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Abstract

This paper advocates that for some multimodal tasks involving more than one stream of data representing the same sequence of

events, it might sometimes be a good idea to be able to desynchronize the streams in order to maximize their joint likelihood. We thus

present a novel Hidden Markov Model architecture to model the joint probability of pairs of asynchronous sequences describing the

same sequence of events. An Expectation–Maximization algorithm to train the model is presented, as well as a Viterbi decoding

algorithm, which can be used to obtain the optimal state sequence as well as the alignment between the two sequences. The model

was tested on two audio–visual speech processing tasks, namely speech recognition and text-dependent speaker verification, both

using the M2VTS database. Robust performances under various noise conditions were obtained in both cases..

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Hidden Markov Models (HMMs) are statistical tools

that have been used successfully in the last 30 years to

model difficult tasks such as speech recognition [1] or

biological sequence analysis [2]. They are very well sui-

ted to handle discrete or continuous sequences of vary-

ing sizes. Moreover, an efficient training algorithm

(EM), which maximizes the likelihood of the data, is
available, as well as an efficient decoding algorithm

(Viterbi), which provides the optimal sequence of states

(and the corresponding sequence of high level events)

associated with a given sequence of low-level data.

On the other hand, multimodal information pro-

cessing is currently a very challenging framework of

applications including multimodal person authentica-

tion, multimodal speech recognition, multimodal event
analyzers, etc. In that framework, the same sequence of
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events is represented not only by a single sequence of
data but by a series of sequences of data, each of them

coming eventually from a different modality: video

streams with various viewpoints, audio stream(s), etc.

Two such tasks, which will be presented in this paper,

involve multimodal speech processing using both a mi-

crophone and a camera recording a speaker simulta-

neously while he (she) speaks. It is well known that

seeing the speaker’s face in addition to hearing his (her)
voice can often improve speech intelligibility, particu-

larly in noisy environments [3], mainly thanks to the

complementarity of the visual and acoustic signals.

Previous solutions proposed for this kind of task can be

subdivided into two categories [4]: early integration,

where both signals are first modified to reach the same

frame rate and are then modeled jointly, or late inte-

gration, where the signals are modeled separately and
are combined later, during recognition or decision.

While in the former solution, the alignment between the

two sequences is decided a priori, in the latter, there is

no explicit learning of the joint probability of the two

sequences. An example of late integration is presented in

[5], where the authors present a multi-stream approach

for speech recognition where each stream is modeled by

a different HMM, while decoding is done on a combined
HMM (with various combination approaches pro-

posed).
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In [6], we presented the Asynchronous Hidden Markov

Model (AHMM) that could learn the joint probability

of pairs of sequences of data representing the same se-

quence of events, even when the events were not syn-

chronized between the sequences. In fact, the model

enables to desynchronize the streams by temporarily

stretching one of them in order to obtain a better match

between the corresponding frames. The model was ap-

plied in [6] to the problem of audio–visual speech rec-
ognition where sometimes lips start to move before any

sound is heard for instance.

In this paper, we go into more detailed presentation

and analysis of the model, and present results on two

applications: audio–visual speech recognition, as in [6],

and audio–visual text-dependent speaker verification.

While in speech recognition the task is to transcribe

audio–visual recordings into the corresponding sentence
(sequence of words), in text-dependent speaker verifi-

cation, the task is to let a genuine client enter a secured

environment based on an audio–visual recording of a

known text, while rejecting impostors trying to access

the same system.

The paper is organized as follows. In the next section,

the AHMM model is presented, followed by the corre-

sponding training and decoding algorithms. Related
models are then presented and implementation issues

are discussed. Finally, experiments first on the audio–

visual speech recognition task, and second on the audio–

visual speaker verification task, both based on the

M2VTS database, are presented. Finally, a short con-

clusion follows.
2. The Asynchronous Hidden Markov Model

Let us consider the case where one is interested in

modeling the joint probability of two asynchronous se-

quences, denoted X ¼ xT1 and Y ¼ yS1 where T and S are

respectively the length of sequences X and Y , with S6 T
without loss of generality. 1

We are thus interested in modeling pðxT1 ; yS1 Þ. Fol-
lowing the ideas introduced for HMM [1], we represent

this distribution using a set of hidden variables 2 in or-

der to decompose it into several simple factors. We thus

first introduce a hidden variable Q which represents the

state of the generating system as in the classical HMM

formulation, and which is synchronized with the longest

sequence. The state is a discrete variable. Let N be the

number of different values this variable can take.
1 In fact, we assume that for all pairs of sequences ðX ; Y Þ, sequence
X is always at least as long as sequence Y . If this is not the case, a

straightforward extension of the proposed model is then necessary.
2 These hidden variables represent some information which we

assume exist in the model generating the observed data, but which is

not available, observed.
Moreover, since we know that S is smaller than T , let
the system always emit xt at time t but only sometimes

emit ys at time t, with s6 t. Let us define �ði; tÞ ¼ Pðst ¼
s jst�1 ¼ s� 1; qt ¼ i; xt1; y

s
1Þ as the probability that the

system emits on sequence Y at time t while in state i. The
additional hidden variable st ¼ s can be regarded as

the alignment between Y and Q (and X which is always

aligned with Q, by definition). Hence, an AHMM

models pðxT1 ; yS1 ; qT1 ; sT1 Þ.
Using these hidden variables, and assuming several

independence hypotheses (see Appendix A) we can fac-

tor the joint likelihood of the data and the hidden

variable into several simple conditional distributions:

• P ðqt ¼ i jqt�1 ¼ jÞ, the probability to go from state j
to state i at time t,

• pðxt; ys jqt ¼ iÞ, the joint emission distribution of xt
and ys, while in state i,

• pðxt jqt ¼ iÞ, the emission distribution of xt only,

while in state i,
• �ði; tÞ, the probability to emit on both sequences while

in state i at time t.

2.1. Likelihood computation

One of the most important results obtained with

HMMs was a simple yet efficient recursive procedure

that could be used to compute the likelihood of the data

only. We here propose a similar procedure for AHMMs.
Using some independence assumptions (described in

Appendix A), a simple forward procedure can indeed be

used to compute the joint likelihood of the two se-

quences, by introducing the following a intermediate

variable which can be estimated recursively for each

state and each possible alignment between the sequences

X and Y :

aði; s; tÞ ¼ pðqt ¼ i; st ¼ s; xt1; y
s
1Þ;

aði; s; tÞ ¼ �ði; tÞpðxt; ys jqt ¼ iÞ

�
XN
j¼1

P ðqt ¼ i jqt�1 ¼ jÞaðj; s� 1; t � 1Þ

þ ð1� �ði; tÞÞpðxt jqt ¼ iÞ

�
XN
j¼1

P ðqt ¼ i jqt�1 ¼ jÞaðj; s; t � 1Þ:

ð1Þ

It can then be used to compute the joint likelihood of the

two sequences as follows:

pðxT1 ; yS1 Þ ¼
XN
i¼1

pðqT ¼ i; sT ¼ S; xT1 ; y
S
1 Þ

¼
XN
i¼1

aði; S; T Þ: ð2Þ
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2.2. Viterbi decoding

In some applications, the likelihood of the data is not

the real goal. In speech recognition for instance, one is

interested in estimating the most likely path through the

hidden variables that could have explained the data, in

order to deduce the corresponding sequence of words

associated with the states. Such an algorithm exists for

normal HMMs and is called the Viterbi decoding al-
gorithm [7].

With the same technique used to compute the likeli-

hood, but replacing all the sums by max operators, we

can derive a decoding algorithm for AHMMs similar to

the classical Viterbi algorithm, which can then be used

to obtain the most probable path along the sequence of

states and alignments between X and Y . Again, the al-

gorithm is based on a recursive equation as follows:
V ði; s; tÞ ¼ max
st�1
1

;qt�1
1

pðqt ¼ i; st ¼ s; xt1; y
s
1Þ

¼ max
�ði; tÞpðxt; ys jqt ¼ iÞmaxj P ðqt ¼ i jqt�1 ¼ jÞV ðj; s� 1; t � 1Þ;
ð1� �ði; tÞÞpðxt jqt ¼ iÞmaxj P ðqt ¼ i jqt�1 ¼ jÞV ðj; s; t � 1Þ:

(
ð3Þ
In order to obtain the best path, we simply need to

compute every V ði; s; tÞ recursively and keep for each of

them the previous best predecessor state j and the cor-

responding alignment information. The best path is then

obtained by backtracking from the best V ði; S; T Þ.

2.3. An EM training algorithm

An Expectation–Maximization (EM) [8] training al-

gorithm can also be derived following the ideas devel-

oped for classical HMMs. We here sketch the resulting

algorithm, without going into details.

EM is an iterative procedure for maximum likelihood

estimation. Each iteration is composed of two steps: an

estimation step and a maximization step. Both steps are

based on the definition of an auxiliary function AðH; bHÞ
which is the expectation, over the hidden variables, of

the joint log likelihood of the observed (X and Y ) and
hidden (Q and s) variables, with the expectation condi-

tioned on the observed variables and the current value

of the parameter set H:

AðH; bHÞ ¼ Eq;s log pðxT1 ; yS1 ; qT1 ; sT1 ;HÞ jxT1 ; yS1 ; bHh i
: ð4Þ

It can be shown [8] that when the auxiliary function is

maximized, the likelihood of the data is also maximized.

In order to do so, we first estimate the expectation in the

auxiliary function, by factorizing it (this is the E-step),

and we then select the parameter set bH that maximizes
the auxiliary function (this is the M-step). These steps

are described in the following:
Backward step. Similarly to the forward step based on
the a variable used to compute the joint likelihood, a

backward variable, b can also be defined and derived

recursively as follows:

bði; s; tÞ ¼ pðxTtþ1; y
S
sþ1 jqt ¼ i; st ¼ sÞ;

bði; s; tÞ ¼
XN
j¼1

�ðj; t þ 1Þpðxtþ1; ysþ1 jqtþ1 ¼ jÞ

� P ðqtþ1 ¼ j jqt ¼ iÞbðj; sþ 1; t þ 1Þ

þ
XN
j¼1

ð1� �ðj; t þ 1ÞÞpðxtþ1 jqtþ1 ¼ jÞ

� P ðqtþ1 ¼ j jqt ¼ iÞbðj; s; t þ 1Þ:

ð5Þ

E-step. The expectation in the auxiliary function can

be factored (see Appendix A) in various simple expec-

tation terms. The expectations are based on the poste-
rior probabilities of the hidden variables of the system,

which can be computed using the forward and backward

variables already defined.

Let a1ði; s; tÞ be the part of aði; s; tÞ when state i emits

on Y at time t:

a1ði; s; tÞ ¼ �ði; tÞpðxt; ys jqt ¼ iÞ

�
XN
j¼1

P ðqt ¼ i jqt�1 ¼ jÞaðj; s� 1; t � 1Þ; ð6Þ

and similarly, let a0ði; s; tÞ be the part of aði; s; tÞ when
state i does not emit on Y at time t:

a0ði; s; tÞ ¼ ð1� �ði; tÞÞpðxt jqt ¼ iÞ

�
XN
j¼1

P ðqt ¼ i jqt�1 ¼ jÞaðj; s; t � 1Þ: ð7Þ

Then the posterior on state i when it emits on sequences

X and Y is

P ðqt ¼ i; st ¼ s jst�1 ¼ s� 1; xT1 ; y
S
1 Þ

¼ a1ði; s; tÞbði; s; tÞ
PðxT1 ; yS1 Þ

; ð8Þ

the posterior on state i when it emits on sequence X only

is

P ðqt ¼ i; st ¼ s jst�1 ¼ s; xT1 ; y
S
1 Þ ¼

a0ði; s; tÞbði; s; tÞ
P ðxT1 ; yS1 Þ

; ð9Þ

and the posterior on the transition between states i and j
is
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P ðqt ¼ i; qt�1 ¼ j jxT1 ; yS1 Þ ¼
P ðqt ¼ i jqt�1 ¼ jÞ

P ðxT1 ; yS1 Þ

�
XS
s¼1

aðj; s
 

� 1; t � 1Þpðxt; ys jqt ¼ iÞ�ði; tÞbði; s; tÞ

þ
XS
s¼0

aðj; s; t � 1Þpðxt jqt ¼ iÞð1� �ði; tÞÞbði; s; tÞ
!
:

ð10Þ

As it can be seen, all these posteriors can be estimated

efficiently using previously defined variables a and b.
M-step. During the maximization step, the goal is to

select a new set of parameters bH such that the auxiliary

function is maximized. We are thus searching for the
point where

oAðH; bHÞ
oH

¼ 0: ð11Þ

The M-step for AHMMs is performed exactly as in

classical HMMs: when the distributions are modeled by

exponential functions such as Gaussian Mixture Mod-

els, then an exact maximization can be performed using

the posteriors (Eq. (11) can be solved analytically).

Otherwise, a Generalized EM is performed by gradient
ascent, back-propagating the posteriors through the

parameters of the distributions.
3. Related models

The present AHMM model is related to the Pair

HMM model [2], which was proposed to search for the

best alignment between two DNA sequences. Pair

HMMs were designed and used mainly for discrete se-

quences. Moreover, the architecture of Pair HMMs is

such that a given state is designed to always emit either

on one of the sequence OR on both sequences, while in
the proposed AHMM model, each state can always emit

either on one or on two sequences, depending on �ði; tÞ,
which is learned. In fact, when �ði; tÞ is deterministic and

solely depends on i, we can indeed recover the Pair

HMM model by slightly transforming the architecture.

It is also very similar to the asynchronous version of

Input/Output HMMs [9], which was proposed for speech

recognition applications. The main difference here is
that in AHMMs both sequences are considered as out-

put, while in Asynchronous IOHMMs one of the se-

quence (the shorter one, the output) is conditioned on

the other one (the input). The resulting Viterbi decoding

algorithm is thus different since in Asynchronous IO-

HMMs one of the sequences, the input, is known during

decoding, which is not the case for AHMMs.
4. Implementation issues

4.1. Time and space complexity

The proposed algorithms (either training or decod-

ing) have a complexity of OðN 2ST Þ where N is the

number of states (and assuming the worst case with

ergodic connectivity), S is the length of sequence Y and

T is the length of sequence X . This can become quickly
intractable if both X and Y are longer than, say, 1000

frames. Moreover, in the general case of modeling si-

multaneously and asynchronouslyM sequences of size Si
(instead of only two as presented in this paper), the

complexity then becomes OðN 2
QM

i¼1 SiÞ.
It can fortunately be shortened when a priori

knowledge is known about possible alignments between

the streams (X and Y in the 2-stream case). For instance,
one can force the alignment between xt and ys to be such

that jt � T
S sj < k where k is a constant representing the

maximum stretching allowed between X and Y , which
should not depend on S nor T . In that case, the com-

plexity (both in time and space) becomes OðN 2TkÞ,
which is k times the usual HMM training/decoding

complexity.
4.2. Distributions to model

In order to implement this system, we thus need to

model the following distributions:

• P ðqt ¼ i jqt�1 ¼ jÞ: the transition distribution. As in

normal HMMs, this could be modeled using simple

tables.

• pðxt jqt ¼ iÞ: the emission distribution in the case

where only X is emitted. As in normal HMMs, this

could be modeled using Gaussian Mixture Models

in the continuous case or simple tables in the discrete
case.

• pðxt; ys jqt ¼ iÞ: the emission distribution in the case

where both sequences are emitted. This distribution

could be implemented in various forms, depending

on the assumptions made on the data:

� x and y are independent given state i:
pðxt; ys jqt ¼ iÞ ¼ pðxt jqt ¼ iÞpðys jqt ¼ iÞ; ð12Þ

� y is conditioned on x:

pðxt; ys jqt ¼ iÞ ¼ pðys jxt; qt ¼ iÞpðxt jqt ¼ iÞ; ð13Þ

� the joint probability is modeled directly, eventually

forcing some common parameters from pðxt jqt ¼ iÞ
and pðxt; ys jqt ¼ iÞ to be shared.

In the experiments described in this paper, we have
chosen the latter implementation, with no sharing except

during initialization.
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• �ði; tÞ ¼ Pðst ¼ s jst�1 ¼ s� 1; qt ¼ i; xt1; y
s
1Þ. The prob-

ability to emit on sequence y at time t on state i. With

various assumptions, this probability could be repre-

sented as either independent on i, independent on s,
independent on xt and ys. In the experiments de-

scribed in this paper, we have chosen the latter imple-

mentation.
5. Experiments

In this section, we present two sets of experiments,

one on speech recognition, and the second on text-de-
pendent speaker verification. Both are based on the

audio–visual M2VTS database [10], which contains 185

recordings of 37 subjects, each comprising acoustic and

video signals of the subject pronouncing the French

digits from zero to nine. The video consisted of 286 · 360
pixel color images with a 25 Hz frame rate, while the

audio was recorded at 48 kHz using a 16 bit PCM

coding. Although the M2VTS database is one of the
largest databases of its type, it is still relatively small

compared to reference audio databases used in speech

recognition or speaker verification. Hence, in order to

increase the significance level of the experimental results,

a K-fold cross-validation method was used in both sets

of experiments.

The audio data was down-sampled to 8 kHz and

every 10 ms a vector of 16 MFCC coefficients and their
first derivative, as well as the derivative of the log energy

was computed, for a total of 33 features. Each image of

the video stream was coded using 12 shape features and

12 intensity features, as described in [5]. The method

decomposes the lip shape and the gray-level intensities in

the mouth region into a weighted sum of basis shapes

(inner and outer lip contour) and basis intensities, re-

spectively, using the Karhunen–Loeve expansion. These
features, obtained by lip tracking, were normalized with

respect to the mouth center, orientation and width. The

first derivative of each feature was also computed,

yielding a total of 48 features.
5.1. Speech recognition experiments

The first set of experiments was done on a speech

recognition task. Note that all the subjects always pro-

nounced the same sequence of words but this informa-

tion was not used during recognition. 3

The HMM topology was as follows: we used left-

to-right HMMs for each instance of the vocabulary,

which consisted of the following 11 words: zero, un,

deux, trois, quatre, cinq, six, sept, huit, neuf, silence.
3 Nevertheless, it can be argued that transitions between words

could have been learned using the training data.
Each model had between 3 and 9 states including non-
emitting begin and end states.

In each emitting state, there was three distributions:

P ðxt jqtÞ, the emission distribution of audio-only data,

which consisted of a Gaussian mixture of 10 Gaussians

(of dimension 33), Pðxt; ys jqtÞ, the joint emission distri-

bution of audio and video data, which consisted also of

a Gaussian mixture of 10 Gaussians (of dimension

33+ 48¼ 81), and �ði; tÞ, the probability that the system
should emit on the video sequence, which was imple-

mented as a table.

Training was done using the EM algorithm described

in the paper. However, in order to keep the computa-

tional time tractable, a constraint was imposed on the

alignment between the audio and video streams: we did

not consider alignments where audio and video infor-

mation were farther than 0.68 s from each other.
Comparisons were made between the AHMM (taking

into account audio and video), and a normal HMM

taking into account either the audio or the video only.

We also compared the model with a normal HMM

trained on both audio and video streams manually

synchronized (each frame of the video stream was re-

peated in multiple copies in order to reach the same rate

as the audio stream). Moreover, in order to show the
interest of robust multimodal speech recognition, we

injected various levels of noise in the audio stream

during decoding (training was always done using clean

audio). The noise was taken from the Noisex database

[11]. It was injected in the data in order to reach seg-

mental signal-to-noise (SNR) ratios of 10, 5 and 0 dB.

Note that all the hyper-parameters of these systems,

such as the number of Gaussians in the mixtures, the
number of EM iterations, or the minimum value of

the variances of the Gaussians, were not tuned using the

M2VTS dataset. They were taken from a previously

trained model on a different task, Numbers’95 [12].

Fig. 1 and Table 1 present the results in terms of

Word Error Rate, a commonly used measure in the field

of speech recognition, which takes into account three

types of errors: the number of insertions (words that
were decoded but did not really exist in the real tran-

script), deletions (words that were in the real transcript

but were not decoded by the system) and substitutions

(words that were decoded differently from the real

transcript). As it can be seen, the AHMM yielded better

results as soon as the noise level was significant. More-

over, it never deteriorated significantly (using a 95%

confidence interval) under the level of the video stream,
no matter the level of noise in the audio stream.

Comparing the audio HMM system with the syn-

chronized audio + video HMM system, we can see that

unless the noise level in the audio stream is very high,

simply adding the video information in a naive linearly

synchronized way did not enhance the performance, and

in fact severely decreased it. It shows that adding
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information that is not properly synchronized may hurt

the system’s performance and should be avoided. It thus

highlights the importance of the asynchronous HMM
idea.

An interesting side effect of the model is to provide an

optimal alignment between the audio and the video

streams. Fig. 2 shows the alignment obtained while de-

coding sequence cd01 on data corrupted with 10 dB

Noisex noise. It shows that the rate between video and

audio is far from being constant (it would have followed

the straight line followed by the HMM alignment) and
hence computing the joint probability using the AHMM

appears more informative than using a naive alignment

and a normal HMM.
5.2. Text-dependent speaker verification experiments

The second set of experiments targeted a text-

dependent speaker verification task. In that case, the

goal was to accept genuine clients based on their audio–

visual recording while rejecting impostors trying to

access the system. We compared in these experiments 6

different models:
Table 1

Word Error Rates (WER, in percent, the lower the better) and correspond

various noise conditions during decoding (from 10 to 0 dB additive noise)

Observations Model WER (%) and

10 dB

Audio HMM 11.9 (±4.7)

Audio+ video HMM 28.1 (±6.5)

Audio+ video AHMM 11.4 (±4.6)

The proposed model is the AHMM using both audio and video streams. An
• an AHMM trained on both audio and video data, as
explained in the paper;

• an HMM trained on the fusion of audio and video

data (by up-sampling correctly the video data to ob-

tain the same number of frames in the two streams);

• an HMM trained on the audio data only;

• an HMM trained on the video data only;

• a Gaussian Mixture Model (GMM) trained on the

audio data only;
• a fusion between the GMM on audio only and the

HMM on video only. The fusion was performed us-

ing a multi-layer perceptron (see [13] for an introduc-

tion on MLPs) with the two scores as input.

In all the cases, we used the classical speaker verifi-

cation technique, computing the difference between the

log likelihood of the data given the client model and the

log likelihood of the data given the world model (a

model created with data not coming from the target

client), and accepting the access when this difference was

higher than a given threshold.
The K-fold cross-validation method used to assess the

quality of the models was setup as follows: we used only

36 subjects, separated into 4 groups. For each subject,
ing confidence intervals (CI, in parenthesis), of various systems under

95% CI

5 dB 0 dB

38.7 (±7.1) 79.1 (±5.9)

35.3 (±6.9) 45.4 (±7.2)

22.3 (±6.0) 41.1 (±7.1)

HMM using the clean video data only obtains 39.6% WER (±7.1).
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there was 5 different recording sessions. We used the first
2 sessions to create a client model, and the last 3 sessions

to estimate the quality of the model. For each group, we

used the other 3 groups to create a world model (using

only the first 2 sessions per client). Moreover, for each

client in one of the other 3 groups, we adapted a client

specific model (using a simple MAP adaptation method

[14]) from the world model (again using only the first 2

sessions of the client). Using these client-specific models,
we selected a global threshold such that it yielded an

equal error rate (EER, when the false acceptance rate,

FAR, is equal to the false rejection rate, FRR). Finally,

we adapted (using MAP again) a client-specific model

from the world model for each client of the current test

group and computed the half total error rate (HTER, the

average of the FAR and the FRR) on the last 3 accesses

of each test client using the global threshold previously
found. Hence, all results presented here can be seen as

unbiased since no parameter (including the threshold)

was computed using the test accesses.

The architecture of the models (number of states,

number of Gaussians, etc.) were the same as in the

speech recognition experiments. The GMM models used

a silence removal technique based on an unsupervised

bi-Gaussian method in order to remove all non-infor-
mative frames [15].

As in the speech recognition experiments, we injected

various levels of noise in the audio stream during test

accesses (training was always done using clean audio).

The noise was the same as in the speech recognition

experiments, and SNR were also set to 10, 5 and 0 dB.

Fig. 3 presents the results. For each method at each

level of noise injected in the audio stream, we present the
HTER, a measure often used to assess the quality of a

verification system. As it can be seen, the AHMM yiel-

ded better and more stable results as soon as the noise

level in the audio stream was significant. For almost
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Fig. 3. HTER (the lower the better), of various systems under various

noise conditions during test (from 10 to 0 dB additive noise). The

proposed model is the AHMM using both audio and video streams.
clean data, the performance of the GMM using the
audio stream only as well as the one of the fusion of the

score of the GMM with the score of the video HMM

model were better, but quickly deteriorated with the

addition of noise.
6. Conclusion

In this paper, we have presented a novel asynchro-

nous HMM architecture to handle multiple sequences of

data representing the same sequence of events. The

model was inspired by two other well-known models,

namely Pair HMMs and Asynchronous IOHMMs. An

EM training algorithm was derived as well as a Viterbi

decoding algorithm. Continuous speech recognition and

text-dependent speaker verification experiments were
performed on a multimodal database, yielding signifi-

cant improvements on noisy audio data. Various prop-

ositions were made to implement the model but only the

simplest ones were tested in this paper. Other solutions

should thus be investigated soon. Extension of the

model to more than two streams is probably also very

interesting but care should then be taken to keep the

computational time tractable.
Appendix A. Details about the EM algorithm

A.1. Assumptions

The usual HMM assumptions are used here: the

probability of the observation given the state does not
depend on anything else than the state, and the proba-

bility of being in a state at time t depends only on the

state the system was at time t � 1:

pðxt jqt ¼ i; xt�1
1 ; ys1; st�1 ¼ sÞ ¼def pðxt jqt ¼ iÞ; ðA:1Þ

pðxt; ys jqt ¼ i; xt�1
1 ; ys�1

1 ; st�1 ¼ s� 1Þ ¼def pðxt; ys jqt ¼ iÞ;
ðA:2Þ

P ðqt ¼ i jqt�1 ¼ j; xt�1
1 ; ys�1

1 ; st�1 ¼ s� 1Þ

¼def P ðqt ¼ i jqt�1 ¼ jÞ: ðA:3Þ
A.2. Derivation of the forward step

The forward step describes how to compute aði; s; tÞ.
The derivation is very similar to the classical HMM

forward derivation, with the special case that handles
the st variable, which contains the alignment between x
and y.

aði; s; tÞ ¼ P ðqt ¼ i; st ¼ s; xt1; y
s
1; ut�1 ¼ s� 1Þ

þ P ðqt ¼ i; st ¼ s; xt1; y
s
1; ut�1 ¼ sÞ; ðA:4Þ
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aði; s; tÞ ¼ P ðst ¼ s jqt ¼ i; xt1; y
s
1; ut�1 ¼ s� 1Þ

� P ðqt ¼ i; xt1; y
s
1; ut�1 ¼ s� 1Þ

þ P ðst ¼ s jqt ¼ i; xt1; y
s
1; ut�1 ¼ sÞ

� P ðqt ¼ i; xt1; y
s
1; ut�1 ¼ sÞ; ðA:5Þ

aði; s; tÞ ¼ �ði; tÞpðxt; ys jqt ¼ i; xt�1
1 ; ys�1

1 ; ut�1 ¼ s� 1Þ
� P ðqt ¼ i; xt�1

1 ; ys�1
1 ; ut�1 ¼ s� 1Þ

þ ð1� �ði; tÞÞpðxt jqt ¼ i; xt�1
1 ; ys1; ut�1 ¼ sÞ

� P ðqt ¼ i; xt�1
1 ; ys1; ut�1 ¼ sÞ; ðA:6Þ

aði; s; tÞ ¼ �ði; tÞpðxt; ys jqt ¼ iÞPðqt ¼ i; xt�1
1 ; ys�1

1 ; ut�1 ¼ s� 1Þ
þ ð1� �ði; tÞÞpðxt jqt ¼ iÞPðqt ¼ i; xt�1

1 ; ys1; ut�1 ¼ sÞ;
ðA:7Þ

aði; s; tÞ ¼ �ði; tÞpðxt; ys jqt ¼ iÞ

�
XN
j¼1

P ðqt ¼ i jqt�1 ¼ j; xt�1
1 ; ys�1

1 ; ut�1 ¼ s� 1Þ

� P ðqt�1 ¼ j; xt�1
1 ; ys�1

1 ; ut�1 ¼ s� 1Þ
þ ð1� �ði; tÞÞpðxt jqt ¼ iÞ

�
XN
j¼1

P ðqt ¼ i jqt�1 ¼ j; xt�1
1 ; ys�1

1 ; ut�1 ¼ sÞ

� P ðqt�1 ¼ j; xt�1
1 ; ys1; ut�1 ¼ sÞ; ðA:8Þ

aði; s; tÞ ¼ �ði; tÞpðxt; ys jqt ¼ iÞ

�
XN
j¼1

P ðqt ¼ i jqt�1 ¼ jÞaðj; s� 1; t � 1Þ

þ ð1� �ði; tÞÞpðxt jqt ¼ iÞ

�
XN
j¼1

P ðqt ¼ i jqt�1 ¼ jÞaðj; s; t � 1Þ: ðA:9Þ
A.3. Auxiliary function leading to EM and Viterbi

As in the normal HMM derivation, an auxiliary
function A is introduced which is defined as the expec-

tation, over the hidden variables, of the joint log-likeli-

hood of the observed variables and the hidden variables,

when the expectation is conditioned on the observed

variables and the current value of the parameters:

AðH; bHÞ ¼ Eq;s logpðxT1 ; yS1 ;qT1 ; sT1 ;HÞ jxT1 ; yS1 ; bHh i
;

AðH; bHÞ

¼
XT
t¼1

XN
i¼1

XS
s¼1

E½qt

 
¼ i; st ¼ s jst�1 ¼ s� 1; xT1 ; y

S
1 


� log pðys; xt; st ¼ sjqt ¼ i; st�1 ¼ s� 1Þ

þ
XS
s¼1

E½qt ¼ i; st ¼ s jst�1 ¼ s; xT1 ; y
S
1 


� log pðxt; st ¼ s jqt ¼ i; st�1 ¼ sÞ

þ
XN
j¼1

E½qt ¼ i;qt�1 ¼ j jxT1 ; yS1 
 logP ðqt ¼ i jqt�1 ¼ jÞ
!

ðA:10Þ
A.4. Derivation of the backward step

As in the normal HMM derivation, on top of the

forward variable aði; s; tÞ, we also need a backward

variable bði; s; tÞ which basically describes the probabil-

ity to emit the rest of the two sequences, when we are in

a given state and a given alignment.

bði; s; tÞ
¼ pðySsþ1; x

T
tþ1 j t ¼ i; st ¼ sÞ ðA:11Þ

¼
XN
j¼1

PðySsþ1; x
T
tþ1;qtþ1 ¼ j jqt ¼ i; st ¼ sÞ ðA:12Þ

¼
XN
j¼1

PðySsþ1; x
T
tþ1;qtþ1 ¼ j; stþ1 ¼ sþ 1 jqt ¼ i; st ¼ sÞ

þ
XN
j¼1

PðySsþ1; x
T
tþ1;qtþ1 ¼ j; stþ1 ¼ s jqt ¼ i; st ¼ sÞ

¼
XN
j¼1

Pðqtþ1 ¼ j jqt ¼ iÞ ðA:13Þ

� pðysþ1; xtþ1 jstþ1 ¼ sþ 1; st ¼ s;qtþ1 ¼ jÞ
� Pðstþ1 ¼ sþ 1 jst ¼ s;qtþ1 ¼ jÞ
� pðySsþ2; x

T
tþ2 jqtþ1 ¼ j; stþ1 ¼ sþ 1Þ

þ
XN
j¼1

Pðqtþ1 ¼ j jqt ¼ iÞ

� Pðstþ1 ¼ s jst ¼ s;qtþ1 ¼ jÞ
� pðxtþ1 jqtþ1 ¼ jÞ
� pðySsþ1; x

T
tþ2 jqtþ1 ¼ j; stþ1 ¼ sÞ ðA:14Þ

¼
XN
j¼1

�ðj; tþ 1Þpðxtþ1; ysþ1 jqtþ1 ¼ jÞ

� Pðqtþ1 ¼ j jqt ¼ iÞbðj; sþ 1; tþ 1Þ

þ
XN
j¼1

ð1� �ðj; tþ 1ÞÞpðxtþ1 jqtþ1 ¼ jÞ

� Pðqtþ1 ¼ j jqt ¼ iÞbðj; s; tþ 1Þ: ðA:15Þ
A.5. Maximization step

In order to maximize the likelihood, we in fact

maximize the value of the auxiliary function. We thus

use the same techniques as in the normal EM for

HMMs: for each parameter, we search for the value

such that the derivative of the auxiliary function with

respect to this parameter is equal to 0. For instance, in

order to select the new mean l̂i;j of Gaussian i in state j
in the joint emission model, we need to search for the

value l̂i;j such that

oAðH; bHÞ
oli;j

¼ 0: ðA:16Þ
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