Z,t) Wy

where éj 1) can be computed by back-propagation.

Similarly, for emission probability models

b(i,ys,t) = P(ys|q=1,x¢, =8, 1—1=5 — 1;w;) with
parameters w;, the gradient is

éz((gist

b(% ys,t)

aQ(@ 0)

ab(lla ysa t))
B 32)

where, again, 7‘91’%;3?’”
K

propagation.

can be computed by back-

1aVIC 4. W/ VOLVIOW Ul Ll lCd;llllllB algunuun 101

asynchronous IOHMMs

1. Estimation Step: for each training sequence
(z1,y7) do

(a) for each state j «+ 1...n do

e compute a(i, j, t), b(j,ys,t) and €(j, t)
according to the chosen distribution
models.

(b) for each state i + 1...n do

e compute @ s,¢, Bi,s,¢, and L using the
current value of the parameters 6
(equations 6, 5 and 20).

e compute the posterior probabilities
hi gty Gi,s,6 and f; 54 (equations 24, 23
and 25).

2. Maximization Step: for each state j <+ 1...n
do

(a) Adjust the transition probability parame-
ters of state j using reestimation formulae
such as equation 27 (or gradient ascent for
non-linear modules, equation 31).

Adjust the emission probability parame-
ters of state j using reestimation formulae
such as equation 28 (or gradient ascent for
non-linear modules, equation 32).

Adjust the emit-or-not probability param-
eters of state j using reestimation formulae
such as equations 29 and 30 (or gradient as-
cent for non-linear modules, equation 33).

Finally, for emit-or-not probability models
e(i,t) = P(ry=s|q=i, ¢, 4—1=5;1;) with parame-
ters 1);, the gradient is

2Q(8;6) L3 (fmae())
8¢z t_zls;l Ei’t) 8¢z

L3 Gi,st 8(1 _e(iat))
+tzlszl<1—ezt)) oY;

) ()

4 A Recognition Algorithm for
Asynchronous IOHMMs

Given a trained asynchronous IOHMM, we want to
recognize new sequences,
quence, choose an output sequence according to the
model. Ideally, we would like to pick the output se-
quence that is most likely, given the input sequence.

i.e., given an input se-

of computations (with respect to sequence length).
Instead, like in the Viterbi algorithm for HMMs, we
will consider the complete data model, and look for
the joint values of states and outputs that is most
likely. Thanks to a dynamic programming recur-
rence, we can compute the most likely state and out-
put sequence in time that is proportional to the se-
quence length times the number of transitions (even
though the number of such sequences is exponential
in the sequence length).

Let us define V' (4,t) as the probability of the best
state and output subsequence ending up in state
at time t:

Vi, t) = max Py, ¢ =i, y=s|zt) (34)
891,41

where the maximum is taken over all possible lengths
s of output sequences yj. This variable can be
computed recursively by dynamic programming (the
derivation is given in the appendix):

V(i,t) = max(e(s,t), (1 — €, 1)) max b(i,1, 1))

max (a(i, 7,t)V (j,t—-1)) (35)

At the end of the sequence, the best final state *
which maximizes V' (i,T) is picked within the set of
final states F'. If the argmax in the above recurrence
is kept, than the best predecessor j and best output
(ys or the empty symbol €) for each (i,t) can be used
to trace back the optimal state and output sequence
from 4%, like in the Viterbi algorithm.

5 Conclusion

We have presented a novel model and training al-
gorithm for representing conditional distributions of
output sequences given input sequences of a different
length. The distribution is simplified by introducing
hidden variables for the state and the alignment of
inputs and outputs, similarly to HMMs. The output
sequence distribution is decomposed into conditional
emission distributions for individual outputs (given
a state and an input at time ¢) and conditional tran-
sition distributions (given a previous state and an
input at time ¢). This is an extension of the already
proposed IOHMMs [Bengio and Frasconi, 1996,
Bengio and Frasconi, 1995] that allows input and
output sequences to be asynchronous.

with an EM or GEM algorithm (depending on the
form of the emission and transition distributions).
Both the E-step and the M-step can be performed
in time at worst proportional to the product of the
lengths of the input and output sequences, times the
number of transitions. A recognition algorithm simi-
lar to the Viterbi algorithm for HMMs has also been
presented, which takes in the worse case time pro-
portional to the length of the input sequence times
the number of transitions.

In practice (especially when the number of states
is large), both training and recognition can be sped
up by using search algorithms (such as beam search)
in the space of state sequences.

References

[Bengio and Frasconi, 1995] Bengio, Y. and Fras-
coni, P. (1995). An input/output HMM architec-
ture. In Tesauro, G., Touretzky, D., and Leen, T.,
editors, Advances in Neural Information Process-
ing Systems 7, pages 427-434. MIT Press, Cam-
bridge, MA.

[Bengio and Frasconi, 1996] Bengio, Y. and Fras-
coni, P. (1996). Input/Output HMMs for sequence
processing. to appear in IEEE Transactions on
Neural Networks.

[Dempster et al., 1977] Dempster, A. P., Laird,
N. M., and Rubin, D. B. (1977). Maximum-
likelihood from incomplete data via the EM al-
gorithm. Journal of Royal Statistical Society B,
39:1-38.

[Levinson et al., 1983] Levinson, S., Rabiner, L.,
and Sondhi, M. (1983). An introduction to the ap-
plication of the theory of probabilistic functions of
a Markov process to automatic speech recognition.
Bell System Technical Journal, 64(4):1035-1074.

[Pereira et al., 1994] Pereira, F., Riley, M., and
Sproat, R. (1994). Weighted rational transduc-
tions and their application to human language
processing. In ARPA Natural Language Process-
ing Workshop.

[Rabiner, 1989] Rabiner, L. R. (1989). A tutorial on
hidden Markov models and selected applications
in speech recognition. Proceedings of the IEEE,
77(2):257-286.

and Williams, R. (1986). Learning internal repre-
sentations by error propagation. In Rumelhart, D.
and McClelland, J., editors, Parallel Distributed
Processing, volume 1, chapter 8, pages 318-362.
MIT Press, Cambridge.

[Singer, 1996] Singer, Y. (1996). Adaptive mixtures
of probabilistic transducers. In Mozer, M., Touret-
zky, D., and Perrone, M., editors, Advances in

Neural Information Processing Systems 8. MIT
Press, Cambridge, MA.

A Derivations for the EM algo-
rithm

A.1 Recursion for a3, s,t)

a(1, s,t) represents the probability to be in state ¢ at
time ¢ after having emitted the first s outputs:

a(i, s, t) = P(qe=i, 7e=s,yi|2]) (36)

This probability can be decomposed into a sum of
two probabilities: one for the case where 7 is an emit-
ting state, and one for the other case. Then, each
probability can be replaced by a sum over all the
possible previous states that lead to this state.
a(i, s, t)
= P(Qt:i,Tt:S, Tt*IZS_liy‘lslxtl)

+P(qg:i, Tt=S8, Tt—1=8, y‘flxi)
= Z P(qt:i’qt*1:j17—t:577-t71:s_11yilmi)

jEpred(i)
+ Y P(a=i, qim1=j, =5, em1=5, 33 |2})
jEpred(d)
= Z P(q=i, qt—1=§, Te=5, t_1=5—1, 9} |2})
jEpred(i)
+ Y P(a=i, qi-1=j, =8, em1=5, 33 |z})
jEpred(i)
P(q:=i|qt—1=4, 2+)-
= Z P(y5|qi:iaxtaTt:'S:Ti—lzs_l)'
P(ry=s|, -1 = s—1, gs=i)-
jEpred(i)

Py, qe-1=j, re—1=s—1|z}"")
P(qi=i|qs—1=j, x¢)-

+ Z < P(r=s|,T4-1 = 8, q=i)
jepred) \ Pyi, qe-1=j, e—1=s|zi™")

= > a5 t)bG, ys, 1) (1—(i t))a(j, s—1,¢—1)

jEpred(i)

D e

jEpred(d)
which leads to:
ali,s,t) =

a(s, j, t)e(i, t)a(g, s, t—1) (37)

M—

j€Epred(i)

a(iaj: t)a(j’sat_l) (38)

+e(int) Y

jepred(i)
Initialization of these «(i, s,t) is done as follows:
a(3,0,0) = (i) (39)

where 7(i) = P(qgo=%) is the prior initial probability
to be in state 4.

A.2 Recursion for 3(3,s,t)

B(i,s,t) represents the probability of emitting the
last S — s outputs, starting from state 4 at time ¢:

B(iy) (40)

This probability can be rewritten as the sum over
all the possible predecessors of state 7, and then each
term can be split into the emitting case and the non-
emitting case:

S .
= P(y5i1|q=i, 7e=5,211)

B(i,s,t)
S . . T
= Z P(ysy1, gt+1=7lgt=4, t=5, T111)
j€suce(i)
S . . T
= Z P(ysy1, g+1=J, Te+1=5+1|q:=1%, Tt=5, T¢41)
j€suce(i)
+ Z P(yf+1,Qt+1:j,Tt+1:5|Qt=i,TtZS,:I’,‘?_,,_l)
j€succ(i)
P(gt+1=j|qt=1, T4+1)-
_ Z P(yst1|te4+1 = s+1,7¢ = $,qt+1=J, Tt41):
B P(rip1=s+1|ri=s, gr+1=j)-
j€suce(i)

P(ysolair=4, rr1=s+1,2{}1)

P(gi+1=5]gt=4, xt+1)-
p>
j€suce(i)

P(1i41=5|1t=5, gt+1=7)
P(ySila1=J, Te41=8,2{41)
j€Esuce(i)

a(ja ia t+1)b(j1 Ys+1, t+1)(1_6(j7 t+1))ﬂ(j7 s+1a t+1)
+ 2

j€suce(i)

a(j,4,t+1)e(f, t+1)B8(4, s, t+1) (41)

Hence,

ﬂ(iisit) =

>

j€succ(i)

* D a

j€suce(i)

a(j’ i, t+1)b(j7 Ys+1, t+1)(1_6(ja t+1))ﬁ(ja 5+1: t+1)

a(j, 1, t4+1)e(4, t+1)B(g, 5, t+1) (42)

Finally, initialization of §(i,s,t) is done as follows:
if ¢ is a final state, §(i, s,t) = 1, else (3, s,t) = 0.
A.3 Computation of h; ;,

hi,j represents the probability of going through the
transition from state ¢ to state j at time %, given the

hisjat = P(qtziyqt—lzjlevyf)
_ P(y?, =i, ge—1=jlat) (43)
P(y{|=T)

and since L = P(y{|z])

Py, qe=i, qu-1=jloi) =
s
ZP(yf,thi, qt—1=j, 7e=8,Tt—1 = s—1|z])

s=1

+ Z P(yt, gr=i, qs-1=j, 1=5, 711 = s|z])
=1

L ai—1=j, 1—1=s—1|z7)-

(yi~
(qe=ilgt-1=7, $ir)

(1¢ = 8|1e—1 = s—1, gs=4, xl)
(

(

s=1 y|qt—z Tt =8, Te—1 = S—1,24)

M)
PP PP

Yo lge=i, =5, z7)
P(y1,Qt—1=J,Tt—1T=S|$T)'
P(qi=i|gi—1=j,x1)
+ .
Z P(y.f+1|qt=157-t=s7xclr)'
a P(

Tt = Sth 1 =38 qt=i .’E?)

—Za(a,s 1, t=1)a(i, j,)b(i, ys,) (1—e(i, 1)) B0, 5, 1)
S

+Y " a(js,t=1)ali, j, t)e(i, t)B(i, 5, 1)

s=1

(44)

SO,
hije =
(i,j.t) §
a IL’J) : . . .
=Y a1, t=1)b(, s, 1) (1—(i, 1) B, 5, 1)
s=1

(i, 1)

S
+“T Zal(j, s,t—1)e(i, t)B(i, 5, t) (45)

A.4 Computation of g;

9i,s,+ Tepresents the probability that the system is in

state 7 at time ¢, that state ¢ emits at time ¢, and that
the system has already emitted the first s outputs:

Gisit = P(Qt:i,Tt:S|Tt_1:S—].,£I)’{,yls)
P(y?, qe=i, i=s|r_1=s—1,27)

P(y?]aT)

1
L
P(yi, qe=i, =8|t _1=5—1, xf)

CP(yS i la=i, =521) -

S0,
a®(i, 5,t)B(i; 5, t)

] (46)

Gi,s,t =

A.5 Computation of f;;

fi,s,+ represents the probability that the system is in
state 7 at time ¢, that state 4 do not emit at time ¢,

outputs:

fi,s,t =

P(qi=i, 7i=s|r_1=s,1 , ;)
Py}, q1=i, i=s|re—1=5, xT)
P(y7|2T)

) P(yf-l-llqt:i, TtZS,JJ’{))

1
L
P(y}, q=i, i=s|Te-1=8,27)
S0,

al(i) S) t)/g(i’ S’ t)

fi,s,t = T

(47)

B Reestimation Formulae for

Multinomial Distributions

B.1 Transition Probabilities

Let us define each parameter of the lookup table as
follows:
Wijk = P(q=ilqe-1=], Tr,t=1) (48)

These parameters should be positive and sum to 1
over i:

> wige=1 Vj =

i€suce(j)

1...N,Vk=1...M; (49)

To incorporate this constraint into the system, we
can introduce a new term in the cost function:

7©:0)=0©:8)+ 33 (1= 37 wiw | A 50)
= k=1

= i€succ(j)

where the \; ; are Lagrange multipliers. Taking the

derivatives of J with respect to the parameters, we
find:

T A
aw”k 2:: ey = A (51)
This expression is equal to zero when
T
Z ot,khit
wi,j,k = t= (52)

Ajik

With the probabilistic constraint, we obtain the rees-
timation formula:

T

E Ot khZ]t
N T
E E ot khi e

=1 t=1

(53)

Wi,j,k =

10

For the emission probabilities, the parameters are

wiLk = P(y=llg=i, vx,+=1, =5, s_1=5-1). (54)

These parameters should be positive and sum to 1
over [:
Vi=1...NVk=1...

M. (55)

Again using Lagrange multipliers, A, to enforce this
constraint:

J(©;0) =

Q(o; ®)+ZZ

i=1 k=1

<1 — Zwl 1 k) Ak (56)

The derivatives of J with respect to the parameters
are

T S
3w1k ZZ tk’Ysl (57)
which is equal to zero when
T S
Z Z Ot kYs,10i,s,t

t=1 s=1
ik = 58
Wik " (58)

With the probabilistic constraint, we obtain the
reestimation formula:

T S
E E Ot,kYs,104,s,

t=1 s=1

M, T S
m=1 t=

Wi,k = (59)

2

1 s=1

Ut,k’y‘s,mgi,s,t

B.3 Emit or Not Probabilities

For the emit-or-not probabilities, the parameters are

1/)i,o,k = P(Tt = s|qt=i,wk,t=1,n_1=s—1). (60)

and
Yi1ke = P(re = s|ge=t, xp,t=1, 7e—1=35). (61)

These parameters should be positive and sum to 1
over [:

Yiok +Yik =1

Again using Lagrange multipliers, Ag, to enforce this
constraint:

Vi=1...N,Vk=1...M;. (62)

7(©:6) = ©:8)+ 33 (1 - Wiok + b)) M (63

i=1 k=1

The derivatives of J with respect to the parameters
are

(64)

11

8¢ _Zzatkm - = (65)
&Lk t=1 s=1
which are equal to zero when
T S
ZZ tk]- €i,t glst
Piop = 2= " (66)
and
T S
Z Z Ot,k€i,t fis,t
Piap = T " (67)

With the probabilistic constraint, we obtain the
reestimation formulae:

>

t=1

otk (1—€it)Gis e

Mm

1

Piok = 5 (68)
ZZ Otk flst“‘gzst)
and
T S
Z Z Ot,k€i, tf’L s,t
Pigp = (69)

Ttk flst“‘gzst)

”M(IJ

C Recurrence for the Recognition
Algorithm

Let us define V (i,t) as follows:

V('L’ t) ma.x P(yli QI 3 Qt:i, Tt:slxi) (70)

$,T,Y35 q1
Then

P(yi,ai™", q=i, re=sla1)
=P(yi,qi
+P(yi, g1
P(ys|qt=i,$t,Tt:S,thlzs—l)'
P(gi=i|ge—1,2¢)-
P(Tt=S|‘Tt71=S—1,qt=’i)-
P(y; gl mea=s—1jal)

(P(q:=i|qs—1, x41)-)
+

P(Tt=s|n 1=8, qt=1)-
(ma.x(b(z, y87t)(1_€(i=t))a(7;7ja t)'

1 . ¢
, qt=1, Tt=8, Tt—1=8—1|21)

1 . _ _ t
s Qe =1, T4=38, Ty_1=5|7])

S0,

Vi, t)

Py, ¢ re1=slel™")
max_ | Pyl qmoa=s—lai™),
STV h 5(i7t)a(i7j7 t)P(yi7QI7 ,Tt—1=3|$17))

)

hand side factors and obtain the recursive formula:

VGt) = max(e(i,1), (1 - ei, 1)) maxbi, 1 1))
jI:ralc?}_cl (a(iaj: t)V(jat_l)) (71)

The initialization of V' (7,0) is performed as follows:

V(i,0) = () (72)

12

