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Abstract
This paper presents a new application of stochastic adaptive learning
algorithms to the computation of strategic equilibria in auctions. The
proposed approach addresses the problems of tracking a moving target

and balancing exploration (of action space) versus exploitation (of better



modeled regions of action space). Neural networks are used to represent
a stochastic decision model for each bidder. Experiments confirm the

correctness and usefulness of the approach.

1 Introduction

This paper presents a new application of stochastic adaptive learning algorithms
to the computation of strategic equilibria in auctions. Game theory has become
a major formal tool in economics. A game specifies a sequence of decisions
leading to different possible outcomes. Each player or participant is attached to
some decision contexts and information sets, and is provided with preferences
over the set of possible outcomes. A game provides a formal model of the strate-
gic thinking of economic agents in this situation. An equilibrium characterizes
a stable rule of behavior for rational players in the game. A strategy for a
player is the decision-making rule that he follows in order to choose his actions
in a game. A strategic equilibrium (or Nash equilibrium) for a game specifies
a strategy for all players which is a best-response against the strategies of the
others. Let S; denote the set of strategies for player i in N = {1,2,...,n} and
let U; : S1 x Ss...%x S, = R represent i’s real-valued preference for a strategy
s; given the strategies of the other players, over the set of all outcomes of the
game. A vector of strategies s* = {s},s5,..., s} forms a strategic equilibrium

for the n-player game if for all : € N:

* * * * *
s; € argmax,, 5. Ui(s], ..., 5] 1,8i,541,---,5, ) (1)



At strategic equilibrium, no player wishes to change its strategy given the strate-
gies of the others. In zero-sum games or games in which there is no possibility
for cooperation (the latter being the case in auctions), this is a point where a
group of rational players will converge and therefore it would be very useful to
characterize strategic equilibrium. The approach proposed here to approximate
strategic equilibria is quite general and can be applied to many game-theoretical
problems. A lot of research has been done in the field of stochastic learning au-
tomata applied to game problems. A good review can be found in (Narendra and
Thathachar, 1989). We will explain in section 3 the main differences between
our approach and others.

In this paper, we focus on the application to auctions. An auction is a mar-
ket mechanism with a set of rules that determine who gets the goods and at
what price, based on the bids of the participants. Auctions appear in many
different forms (McAfee and McMillan, 1987). Auction theory is one of the ap-
plications of game theory which has generated considerable interest (McMillan,
1994). Unfortunately theoretical analysis of auctions has some limits. One of
the main difficulties in pursuing theoretical research on auctions is that all but
the simplest auctions are impossible to solve analytically. Whereas previous
work on the application of neural networks to auctions focused on emulating
the behavior of human players or improving a decision model when the other
players are fixed (Dorsey, Johnson and Van Boening, 1994), the objective of

this paper is to provide new numerical techniques to search for strategies which



appear to correspond to strategic equilibria in auctions, i.e., take empirically
into account the feedback of the actions of one player through the strategies
of the others. This will help predict the type of strategic behavior induced by
the rules of the auctions, and ultimately make predictions about the relative
performance of different auction rules.

For the purpose of this paper, we shall focus on a simple auction where n
(risk-neutral) bidders compete to buy a single indivisible item. Each bidder i
is invited to submit a (sealed) bid b;. The highest bidder wins the item and
pays his bid. This is referred to as the first-price sealed bid auction. If i wins,
the benefit is v; — b;, where we call the wvaluation v; the expected monetary
gain for receiving the unit. The bid b; is chosen in [0, v;]. In this auction, the
only decision context that matters is this valuation v;. It is assumed to be
information private to the bidder ¢, but all other bidders have a belief about
the distribution of v;. We let F;(-) denote the cumulative distribution of #’s
valuation v; . A strategic equilibrium for this auction specifies for each player ¢
a monotonic and invertible bidding function b;(v;) which associates a bid to each
possible value of v;. At the strategic equilibrium, one’s bidding strategy must
be optimal given the bidding strategies of all the others. Since each bidder’s v;
is chosen independently of the others, and assuming that b;(v;) is deterministic,
the probability that bid b is winning for player i is G;(b) = Hj;éi Fj(bj_l(b)),

i.e., the product of the probabilities that the other players bids are less than b.



Therefore the optimal bidding strategy for risk-neutral bidders is
b;(v;) € argmax,(v; — b)G;(b). (2)

If the distributions F;’s are the same for all bidders, the strategic equilibrium
can be easily obtained analytically. The symmetric bidding strategy is then

given by:

o) = [ S5 (3

where pq 1s the lowest price acceptable by the auctioneer. However, if the F;’s
differ the strategic equilibrium can only be obtained numerically. Further, if
we consider auctions where multiple units are sold, either sequentially or simul-
taneously, finding the strategic equilibria is infeasible using the conventional
techniques.

The numerical procedure introduced in this paper is general and can be
used to approximate strategic equilibria in a large set of auctions. We hope
that this particular application of well-known stochastic optimization methods
will ultimately lead to breakthroughs in the analysis of auctions and similar

complex games.

2 Preliminary Experiments

In preliminary experiments, we tried to infer a decision function b;(v;) by esti-

mating the probability G;(b) that the ith player will win using the bid 4. The

ot



numerical estimate Gl is based on simulated auctions in which each bidder acts
as if G; was correct. This probability estimate is then updated using the result
of the auction. The maximum likelihood estimate of G;(b) is simply the relative
frequency of winning bids below b.

Two difficulties appeared with this approach. The first problem is that of
mass points. Whenever G; is not smooth, the selected bids will tend to focus
on some particular points. To see this, suppose that the highest bid from all
but 7 is always b* then ¢ will always bid a hair above b* whenever v; > b*. Since
this is true for all 7, G; will persist with a mass point around b*. A way to
avoid such mass points is to add some noise to the behavior: instead of bidding
the (supposedly) optimal strategy, the bidder would bid some random point
close to it. This problem is related to the famous exploration vs exploitation
dilemma in reinforcement learning (Barto, 1992; Holland, 1975; Schaerf, Yoav
and Tennenholtz, 1995).

Another difficulty is that we are not optimizing a single objective function
but multiple ones (for each player), which interact. The players keep getting
better so the optimization actually tries to track a mouving target. Because of
this, “old” observations are not as useful as recent ones. They are based on sub-
optimal behavior from the other players. In preliminary experiments, we have
found that this problem makes the algorithm very slow to approach a strategic

equilibrium.



3 Proposed Approach

To address the above problems and extend the numerical solution to finding
strategic equilibria in more complex games, we propose a new approach based

on the following basic elements:

e FEach player i is associated with a stochastic decision model that associates to
each possible decision context C' and strategy s;, a probability distribution
P(a;|C, s;) over possible actions. A context C'is an information available to a

player before he chooses an action.

e The stochastic decision models are represented by flexible (e.g., non-parametric)
models. For example, we used artificial neural networks computing P(a;|C, s;)

with parameters s;.

e An on-line Monte-Carlo learning algorithm is used to estimate the parameters

of these models, according to the following iterative procedure:

1. At each iteration, simulate a game by (1) sampling a context from a
distribution over decision contexts C', (2) sampling an action from the
conditional decision models P(a;|C, s;) of each player.

2. Assuming the context C' and the actions a_; of the other players fixed,
compute the expected utility Wi (si|a_;, C) = [ U;(a;|la—;, C)dP(a;|C, s;),
where U;(a;|a_;, C) is the utility of action a; for player ¢ when the others

play a_; in the context C'.



3. Change s; in the direction of the gradient W.

Let us now sketch a justification for the proposed approach. At strategic
equilibrium, the strategies of the players would be stationary, and convergence
proofs of stochastic gradient descent would apply (Benveniste, Metivier and
Priouret, 1990; Bottou, 1998). We do not have a proof in the general case before
a strategic equilibrium is reached, i.e. in the non-stationary case. However, we
have observed apparent local convergence in our experiments. When and if the
stochastic (on-line) learning algorithm converges for all of the players, it means
that the average gradients cancel out. For the ith player,

OE(Wi(sila—i, C))
682'

-0 (4)

where the expectation is over contexts C' and over the distribution of decisions
of the other players. Let s} be the strategies that are obtained at convergence.
From properties of stochastic (on-line) gradient descent, we conclude that at
this point a local maximum of E(W;(s;|a—;,C)) with respect to s; has then
been reached for all the players. In the deterministic case (P(a;|C,s;) = 1 for
some a; = a;(s;)), the above expectation is simply the utility U; (a1, ..., an).
Therefore, a local strategic equilibrium has been reached (see eq. 1) (no local
change in any player’s strategy can improve his utility). If a global optimiza-
tion procedure (rather then stochastic gradient descent) was used (which may

however require much more computation time), then a global strategic equilib-



rium would be reached. In practice, we used a finite number of random restarts
of the optimization procedure to reduce the potential problem of local max-
ima. The stochastic nature of the model as well as of the optimization method
prevent mass-points, and we conjecture that the on-line learning ensures that
each player’s strategy tracks a locally optimal strategy (given the other players
strategies).

Using a stochastic decision rule in which the dispersion of the decisions (the
standard deviation of the bids, in our experiments) is learned appears in our
experiments to yield to decreasing exploration and increasing ezploitation as the
players approach a local strategic equilibrium for a set of pure (deterministic)
strategies. As the strategies of the players become stationary, this dispersion was
found to converge to zero, i.e. a set of pure strategies. In other experiments not
described here, our approach yielded a set of mixed (non-deterministic) strate-
gies at the apparent strategic equilibrium (so both mixed and pure strategies
can in general be the outcome, when a strategic equilibrium is approached).

To understand this phenomenon, let us consider what each player is implic-
itly maximizing when it chooses a strategy s; by stochastic gradient descent
at a given point during learning (i.e. maybe before a strategic equilibrium is
reached, and a pure or mixed strategy may be chosen). It is the expectation

over the other players actions of the expected utility W(s;|a—;, C):

Ei = /dP(a_i)W(5i|a_i,C)



/dP(a_i)/U(aila—mo)dp(aﬂca si)
/dP(aZ»|C, Si)/U(ma_i,c)dP(a_i)
/ dP(ai|C, 51)u(ai|C) (5)

where we have simply switched the order of integration (and U (a;|a_;, C') is the
utility of action a; when the other players play a_;, in context C'). If P(a_;)
is stationary, then the integral over a_; is simply a function u(a;|C) of the
action a;. In that case, and if u(a;|C) has a single global maximum (which
corresponds to a pure strategy), the distribution over actions which maximizes
the expected utility F; is the delta function centered on that maximum value,
argmaxau(a;|C), i.e., a deterministic strategy is obtained and there is no ex-
ploration. This happens at a strategic equilibrium because the other players
actions are stationary (they have a fixed strategy).

On the contrary, if P(a—;) is not stationary (i.e., the above integral changes
as this distribution changes), then it is easy to show that a deterministic strategy
can be very poor, which therefore requires the action distribution P(a;|C) s;)
to have some dispersion (i.e., there is exploration). Let us for instance take the
simple case of an auction in which the highest bet 5*(¢) of the other players is
steadily going up by A after each learning round ¢: 6*(t) = b*(t — 1) + A . The
optimal deterministic strategy always chooses to bid just above the previous
estimate of 6%, e.g., b(t) = b*(t — 1) + € where € is very small. Unfortunately,

since € < A, this strategy always loses. On the other hand, if b was sampled
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from a normal distribution with a standard deviation o comparable to or greater
than A a positive expected gain would occur. Of course, this is an extreme case,
but 1t illustrates the point that a larger value of o optimizes E; better when
there is much non-stationarity (e.g., A is large), whereas a value of o close to
zero becomes optimal as A approaches zero, i.e., the strategic equilibrium is
approached.

The approach proposed in this paper builds upon a rich literature in stochas-
tic learning and reinforcement learning. In the stochastic learning automata
(SLA) of (Narendra and Thathachar, 1989), one generally considers a single
context, whereas we focus on cases with multiple contexts (C' can take sev-
eral values). SLAs have usually a finite set of actions whereas we consider
a continuous range of actions. SLAs are usually trained in the more general
setting when only sample rewards can be used, whereas in the application to
auctions the expected utility can be directly optimized. Gullapalli (Gullapalli,
1990) and Williams (Williams, 1992) also used a probability distribution for
the actions. In (Gullapalli, 1990), the parameters (mean, standard deviation)
of this distribution (a normal) were not trained using the expected utility. In-
stead a reinforcement algorithm was used to estimate the mean of the action
and a heuristic (with hand-chosen parameters) is used to select standard devi-
ation, i.e., obtain the exploration/exploitation tradeoff as learning progresses.
In (Williams, 1992), the mean and variance are both optimized with a gradient

descent algorithm, and as in our case, no proof of convergence was provided.
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Figure 1: Illustration of the Monte-Carlo simulation procedure for an auction.

4 Applications to Auctions

In the experiments, the stochastic decision model for each bidder is a multi-layer
neural network with a single input (the decision context C' in this case is the
valuation v;), three hidden units', and two outputs, representing a truncated
Normal distribution for b; with parameters y; (mean) and o; (standard devia-
tion). In the case of single-unit auctions, the normal distribution is truncated
so that the bid b; is in the interval [0, v;]. The case of multi-units auctions is
discussed in section 4.3. The Monte-Carlo simulation procedure is illustrated
in Figure 1. The valuations v are sampled from the valuation distributions.
Each player’s stochastic decision model outputs a x4 and a o for its bid(s). Bids
are sampled from these distributions, and ordered to determine the winner(s).

Based on these observations, the expected conditional utility W (s;|la_;, C) is

ldifferent numbers were tried, without significant differences, as long as there are hidden
units
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computed: here it is the expectation of v; — b; over values of b; distributed
according to the above defined truncated Normal. This integral can be com-

puted analytically and its derivatives with respect to the network

W (sila_i,C)
s,
parameters are used to update the strategies. It is interesting to note that, as
explained in the previous section, in the experiments o starts out large (mostly
exploration of action space) and gradually converges to a small value (mostly

exploitation), even if this behavior was not explicitly programmed.

In the following subsections, we will consider different types of valuation

probability distributions F;, as well as the single-unit and multi-units cases.

4.1 Symmetric Auctions with Known Solutions

We consider first a single-unit symmetric auction, i.e., there is only one good
to sell and all players share the same probability distribution F' over their val-
uations. As stated in the introduction, the (unique) strategic equilibrium is
known analytically and is given by equation 3. In the experiments presented
here, we tried two different valuation probability distributions: uniform UJ[0,1]
and Poisson F(v;) = exp (=X - (1 — v;)).

Table 1 summarizes results of experiments performed using the proposed
method to find a strategic equilibrium for symmetric auctions with uniform
valuation distribution. There were 8 players in these experiments. Since all
players share the same probability distribution, we decided to share parameters

of the 8 neural networks to ease the learning. We also tried with non-shared
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Symmetric Auction with Uniform Distribution
Avg. over 10 runs Std. dev. over 10 runs
Avg. over 1000 bids | Std. dev. || Avg. over 1000 bids | Std. dev.
L 1.016 0.01 0.004 0.00003
ﬁ 1.019 0.003 0.004 0.000004
o 0.001 0.0001 0.000001 0.0

Table 1: Result of the symmetric auction with uniform distribution experiments.

parameters, and found almost the same results (but more learning iterations
were required). Each experiment was repeated 10 times with different initial
random conditions in order to verify the robustness of the method. After 10000
learning iterations (simulated auctions), we fixed the parameters and played
1000 auctions. We report mean and standard deviation statistics over these
1000 auctions and 10 runs. Let bidy be the bid that would be made according

bid

2 1s the ratio between
bidg

to the analytical solution of the strategic equilibrium.
the actual bid and the analytical bid if the system was at strategic equilibrium.
When this ratio is 1, it means that the solution found by the learning algorithm
is identical to the analytical solution. It can be seen from the values of bl.”—do at
equilibrium that g and the analytical bid are quite close. A small ¢ means the

system has found a deterministic strategic equilibrium, which is consistent with

the analytical solution, where bidy is a deterministic function of the valuation

Table 2 summarizes results of experiments done to find strategic equilibria

for symmetric auctions with a Poisson (A = 7) valuation distribution. Again,
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Symmetric Auction with Poisson Distribution
Avg. over 10 runs Std. dev. over 10 runs
Avg. over 1000 bids | Std. dev. || Avg. over 1000 bids | Std. dev.
L 0.999 0.02 0.00004 0.0001
ﬁ 0.999 0.02 0.00004 0.0004
o 0.0002 0.00002 0.0 0.0

Table 2: Result of the symmetric auction with Poisson distribution experiments.

we can see that the system was always able to find the analytical solution.

4.2 Asymmetric Auctions

An auction is asymmetric when players may have a different probability dis-
tribution for their valuation of the goods. In this case, it is more difficult to
analytically derive the solution for strategic equilibria. We thus developed an
empirical method to test if the solution obtained by our method was indeed
a strategic equilibrium. After learning, we fixed the parameters of all players
except one. Then we let this player learn again for another 10000 auctions.
This second learning phase was tried (1) with initial parameters starting at the
point found after the first learning, or (2) starting with random parameters. In
order to verify that the equilibrium found was not constrained by the capacity
of the model, we also let the free player have more capacity (by doubling his
hidden layer size). We tried this with all players. Table 3 summarizes these
experiments. Since o is small, the equilibrium solution corresponds to a deter-

ministic decision function. Since the average gain of the free player is less than



Asymmetric Auction with Poisson Distribution
Avg. over 10 runs Std. dev. over 10 runs
Avg. over 1000 bids | Std. dev. || Avg. over 1000 bids | Std. dev.
o 0.0016 0.00001 0.0 0.0
Gy -0.0386 0.0285 0.0 0.0
G, -0.0385 0.0284 0.0 0.0
Gg -0.0381 0.0254 0.0 0.0

Table 3: Result of the asymmetric auction with Poisson distribution experi-
ments, number of players = 8, A = 7 for first 4 players, A = 4 for last 4 players.
G{f,r,4y are the excess gain of the free player starting to learn from (f) a strate-
gic equilibrium, (r) random point, and (d) random point with a double capacity
model.

the average gains of the fixed players, we conclude that a strategic equilibrium
had probably been reached (up to the precision in the model parameters that

is allowed by the learning algorithm).

4.3 Multi-Units Auctions

In the multi-units auction, there are m > 1 identical units of a good to be sold
simultaneously. Each player can put in his envelope multiple bids if he desires
more than one unit. The m units are allocated to those submitting the m highest
bids. Each winning buyer pays according to his winning bids. If a bidder 7 wins
k units, he will pay b; 1 +b; 2+ - -+ b;  where b; 1 > b; 2 > --- > b; . The rules
are such that the price paid for the jth unit is no more than the price paid for
the (j — 1)th unit. Hence, b; ; is forced to lie in [0, min(v; ;, b; j—1)]. In this case,
no analytic solution is known. The same empirical method was therefore used

to verify if a strategic equilibrium was reached. In this case the neural network
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Symmetric Multi-Units Auction with Poisson Distribution
Avg. over 10 runs Std. dev. over 10 runs
Avg. over 1000 bids | Std. dev. || Avg. over 1000 bids | Std. dev.
o of unit 1 0.001 0.0 0.0 0.0
o of unit 2 0.002 0.0 0.0 0.0
o of unit 3 0.460 0.0 0.058 0.0
o of unit 4 0.463 0.0 0.02 0.0
Gy -0.047 0.042 0.0001 0.0001
G, -0.048 0.042 0.0003 0.0
Gy -0.057 0.034 0.0007 0.0001

Table 4: Result of the symmetric multi-units auction with Poisson(A) distribu-
tion experiments, A = 7, number of units = 4, number of players = 8. Gy; . 5
are the excess gain of free player starting to learn from (f) strategic equilibrium,
(r) random point, and (d) random point with a double capacity model.

has 2 m outputs (p and o for each good). Table 4 summarizes the results. Tt
appears that an equilibrium was reached (the free player could not beat the
fixed players), but what is interesting to note is that o for units 3 and 4 is very
large. This may be because a player could probably bid anything for units 3
and 4 since he would probably not get more than 2 units at the equilibrium

solution.

5 Conclusion

This paper presented an original application of artificial neural networks with
on-line training to the problem of finding strategic equilibria in auctions. The
proposed approach is based on the use of neural networks to represent a stochas-

tic decision function, and takes advantage of the stochastic gradient descent to
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track a locally optimal decision function as all the players improve their strategy.
Experimental results show that the analytical solutions are well approximated
in cases when these are known, and that robust strategic equilibria are obtained
in the cases where no analytical solution is known.

Interestingly, in the proposed approach, exploration is gradually reduced
as the players converge towards a strategic equilibrium and the distribution of
their actions becomes stationary. This is obtained by maximizing (by stochastic
gradient descent) the expected utility of the strategy, rather then by fixing
heuristically a schedule for reducing exploration.

Future work will extend these results to other (more complex) types of auc-
tions involving sequences of decisions (such as multi-units sequential auctions).
The approach could also be generalized in order to infer the valuation distribu-

tion of bidders whose bids are observed.
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