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Abstract

Multimodal fusion for identity veri�cation has already shown great improvement
compared to unimodal algorithms. In this paper, we propose to integrate con�-
dence measures during the fusion process. We present a comparison of three di�erent
methods to generate such con�dence information from unimodal identity veri�ca-
tion systems. These methods can be used either to enhance the performance of a
multimodal fusion algorithm or to obtain a con�dence level on the decisions taken
by the system. All the algorithms are compared on the same benchmark database,
namely XM2VTS, containing both speech and face information. Results show that
some con�dence measures did improve statistically signi�cantly the performance,
while other measures produced reliable con�dence levels over the fusion decisions.
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1 Introduction

Identity veri�cation is a general task that has many real-life applications such
as access control or transaction authentication. Biometric identity veri�cation
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systems are based on the characteristics of a person, such as face, �ngerprint or
signature [1]. While a lot of research is devoted to the development of unimodal
biometric veri�cation systems, using for instance the voice or the face image
of a person (see for instance [2�6]), recent papers have shown that combining
such unimodal veri�cation systems can enhance the overall performance of
the system (see for instance [7�13,4,14,15]). The combination is sometimes
performed using statistical assumptions about the unimodal scores (such as
gaussianity, bounded score domain, or simply the fact that the scores can
be considered as probabilities) or using machine learning algorithms such as
Multi-Layer Perceptrons or Support Vector Machines [16�18].

While these fusion algorithms use either the decisions (accept or reject the
access) or the scores obtained by the unimodal algorithms in order to take a
global decision, we propose in this paper to provide other complementary in-
formation to the fusion algorithms, based on an estimation of the con�dence
one has on the unimodal algorithm scores. This paper thus proposes three
di�erent methods to estimate such con�dence on the scores. The �rst two
methods are based on the scores obtained by the unimodal veri�cation sys-
tems, while the last one is based on the average gradient amplitude of the score
of the unimodal veri�cation systems, with respect to all the parameters. This
last method, combined with either Support Vector Machines or Multi-Layer
Perceptrons, yields signi�cantly better performance than to the corresponding
performance without con�dence measure.

On the other hand, for some identity veri�cation applications, it might be
desirable not to take a decision when the score given by the veri�cation system
(either unimodal or multimodal) is uncertain. Con�dence information could
then be used to select a threshold under which no decision is taken (the decision
is then delayed or put into the hands of a human decider). The second method
proposed in this paper, which estimates the con�dence on the decision using
a non parametric algorithm, has been used for this purpose and results show
that overall performances are indeed enhanced when only a small fraction of
the accesses are referred to a human decider.

In the next section we �rst introduce the reader to the problem of identity ver-
i�cation, based either on voice (hence, speaker veri�cation) or face image (face
veri�cation). Afterward, in section 3 we explain how fusion algorithms could
be used to enhance the decision of unimodal identity veri�cation systems.
In section 4, we propose three di�erent methods that estimate a con�dence
measure based either on the decisions of the unimodal systems or on their
structure. In section 5, we propose an experimental comparison of the use of
these con�dence measures to enhance the quality of the decisions taken by the
fusion algorithms or simply to provide a con�dence measure on the decisions
taken. We compare three di�erent con�dence measures, as well as three di�er-
ent fusion algorithms, on the well-known benchmark database XM2VTS using
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its associated Lausanne protocol. Finally, we analyze the results and conclude.

2 Identity Veri�cation

The goal of an automatic identity veri�cation system is to either accept or
reject the identity claim made by a given person. Such systems have many
important applications, such as access control, transaction authentication (in
telephone banking or remote credit card purchases for instance), voice mail,
or secure teleworking. A good introduction to identity veri�cation, and more
speci�cally to biometric veri�cation can be found in [1].

An identity veri�cation system has to deal with two kinds of events: either the
person claiming a given identity is the one who he claims to be (in which case,
he is called a client), or he is not (in which case, he is called an impostor).
Moreover, the system may generally take two decisions: either accept the client
or reject him and decide he is an impostor.

Thus, the system may make two types of errors: false acceptances (FA), when
the system accepts an impostor, and false rejections (FR), when the system
rejects a client. In order to be independent on the speci�c dataset distribution,
the performance of the system is often measured in terms of these two di�erent
errors, as follows:

FAR =
number of FAs

number of impostor accesses , (1)

FRR =
number of FRs

number of client accesses . (2)

A unique measure often used [19] (particularly during NIST evaluations) com-
bines these two ratios into the so-called decision cost function (DCF) as fol-
lows:

DCF = Cost(FR) · P (client) · FRR + Cost(FA) · P (impostor) · FAR (3)

where P (client) is the prior probability that a client will use the system,
P (impostor) is the prior probability that an impostor will use the system,
Cost(FR) is the cost of a false rejection, and Cost(FA) is the cost of a false
acceptance.

A particular case of the DCF is known as the half total error rate (HTER)
where the costs are equal to 1 and the probabilities are 0.5 each:
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HTER =
FAR + FRR

2
. (4)

Most veri�cation systems output a score for each access. Selecting a thresh-
old over which scores are considered genuine clients instead of impostors can
greatly modify the relative performance of FAR and FRR. A typical threshold
chosen is the one that reaches the Equal Error Rate (EER) where FAR=FRR
on a separate validation set [20]. Note that EER and HTER, while similar,
are di�erent concepts: EER is often used to select a threshold but cannot be
used to measure the performance of a system on unknown data, while HTER
can be used to measure this performance.

Another method to evaluate the performance of a system is through the use of
the so-called Receiver Operating Characteristic (ROC) curve, which represents
the FAR as a function of the FRR. A more interesting version of the plot is
the DET curve, which is a non-linear transformation of the ROC curve in
order to make results easier to compare [21]. The non-linearity is in fact a
normal deviate, coming from the hypothesis that the scores of client accesses
and impostor accesses follow a Gaussian distribution. If this hypothesis is true,
the DET curve should be a line. Figure 4 shows examples of DET curves.

In the following subsections, we brie�y introduce the two unimodal identity
veri�cation systems used in the present study.

2.1 Baseline Speaker Veri�cation System

Classical speaker veri�cation systems are based on statistical models. We are
interested in P (Si|X) the probability that a speaker Si has pronounced the
sentence X. Using Bayes theorem, we can write it as follows:

P (Si|X) =
p(X|Si)P (Si)

p(X)
. (5)

To decide whether or not a speaker Si has pronounced a given sentence X, we
compare P (Si|X) to the probability that any other speaker has pronounced X,
which we write P (S̄i|X). When P (S̄i|X) is the same for all clients Si, which is
the case in this paper, we replace it by a speaker independent model P (Ω|X)
where Ω represents the world of all the speakers. The decision rule is then:

if P (Si|X) > P (Ω|X) then X was generated by Si. (6)

Using equation (5), inequality (6) can then be rewritten as:

p(X|Si)

p(X|Ω)
>

P (Ω)

P (Si)
= δi (7)
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where the ratio of the prior probabilities is usually replaced by a threshold δi

since it does not depend on X. Taking the logarithm of (7) leads to the log
likelihood ratio:

log p(X|Si)− log p(X|Ω) > log δi = ∆i. (8)

To implement this, we need to create a model of p(X|Si) for every potential
speaker Si, as well as a world model p(X|Ω), and then we need to estimate
the threshold ∆i for each client Si. In fact, this threshold is often forced to be
the same for each client due to the lack of data to estimate it adequately. In
this paper, the decision function (and thus the threshold) is replaced by the
fusion process described in section 3.

The most used model, in the context of text-independent speaker veri�ca-
tion, is the Gaussian Mixture Model (GMM) with diagonal covariance ma-
trix. In order to use such a model, we make the (often false) assumptions
that the frames of the speech utterance are independent from each other and
the features in each frame are uncorrelated: the probability of a sequence
X = {x1,x2, . . . ,xT} given a GMM with N Gaussians is computed as follows

p(X) =
T∏

t=1

p(xt) =
T∏

t=1

N∑

n=1

wn · N (xt; µn,σn) (9)

where wn is the weight of Gaussian N (xt; µn,σn) with mean µn ∈ Rd where
d is the number of features and with standard deviation σn ∈ Rd. GMMs
are usually trained with the EM algorithm [22] in order to maximize the
likelihood of the data. Moreover, as the number of client accesses if often too
small to train adequately client GMMs from scratch, adaptation methods are
often used [23], taking the world model parameters as prior over the client
parameters.

In the experiments reported in this paper, the sentences X were preprocessed
using 16 Mel Frequency Cepstrum Coe�cients (MFCC) [24] as well as their
�rst derivative; moreover the client models were trained using the Bayesian
MAP adaptation approach [23], starting from the world model. The overall
method has also been described in more details in [25].

2.2 Baseline Face Veri�cation System

The classical face veri�cation process can be decomposed into several steps,
namely image acquisition (grab the images, from a camera or a VCR, in color
or gray levels), image processing (apply �ltering algorithms in order to enhance
important features and to reduce the noise), face detection (detect and localize
an eventual face in a given image) and �nally face veri�cation itself, which

5



consists in verifying if the given face corresponds to the claimed identity of
the client.

In this paper, we assume (as it is often done in comparable studies, but
nonetheless incorrectly) that the �rst three steps have been performed per-
fectly and we thus concentrate on the last step, namely the face veri�cation
step. A good survey on the di�erent methods used in face veri�cation can be
found in [2,3].

Our face veri�cation method (alse described in [4]) is based on Multi-Layer
Perceptrons (MLPs) [16,17]. For each client, an MLP is trained to classify an
image to be either the given client or not. The input of the MLP is a feature
vector with 396 dimensions corresponding to the downsized gray level face
image and to the RGB (Red-Green-Blue) skin color distribution of the face
(Figure 1): �rst, the located face is cropped, downsized to a 15x20 image and
enhanced using standard image processing such as histogram equalization and
smoothing by convolving the image by a 3x3 Gaussian kernel 1 ; second, skin
color pixels are �ltered, from the sub-image corresponding to the located face,
using a fast look-up indexing table of skin color pixels; then, for each color
channel, a histogram is built using 32 samples.

Fig. 1. An MLP for face veri�cation using the image of the face and the distribution
of the skin color.

The output of the MLP is either 1 (if the input corresponds to a client) or -1 (if
the input corresponds to an impostor). The MLP is trained using both client
images and impostor images, often taken to be the images corresponding to
other available clients (in the present study, we used the other 199 clients of
the XM2VTS database, described in section 5.1).

Finally, the decision to accept or reject a client access depends on the score
obtained by the corresponding MLP which could be either above (accept)
or under (reject) a given threshold, chosen on a separate validation set to
optimize a criterion such as the EER.

1 The standard deviation of the Gaussian was set to 0.5.
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3 Fusion Algorithms

Fusion algorithms are methods whose goal is to merge the prediction of many
algorithms in order to hope for a better average performance than any of the
combined methods alone.

It has already been shown in many research papers that combining biomet-
ric veri�cation systems enables to achieve better performance than techniques
based on only one biometric modality [7�10]. More speci�cally, audio-visual
biometric veri�cation systems (based on the face and the voice of an individ-
ual) have also been extensively studied [11,12].

Most classi�cation machine learning algorithms can be used for fusion pur-
poses. A good introduction to machine learning algorithms can be found
in [16�18]. In this study, we selected the following fusion algorithms: Multi-
Layer Perceptrons (MLPs) [16,17], Support Vector Machines (SVMs) [18], and
Bayes Classi�ers using Gaussian Mixture Models (GMMs) as density estima-
tors [16] 2 .

For each of these methods, we assume that we have access to a training dataset
of pairs (xi, yi) where xi is a vector containing the scores or decisions of the
basic modalities (such as speaker and face veri�cation modules) as well as
eventual con�dence informations over these scores, while yi is the class of the
corresponding accesses (for instance, client or impostor, often coded respec-
tively as 1 and -1).

MLPs are trained to minimize the mean squared error between the obtained
output and the desired output (-1 or 1); SVMs are trained to maximize the
minimum margin between the correct decision and the no-decision hyperplane;
Finally, Bayes Classi�ers are trained by separately maximizing the likelihood
of the client accesses on one GMM and the impostor accesses on a second
GMM.

Each of these methods require to select one or more hyper-parameters in order
to give its optimal performance. These hyper-parameters often control the
capacity [18] of the model, which is related to the size of the function space
spanned by the model. These hyper-parameters should be selected according to
the number of training examples and the complexity of the training problem.
For MLPs, this amounts to selecting the number of hidden units and/or the
number of training iterations; for SVMs, it means selecting the parameter
of the kernel chosen, such as the variance of the Gaussian kernel; for Bayes
Classi�ers using GMMs, it means selecting the number of Gaussians in the

2 In this paper, we will assume that the reader is familiar with these models. More
information could be found in the already cited references [16�18].
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mixtures corresponding respectively to client and impostor models.

As there is only one training set available in general, the same data should be
used to select the hyper-parameters of the models, to train them, and �nally
to select a decision threshold that optimizes a given criterion (in this paper,
we used the EER). In order to do all this with the same dataset without the
risk of optimistic bias, a cross-validation method had to be used. The method
used in this paper was the following:

(1) For each value of the hyper-parameter of the fusion model,
(a) perform a K-fold cross-validation in order to obtain unbiased scores

for each train examples (in our case, K = 5, hence we train a model
with the �rst 4

5
of the dataset, and save the scores of the last 1

5
, then

we do the same for each of the 4 other partitions {4
5
, 1

5
}, in order

to �nally obtain scores for the whole dataset that were taken by a
model that was not trained on the corresponding examples);

(b) after a random shu�ing of the data, perform a K-fold cross-validation
(K = 5) on the obtained scores in order to compute for each partition
the HTER corresponding to the threshold that optimized the EER
on the other partitions;

(c) the performance of the hyper-parameter corresponds to the average
of these HTER, which are unbiased.

(2) Select the value of the hyper-parameter that has the best average HTER
performance.

(3) Using the unbiased scores corresponding to the best model, select the
threshold that optimizes EER on the whole training set.

(4) Train the best model over the whole training set.
(5) Apply the best model (found is step 4) on the test set and use the best

threshold (found in step 3) to take the decisions.

Note that in the experiments described later in this paper, using the XM2VTS
database, the training set used to train the fusion model and select the thresh-
old was called the evaluation set.

As the database used for the experiments is highly unbalanced (the number of
impostor accesses is more than one hundred times higher than the number of
client accesses), special care should be taken during cross-validation in order
to maintain the original class distribution in each fold of the K-fold proce-
dure. Moreover, as some of the fusion algorithms strongly depend on random
initialization (such as MLPs), it is advisable to run each training experiment
more than once during the selection and the estimation process. In this study,
we set the repeat factor to 5 during the selection process and all the results
reported are averaged over 10 experiments.
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4 Con�dence Estimation

One can think of the fusion algorithms as a way to somehow weight the scores of
di�erent unimodal veri�cation systems, eventually in a nonlinear way, in order
to give a better estimation of the overall score. If one had access not only to
the scores but also to a con�dence measure on these scores, this measure could
probably help in the fusion process. Indeed, if for some reason one unimodal
veri�cation system was able to say that its score for a given access was not
very precise and should not be taken for granted, while a second unimodal
veri�cation system was more con�dent on its own score, the fusion algorithm
should be able to provide a better decision than without this knowledge.

Hence, in this section, we propose three methods that can be used to esti-
mate a measure of con�dence over a score. In the experimental section, these
three methods will be compared to see if they are indeed providing useful
information that enhances the overall performance of the fusion algorithms.

Moreover, these methods could also be used to measure the con�dence of
the fusion algorithm decisions themselves. For some applications, it might be
important to take decisions only when a high level of con�dence is provided.
At least one of the methods presented in this section could be used for this
purpose.

4.1 Gaussian Hypothesis

One of the simplest method to estimate a con�dence over a score is to do
a Gaussian hypothesis on the score distribution. More speci�cally, suppose
that all the scores s from genuine clients have been generated by the same
Gaussian distribution N (s; µc, σc) and all the scores s from impostors have
been generated by another Gaussian distribution N (s; µi, σi). Then, a good
measure of con�dence for a given score could be related to the distance between
the probability that the score is from a client and the probability that the score
is from an impostor. For instance, one could simply compute the following
measure mgauss:

mgauss(s) = |N (s; µc, σc)−N (s; µi, σi)| . (10)

In order to estimate the parameters {µc, σc, µi, σi} we simply use a training
set of scores with their associated tag (client or impostor).

The �rst step, however, should be to verify whether the client scores and the
impostor scores could have indeed been generated by two separate Gaussians.
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In order to verify whether a given set of data have been generated by a given
distribution, one can use one of the many statistical tests available. In this
study, we used the Kolmogorov-Smirnov statistics ks:

ks =
√

l sup
s
|N (s; µ, σ)− p̂(s)| (11)

where l is the number of examples, p̂(s) is the empirical distribution of the
scores and N (s; µ, σ) is the hypothesized Gaussian. Under the null hypothesis
of Gaussian data, the asymptotic distribution of ks [26] is

lim
l→∞

p(ks < ε) = 1− 2
∞∑

k=1

(−1)k−1 exp(−2ε2k2). (12)

The sum can be closely approximated with its �rst few terms, because of its
exponential convergence.

Unfortunately but as expected, the distribution of scores coming from the
modalities do not appear to be always Gaussian. In Figure 2, we show the
cumulative distribution of the scores obtained by clients from con�guration I
of the XM2VTS database (described in section 5.1) using the face veri�cation
modality as well as the nearest potential Gaussian cumulative distribution.
Indeed, the Kolmogorov-Smirnov statistics gives a 0% probability of the data
to be Gaussian.
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Fig. 2. Cumulative distribution of the face veri�cation client accesses (XM2VTS
database, con�guration I, evaluation set) compared to the nearest Gaussian cumu-
lative distribution.

Although the distribution of scores appear not to be Gaussian, it can still be
interesting to see how a model based on this false hypothesis perform. After
all, even though the distribution is not Gaussian, it can still be often close to
it. In fact, it is often the case that in empirical studies, one assumes hypotheses
which turn out to be false, even though the results on actual data remain good.
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4.2 Non Parametric Estimation

In the (probable) event of non Gaussian scores, one can try to estimate the
con�dence using a non parametric model. In the following we propose a simple
idea that makes no hypothesis on the distribution of the scores.

Using a training set of scores and their associated tag (client or impostor),
partition the space of the scores into K distinct subspaces. The score space is
unidimensional (it generally spans the real domain or a bounded version of it),
so this partition is not subject to the curse of dimensionality. The partition
process could be uniform over the score space (each partition has the same
size) or over the score distribution (each partition contains the same number of
training scores; in the experiments reported here, we have chosen this method).
In both cases, simply compute for each subspace SSi the statistics of interest.
In our case, we computed mnp, the number of errors that were made in the
subspace (false acceptances and false rejections), divided by the total number
of scores in the subspace:

mnp(SSi) =
number of FAs + number of FRs in SSi

number of accesses in SSi

. (13)

This number gives indeed a simple con�dence on the quality of the scores
in SSi. Turning to the test set, when one wants to compute the con�dence
of a given score s with unknown tag (client or impostor), one simply �nds
the subspace SSi corresponding to the given score and returns the associated
value mnp(SSi(s)).

One question remains: how to select K. In fact, when K is small, each partition
contains a large number of scores and the statistics in each partition is thus
well estimated; however during the test step, the granularity of the con�dence
levels will be small (there will never be more than K di�erent values of the
statistics). On the contrary, when K is large, the granularity is bigger, but the
estimation of the statistics in each partition is less reliable. In the experiments
presented in this paper, we have chosen a value of K somewhere in the middle,
with K = 1000 which, given the size of the test sets (more than 100000), let
more the 100 values in each partition to estimate the statistics. Note that we
have tried several values of K and the overall results did not really �uctuate,
hence it seems to be a robust method.

Finally, note that this non parametric method is also similar to the well-
known Parzen density estimator or the K-nearest-neighbor algorithm (see for
instance [16] for a description of these algorithms).
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4.3 Model Adequacy

Taking into account that most unimodal veri�cation systems (at least those
we are indeed using) are based on some kind of gradient method optimizing
a given criterion (for instance, GMMs used in speaker veri�cation are trained
to maximize the likelihood and MLPs used in face veri�cation are trained to
minimize the mean squared error), we propose to compute the gradient of a
simple measure of con�dence of the decision of the model given an access with
respect to every parameter in the model. The average amplitude of such gra-
dient gives an idea of the adequacy of the parameters to explain the con�dence
of the model on the access. Hence, a global measure ma could be

mma(X) =
1

M

M∑

i=1

∣∣∣∣∣
∂f(X)

∂θi

∣∣∣∣∣ (14)

where θi is one the M parameters of the model and f(X) is a simple measure
of con�dence of the model given access X.

For our speaker veri�cation system based on GMMs, we chose

mma(X) =
1

Mc

Mc∑

i=1

∣∣∣∣∣
∂ log p(X|Sc)

∂θi

∣∣∣∣∣ +
1

Mw

Mw∑

i=1

∣∣∣∣∣
∂ log p(X|Ω)

∂θi

∣∣∣∣∣ (15)

where Mc is the number of parameters in the claimed client model Sc and Mw

is the number of parameters in the world model Ω. Note that in this case, the
measure is strongly related to the average value of the Fisher score [27], which
is a su�cient statistics of the generative model.

For our face veri�cation system based on MLPs, the best measure we found
was

mma(X) =
1

M

M∑

i=1

∣∣∣∣∣
∂MLP (X)2

∂θi

∣∣∣∣∣ (16)

where M is the number of parameters of the model and MLP (X) is the output
obtained on access X. Considering the fact that the targets of the MLP where
-1 and 1, the higher the absolute value of the score was, the more con�dent
the system was, and we thus measured the overall in�uence of the parameters
to obtain high scores (and con�dence).

5 Experimental Evaluation

In this section, we present an experimental comparison between di�erent fu-
sion algorithms, with and without con�dence information, in order to assess

12



the quality of such information. This comparison has been done using the mul-
timodal XM2VTS database [28], using its associated experimental protocol,
the Lausanne Protocol [29].

5.1 Database and Protocol

The XM2VTS database contains synchronized image and speech data recorded
on 295 subjects during four sessions taken at one month intervals. On each
session, two recordings were made, each consisting of a speech shot and a head
rotation shot.

The database was divided into three sets: a training set, an evaluation set,
and a test set. The training set was used to build client models, while the
evaluation set was used to compute the decision (by estimating thresholds for
instance, or parameters of a fusion algorithm). Finally, the test set was used
only to estimate the performance of di�erent veri�cation algorithms.

The 295 subjects were divided into a set of 200 clients, 25 evaluation im-
postors, and 70 test impostors. Two di�erent evaluation con�gurations were
de�ned. They di�er in the distribution of client training and client evaluation
data. Both the training client and evaluation client data were drawn from the
same recording sessions for Con�guration I which might lead to biased esti-
mation on the evaluation set and hence poor performance on the test set. For
Con�guration II on the other hand, the evaluation client and test client sets
are drawn from di�erent recording sessions which might lead to more realistic
results. This led to the following statistics:

• training client accesses: Conf. I: 600 (200 x 3 per client), Conf. II: 400 (200
x 2 per client)

• evaluation client accesses: Conf. I: 600 (200 x 3 per client), Conf. II: 400
(200 x 2 per client)

• evaluation impostor accesses: 40'000 (25 * 8 * 200)
• test client accesses: 400 (200 * 2)
• test impostor accesses: 112'000 (70 * 8 * 200)

Finally, note that in order to train a world model for the speaker veri�cation
system, we used additional data from a separate speech database, POLY-
COST [30], which was already used in previous published experiments on
XM2VTS.
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5.2 Baseline Results

In this section, we present two di�erent baseline results. First in Table 1,
we show the performance of each modality alone, namely speaker veri�cation
(Voice) and face veri�cation (Face). For both, we give results for con�gurations
I and II, and for each con�guration, FAR represents the false acceptance rate,
FRR is the false rejection rate, while HTER is the half total error rate. The
results of this table as well as the following are expressed in percentage for a
better readability (hence, 3.25 is in fact 3.25% or 0.0325).

Note that the performance of the speaker veri�cation system was statistically
signi�cantly better than the face veri�cation system (with more than 99%
con�dence 3 ) for both con�gurations. Note also that these results are com-
petitive with recent results (using global thresholds) published on the same
database (see for instance [5,11] where the best face HTER was 5.9 on con�g-
uration I and 3.65 on con�guration II, while the best voice HTER was 3.3 on
con�guration I and 4.89 on con�guration II) 4 .

Con�guration I Con�guration II
Modalities FAR FRR HTER FAR FRR HTER

Face 2.70 3.75 3.22 1.98 3.25 2.61

Voice 2.31 1.50 1.91 2.00 1.50 1.75
Table 1
Performance on the test set of di�erent unimodal veri�cation systems

Then in Table 2 we present the results of three di�erent fusion algorithms,
namely SVMs using Gaussian kernel, MLPs and Bayes Classi�ers using GMMs.
This table should convince the reader that fusion is a very important process
since all three methods performed statistically signi�cantly better than each
modality alone, for both con�gurations (with more than 99% con�dence). On
the other hand, all three methods gave similar performance with a slight over-

3 The statistical test used here and further in the paper to verify if the di�erence be-
tween two performances was signi�cant was the following: as the number of samples
used to produce the performances was high (more than 100000), we assumed that
the HTER performance, which can be seen as a weighted sum of two kinds of errors
(false acceptances and false rejections), can be seen as a random variable which fol-
lows a normal distribution. The standard deviation of this random variable can then
be estimated by taking into account the relative counts of clients and impostors,
and a t test with the Welch-Satterthwaite approximation is then performed.
4 Note that, using a special combination algorithm, ECOC [6], normally designed
for robust multiclass classi�cation tasks, researchers were able to obtain HTER as
low as 0.80 on the face veri�cation task using con�guration I; no comparable results
were published for con�guration II.
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all advantage to SVMs. Note also that these results are better, at least for
con�guration II, than those published in [11] (where the best HTER obtained
was 1.63).

Fusion Con�guration I Con�guration II
Method FAR FRR HTER FAR FRR HTER

SVMs 0.63 0.75 0.69 0.09 0.50 0.30

MLPs 0.61 1.13 0.87 0.20 0.35 0.27

Bayes 0.66 0.78 0.72 0.15 0.45 0.30
Table 2
Average performance on the test set of di�erent fusion classi�ers

5.3 Adding Con�dence to Enhance Decisions

In this section, we present a comparative study between the three con�dence
estimation methods presented in section 4 when the estimates are computed
for each modality alone, then added to the input vector of the fusion al-
gorithms. Table 3 shows the various results, for each con�dence estimation
method and each fusion algorithm, on both con�gurations.

Con�dence Fusion Con�guration I Con�guration II
Method Method FAR FRR HTER FAR FRR HTER

Gaussian SVMs 0.62 0.75 0.69 0.10 0.50 0.30

Hypothesis MLPs 0.67 0.90 0.78 0.20 0.33 0.26
Method Bayes 0.69 1.30 0.99 0.24 0.53 0.38

Non SVMs 0.49 1.08 0.78 0.10 0.53 0.31

Parametric MLPs 0.58 1.05 0.81 0.29 0.40 0.35
Method Bayes 0.87 0.75 0.81 0.28 0.33 0.35

Model SVMs 0.60 0.75 0.67 0.27 0.25 0.26

Adequacy MLPs 0.49 1.00 0.79 0.18 0.25 0.22
Method Bayes 0.78 1.25 0.99 0.28 0.38 0.34

Table 3
Average performance on the test set of di�erent fusion classi�ers using various con-
�dence measure estimations

It appears that using the Bayes fusion method, none of the con�dence method
was able to enhance the performance. On the other hand, using either MLPs
or SVMs, the Model Adequacy method was systematically better than the cor-
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responding system without con�dence information. The two other con�dence
methods did not appear to improve the performance signi�cantly.
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Fig. 3. Comparison of DET curves on the test set of XM2VTS con�guration I.
MLP+MA represents the DET curve obtained with a fusion algorithm using the
model adequacy con�dence measure.
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Fig. 4. Comparison of DET curves on the test set of XM2VTS con�guration II.
MLP+MA represents the DET curve obtained with a fusion algorithm using the
model adequacy con�dence measure.

In order to graphically see the improvement between the two unimodal ver-
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i�cation systems, the best fusion algorithm (MLP) and the best con�dence
measure method (MLP using the Model Adequacy measure), Figures 3 and 4
show the corresponding DET curves for the test set of con�gurations I and II.
Note that as all the fusion results presented in the previous tables were aver-
aged over 10 experiments, the DET curves presented in these �gures represent
only one of these experiments for each method (the one which corresponded
the most to the average).

5.4 Measuring Con�dence of the Decisions

Another way to use con�dence information is to compute a con�dence measure
of the fusion algorithm itself and verify a posteriori if this con�dence measure
was reliable. For this, we need a con�dence measure that is both intuitive for
the human decider (such as a probability to take the right decision) and easy
to verify. The non parametric estimation method (section 4.2) seemed the
most appropriate as it gives for each score a probability that the associated
decision is false.

Hence, we computed the probabilities given by equation (13) for the test fu-
sion decisions (using the baseline fusion algorithms, without any con�dence
measure used as input) and then computed the average absolute distance be-
tween the hypothesized probability and the real probability, as computed on
the test set using the same idea of subspaces. Results are given in Table 4.

Fusion Average Probability Error
Method Con�guration I Con�guration II

SVMs 0.0021 0.0005

MLPs 0.0023 0.0009

Bayes 0.0021 0.0010
Table 4
Average distance between the predicted and obtained con�dence estimation on the
test set

These results show that the con�dence measures produced by the non para-
metric method were on average di�erent from the real con�dence (as estimated
a posteriori on the test set) by less than 0.25%, which lets us think that they
are indeed reliable. Hence, while this method did not always produce useful
information to enhance the performance of the fusion algorithm, it can still
be used to produce precise con�dence measures on the fusion decisions.

An interesting application of this measure consists in setting aside all scores
having an unreliable con�dence measure and perform authentication only on
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the other ones (the unreliable scores could then be referred to a human de-
cider). Figure 5 shows how the HTER on con�guration I could be enhanced
by using various values of such a threshold, as well as the percentage of ac-
cesses that were set aside. This means that, for instance, we could enhance
the HTER from 0.70 to less than 0.45 (a signi�cant improvement) by setting
aside 0.64% of the accesses (which represent in fact 719 accesses).
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Fig. 5. HTER as a function of the probability of error, as given by the non parametric
con�dence measure in equation (13), and used to set aside a portion of the accesses.
Results are on the test set of XM2VTS database (con�guration I, test set). The
numbers in the graph represent the percentage of accesses that were set aside.

6 Conclusion

In this paper we have presented three di�erent approaches to estimate a con-
�dence value over identity veri�cation decisions. These approaches could ei-
ther be used as additional inputs to a fusion algorithm or directly to mea-
sure the con�dence of the �nal decisions. Experimental comparisons of fu-
sion algorithms as well as con�dence measures have been carried out using
the XM2VTS benchmark database. Results showed that the Model Adequacy
method was able to enhance the performance of the fusion algorithm sys-
tematically. On the other hand, a simple non parametric estimation of the
con�dence provided useful and reliable estimate of the con�dence over the
fusion decisions.
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