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Abstract
Multi-label classification is a generalization of
binary classification where the task consists in
predicting sets of labels. With the availability
of ever larger datasets, the multi-label setting has
become a natural one in many applications, and
the interest in solving multi-label problems has
grown significantly. As expected, deep learn-
ing approaches are now yielding state-of-the-art
performance for this class of problems. Unfor-
tunately, they usually do not take into account
the often unknown but nevertheless rich relation-
ships between labels. In this paper, we propose
to make use of this underlying structure by learn-
ing to partition the labels into a Markov Blan-
ket Chain and then applying a novel deep archi-
tecture that exploits the partition. Experiments
on several popular and large multi-label datasets
demonstrate that our approach not only yields
significant improvements, but also helps to over-
come trade-offs specific to the multi-label classi-
fication setting.

1. Introduction
Data sources, such as social media, news services, and
crowd-sourced experiments, usually generate data where
every instance can be assigned several labels (also called
classes, categories, or tags). This turns modern classifica-
tion problems into not only enormous scale but also multi-
label in many practical settings. For example in text clas-
sification, a document naturally conveys different related
topics (e.g. sports and tourism). In image categorization
as well, a picture contains more than one object of interest.
Furthermore, the labels usually carry rich semantic struc-
tures (Deng et al., 2009; Partalas et al., 2015).

A straightforward approach to Multi-Label Classification
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(MLC) consists in reducing the original problem to sev-
eral independent single-label tasks (Tsoumakas & Katakis,
2007). This decomposition, called binary relevance, is ap-
pealing because of its simplicity and scalability. Unfortu-
nately, it disregards the complex inter-dependencies that of-
ten exist between the labels. Consequently, it suffers from
the lack of expressiveness and is prone to inconsistent pre-
dictions. On the other hand, the methods that exploit label
dependencies can significantly improve the classification
performance. However, most of the contributions hitherto
suffer from the cost of increased training and prediction
complexity and, hence, are limited in their applicability to
cases with modest numbers of examples and categories.

The recent advancements in deep and representation learn-
ing have been successfully applied to address some of the
issues of MLC (Nam et al., 2014). The proposed model in
this prior study highlights the amenability of several tools,
either developed or commonly used in deep learning, in
the multi-label setting. In particular, it demonstrates that
a simple multilayer perceptron with hidden rectified lin-
ear units (ReLU) (Glorot et al., 2011) trained with Ada-
Grad (Duchi et al., 2011) to jointly predict all the labels cor-
rectly can achieve state-of-the-art performance. The rea-
son for this significant performance improvement in com-
parison to several existing approaches is threefold: Firstly,
many real-world MLC problems exhibit Zipf’s law-like la-
bel frequency distribution, i.e., few categories are very pop-
ular while the majority is rare. Therefore, when AdaGrad
is used, the learning rate becomes adapted to the data dis-
tribution by allowing larger gradient steps for the rarely oc-
curring labels in comparison to more frequent ones. Sec-
ondly, hidden ReLUs encourage a sparse intermediate rep-
resentation that is presumably more discriminative (Ben-
gio et al., 2013b; Olshausen & Field, 1997). Moreover,
dropout regularization (Hinton et al., 2012) prevents spe-
cialization of groups of hidden units into predicting only
some particular classes. Finally, the shared intermediate
representation across the tasks (labels) implicitly models
the dependencies between them and provides sharing of the
statistical strength. This procedure, also called multitask-
ing (Caruana, 1997), is an important argument for learn-
ing deep architectures for MLC. It naturally exploits la-
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bel dependencies which importance in the design of accu-
rate multi-label classifiers has been developed into a opinio
communis (Read et al., 2011; Dembczyński et al., 2012;
Cisse et al., 2013).

The categories in real world multi-label problems have a
rich variety of relationships: Some labels may entail oth-
ers (e.g., the presence of stars in a picture implies the rel-
evance of night) or can be mutually exclusive (e.g., a real-
istic picture will likely not contain both trees and whales).
There are also weaker types of relationships such as posi-
tive correlation (e.g., topics such as politics and economics
tend to appear together). While such relationships can
undoubtedly be exploited directly—some labels are pre-
dictable based on the co-occurrence with the others—the
traditional deep neural networks incorporate label depen-
dence information into the learning process only through
multitasking (Nam et al., 2014; Bengio et al., 2013b). In-
deed, all the recent architectures are designed to extract a
hierarchy of representations from the input and to termi-
nate with a single output layer that yields predictions. Even
though they can be deep in the input space, they are flat in
their output. One exception is the use of a hierarchical soft-
max (Jean et al., 2014) which organizes the set of labels as
a tree. Unfortunately, unless the tree structure is known in
advance, using a random tree has been shown to yield poor
performance.

In this work, we propose a novel deep architecture for solv-
ing MLC tasks by directly leveraging label dependence in-
formation. Our proposal relies on a well-known observa-
tion in MLC (Deng et al., 2014): For a given example, it
is often possible to infer the validity of several labels rely-
ing on the correctness information about a carefully chosen
subset of categories. For instance, in scene classification,
one does not need to observe an image before deciding the
rightness of the label night once she knows that lights, stars
or moon are present. In probabilistic terms, the labels light,
stars, and moon separate the label night from the image;
they are the Markov Blanket (MB) (Pearl, 2014). A parti-
tion of the set of tags into two subsets such that one subset
is a Markov Blanket of the other, which we call a Markov
Blanket Chained (MBC) partition, suggests a deep archi-
tecture composed of two main parts. The first part is akin
to a traditional MLP and goes from the inputs to the la-
bels of the Markov blanket. The second part goes from the
Markov blanket to its complement set of categories, poten-
tially with intermediate hidden layers. It uses the labels of
the Markov Blanket as a high-level representation of the in-
put data. Overall, the resulting Architecture is also Deep In
the Output Space (ADIOS).

In practice, it is likely that an MBC partition does not
strictly exist or cannot be precisely discovered since we
only observe the relationships that are present in the data.

However, it is often possible to learn a good approximate
MB that contains enough information to predict the other
labels accurately. Moreover, in the cases where the in-
formation provided by the estimated MB is insufficient,
composing this high-level information with a representa-
tion directly extracted from the input yields improved per-
formance.

The remainder of the paper is organized as follows: Sec-
tion 2 summarizes the previous related work. Section 3
presents a simple approach to building an approximate
Markov Blanket Chained partition of the set of labels. In
Section 4, the details of the model and the learning algo-
rithm are provided. Section 5 presents experimental results
on several popular and large multi-label datasets validating
the model and providing several insights.

2. Related Work
Label dependence exploitation is a blossoming line of re-
search in multi-label classification (Read et al., 2011; Har-
iharan et al., 2010; Weston et al., 2013). It has recently
attracted significant contributions that fall into four main
groups. The first family of approaches, to which classifier
chains belong (Read et al., 2011; Zaragoza et al., 2011),
expands the initial representation of the data with addi-
tional features that represent the labels. The methods of
the second group (Tai & Lin, 2012; Hsu et al., 2009) as-
sume a low-rank label matrix and learn a low-dimensional
embedding of the labels capturing interdependencies be-
tween them. The most representative works in this direc-
tion are Principle Label Space Transformation (Tai & Lin,
2012), Compressed Sensing (Hsu et al., 2009), and Bloom
Filters (Cisse et al., 2013). The techniques of the third cate-
gory, such as Label Partitioning (Weston et al., 2013), clus-
ter the labels based on their correlations to predict consis-
tent sets. Finally, techniques such as Laconic (Bengio et al.,
2013a) use external knowledge about label co-occurrences
to regularize the model. All these methods bear resem-
blances to those presented in this work in that they exploit
dependencies between labels to improve labeling perfor-
mance. However, they are neither trainable end-to-end nor
do they enjoy the appealing properties of deep architec-
tures.

A more related approach is the recently introduced HEX
model (Deng et al., 2014) that connects a traditional deep
neural network to the labels through a known graph of re-
lationships (hierarchical and mutual exclusivity) extracted
from the Knowledge Graph (Singhal, 2012). Therefore,
the HEX model is also deep both in the input and output
spaces. However, it has several significant differences com-
pared to our proposal: Firstly, ADIOS does not use a set of
relationships extracted from a knowledge base. Instead, the
composition of the output layers is learned from the data.
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Secondly, ADIOS is not limited to a particular type of rela-
tionships between the labels. In contrast, it allows complex
combinations of initial predictions to infer the other cate-
gories, potentially through the use of hidden layers between
the output layers. Moreover, the inference is reduced to a
mere forward pass rather than complicated procedures such
as the one employed by the HEX model. Finally, HEX has
been designed for multi-class tasks rather than multi-label
and thus cannot be adapted easily for predicting label sets.

3. Approximate MBC Partitioning
Let L = {`1, . . . , `m} (0 < m < ∞) be a set of m la-
bels and S = {(x1, y1) . . . , (xn, yn)} a training set sam-
pled from the distribution P defined on X × Y , where
X is the space of instances and Y = 2L is the power
set of L. For every instance xi, its corresponding la-
bel set is represented by an m-dimensional binary vector
yi = (yi1, ...yim) ∈ {0, 1}m such that yij = 1 if class la-
bel `j is relevant to example xi and yij = 0 otherwise. We
seek for a hypothesis h : X → Y learned from the training
set S, to predict the label set y corresponding to unseen in-
stances x by exploiting the dependencies between the tags.
An essential element in our proposal is the existence of a
partition (or a good approximation thereof) of the set of
labels L into an ordered set of disjoint subsets (Gi)1≤i≤p
such that every label ` ∈ Gi is independent of all the other
labels given the labels in Gi−1. That is, the knowledge of
Gi−1 renders unnecessary all the information about ` not
contained in Gi−1. We call such division a Markov Blan-
ket Chained (MBC) partition. It generalizes the simple case
where X is a Markov Blanket of Y (Nam et al., 2014).

An MBC may not exist in practice, sensu stricto. How-
ever, it is realistic to assume the existence of a good ap-
proximate partition of this kind. Indeed, in some applica-
tion like bioinformatics, one may want to predict from pro-
teins a heterogeneous set of labels consisting of {gene func-
tions, symptoms, diseases}1. In this situation, it is com-
mon to predict symptoms from gene functions or diseases
from symptoms. Here, we do not rely on an existing re-
source providing explicit dependencies between the labels.
Instead, we restrict ourselves to a good partition of the set
of labels into two disjoint subsets G1 and G2 (G1∪G2 = L
and G1 ∩G2 = ∅) such that the labels in G1 are predictive
of those in G2. To that end, we use the information gain as
a criterion and formulate the problem as follows:

arg max
G1⊂L,|G1|≤k

I(G2;G1) = H(G2)−H(G2|G1) (1)

where H(·) is the entropy. Since (G1, G2) is a partition
of L, if G1 is a Markov Blanket of G2, then I(G2;G1) is
submodular and monotone because categories in G1 are in-

1http://geneontology.org/

Algorithm 1 Approximate MBC construction

input Label matrix Y , partition size K = |G1|, approxi-
mation parameter k

set G1 = L, G2 = ∅
for all `i ∈ G1 do

Ci = Top-k`k∈G1
Corr(`i, `k)

end for
while |G1| < K do

`∗ ← arg max`∈G1
I(G2 ∪ {`∗};G1 − {`∗})

G1 ← G1 − {`∗}
G2 ← G2 ∪ {`∗}
Update Ci for `i : `∗ ∈ Ci

end while
output (G1, G2)

dependent given those in G2 (Krause & Guestrin, 2012).
Therefore, the greedy algorithm would give a near op-
timal solution ((1 − 1/e) approximation). However, if
we start with (G2 = L, G1 = ∅), the independence as-
sumption that guarantees the submodularity will clearly not
hold. We use a backward procedure instead. We start with
(G1 = L, G2 = ∅) and update G2 at each step by adding
to it the label `i ∈ G1 such that H(G2 ∪ {`i}) −H(G2 ∪
{`i}|G1 − {`i}) is maximal. The rationale behind this ap-
proach is that if G1 is a Markov Blanket of G2 and `i ∈ G1

has its Markov Blanket in G1 − {`i}, then G1 − {`i} is
a Markov Blanket of G2 ∪ {`i} as proved in Theorem 3
of (Koller & Sahami, 1995). The computation of the en-
tropies at each step is exponential in the number of labels.
To make this feasible, we use two approximations: (1) we
only consider the combinations of labels represented in the
training set. (2) Since H(G2|G1) decomposes into a sum
of conditional entropies H(`i|G1) with `i ∈ G2 (thanks to
the independence), we restrict the conditioning set to the
k most correlated labels of `i in G1. Moreover, one could
also add the features X in the conditioning set. However,
this increases the complexity and does not improve the re-
sults. The procedure is summarized in Algorithm 1 where
Corr(`i, `k) represents the correlation between the labels
`i and `k. This algorithm can further be accelerated by
caching intermediate results as in the lazy-greedy method
for maximizing submodular functions (Minoux, 1978).

We show in the experiments that the partition found by
this method serves our purpose of building an architecture
where G1 is predictive of G2. Besides, the partitions ob-
tained by Algorithm 1 are stable as they do not vary much
with respect to the size of the data used to construct them.
For example, on Delicious dataset (983 labels), we observe
only a small difference between the partition obtained by
using 30% of the training data compared to the one ob-
tained using the entire dataset. Table 1 shows examples of
labels from G1 and G2 after partitioning Delicious data.

http://geneontology.org/
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Example G1 labels
spanish, porn, webserver,
filesystem, screen, webradio,
databases, keyboard, gnome,
divx, eclipse, amazing

Example G2 labels
movies, videos, hardware,
software, mobile, gadgets,
humour, apple, photography

Figure 1 & Table 1. The classical MLP (a) and the proposed ADIOS (b) models. The green nodes denote inputs; the gray are hidden
units, and the red are the output units that predict labels. The table provides examples of the labels from Delicious dataset that were
assigned to G1 and G2 layers by the MBC partitioning: G1 got more specific labels, while G2 got more abstract or ambiguous.

4. ADIOS Model
In this section, we present the ADIOS model that exploits
an (approximate) MBC partition of the labels to learn a
neural network that is deep both in the input and the out-
put spaces. The first step towards this new model is the
choice of a loss function suitable to the task of MLC. Re-
cently, (Nam et al., 2014) has demonstrated that the Cross-
Entropy (CE) should be preferred over other conventional
loss functions in MLC such as the Pairwise Ranking loss
when using neural networks for multilabel classification.
Indeed, the CE has several desirable properties. It scales
better with the number of labels, and it is easier to optimize
(thanks to a better landscape). Moreover, it is consistent
with both the Hamming Loss (HL) and the ranking loss. In
the particular case of the ADIOS model, CE is particularly
interesting as it decomposes over the subsets of the MBC
partition, hence naturally suggesting the architecture of the
model and its corresponding learning algorithm.

Proposition 1 Let D = {(x, y)}1≤i≤m sampled from the
joint distribution (X × Y ), ((X,G1), G2) a Markov Blan-
ket Chained partition of this distribution, and Gi(yk) de-
notes the projection of a set of labels yk to Gi. The CE loss
of a hypothesis h from a hypothesis class H is given by:

LCE
Θ (D) =
m∑
i=1

LCE
Θ1

(G1(yi), xi)︸ ︷︷ ︸
first layer CE

+LCE
Θ1,2

(G2(yi), (xi, G1(yi)))︸ ︷︷ ︸
second layer CE

(2)

Two main observations can be drawn from this proposition
(see supplementary for the proof). First, it takes CE as used
in (Nam et al., 2014) as a special case when G1 = L and
G2 = ∅. Second, the loss function has a hierarchical struc-
ture. It has two main parts taking respectively as input,
the original feature vector xi, and the features xi combined

with the label vector restricted to the subset G1, G1(y).
Thus, predicting the categories G2(y) for a given test in-
stance x would typically require G1(y) which is not known
a priori. Therefore, it is necessary to rely on an estima-
tion of G1(y) to predict G2(y). This implies the following
question: why wouldn’t one ignore the dependence and di-
rectly use x to predict G2(y)? The reason is, if G1 ∪ X
is a Markov Blanket of G2, (G1(y), x) is a richer repre-
sentations that can be more discriminative when predicting
labels in G2. In particular, we show next that a neural net-
work parameterization of the hypothesis h combined with
our proposed learning algorithm results in a model that can
more accurately predict G2(y) based on an estimation of
G1(y) and X whenever G1 carries enough information.

4.1. ADIOS DNN parameterization

We parameterize ADIOS as a deep neural network (DNN)
building on the conclusions from the recent application of
these models in the context of MLC. The set of parame-
ters in the vanilla DNNs is the weight matrices transferring
a given instance from the input layer to the output, poten-
tially through several hidden layers. In contrast, ADIOS
model has two distinct sets of parameters in agreement with
the loss function. The first set of parameters, Θ1, operates
in the input space and controls the prediction of G1(y). It
consists of the weight matrices transferring the input x to
the set of labels G1. The second set of parameters, Θ2,
controls the prediction of G2(y). It contains the weight
matrices going from the layer G1 to G2, potentially with
additional matrices transferring information from the input
to G2. The final architecture has at least one input and two
output layers as depicted in Figure 1b. Figure 1b corre-
sponds to the following two cases: G1 (left) or (G1, X)
(right) is a Markov Blanket of G2. The latter, which com-
bines the information from the labels and the original fea-
tures, is the one we consider for the rest of the paper.
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4.2. ADIOS Learning

For a fixed architecture according to a partition (G1, G2)
of the labels, learning the ADIOS model consists in mini-
mizing the CE loss function defined in Proposition 1. For
the neural network parameterization described previously,
this loss function decomposes into two main components
to which we add regularization terms for the sets of param-
eters Θ = {Θ1,Θ2}. For a given z = (x, y) we have:

LCE
Θ (z) = LCE

Θ1
(z) + LCE

Θ1,2
(z) + Ω(Θ) (3)

where LCE
Θ1

and LCE
Θ1,2

are the CE losses calculated on the
predictions of G1(y) and G2(y), respectively.

As mentioned previously, G1(y) is usually not available at
the test time. Hence, using G1(y) as input to fit the param-
eters Θ2 would cause a misfit between the train and test
distributions. Therefore, during training, we resort to an
estimate of G1(y) output by the first part of the network.
Various regularization procedures such as dropout (Srivas-
tava et al., 2014) or batch normalization (Ioffe & Szegedy,
2015) can be applied to hidden layers either to prevent over-
fitting or to accelerate training. However, we found benefi-
cial to add to each output layer a L1 penalty on the vector of
its activations. This regularization constraints the network
to produce sparse label vectors hence matching the sparsity
of the output space in most MLC problems. Indeed for a
given example, only a few labels are likely to be active at
every output layer.

All the parameters of the network are jointly optimized us-
ing stochastic gradient descent. This naturally implements
a sort of curriculum learning where we first learn to predict
the subset of labels G1, then build on top of this knowledge
and learn to predict G2 by composing the previous predic-
tions with a high-level representation of the inputs x given
by hidden layers (see Figure 1b-left). Joint optimization
also provides sharing of statistical strength through multi-
tasking. In fact, due to the depth in the output space, there
are two levels of multitasking: between labels of the same
group and across different groups of tags. As we show
in the experiments, this results in improved performance
compared to the standard MLP with a flat output layer. In
fact, this multi-layer approach in the output space is akin
to using recurrent networks to predict sequences of tokens,
where the joint probability of the output sequence is fac-
torized into the product of the probabilities of each token
given the previous ones and the input.

5. Experiments
We conducted many experiments to verify the follow-
ing claims: (1) the approximate Markov blankets, con-
structed as described in Section 3, are often better pre-
dictors of the rest of the labels than the original features,

Table 2. Statistics of the datasets. Number of examples ranges
from tens of thousands to a million. Last column provides infor-
mation about the average number of labels per example.

Dataset Size Inputs Labels avg. labels
per example

Delicious 16,105 500 983 19.0
MediaMill 43,907 120 101 4.5
SUN2012 100,000 1024 2304 9.8
NUS-WIDE 269,648 500 81 2.4
BioASQ 1,181,338 500 4587 4.7

(2) label-based (explicit) high-level representations lead to
better discrimination than hidden implicit features, and (3)
ADIOS achieves the state-of-the-art results on popular and
large datasets. Finally, we provide a few useful insights
about the behavior of the models, deep in the output space.

5.1. Datasets

We used three readily available datasets that are popular
in the multi-label community2: Delicious (text), MediaMill
(video) and NUS-WIDE (images). Additionally, we prepro-
cessed and used two other datasets of moderate and large
size: image data from SUN2012 (Xiao et al., 2010) and text
data from BioASQ competition of 20153.

The SUN2012 image data was augmented to 100,000 ex-
amples using small random shifts and rotations. Using
the Caffe library (Jia et al., 2014), each image was passed
through a version of GoogleNet (Szegedy et al., 2015) pre-
trained on ImageNet and the last layer composed of 1024
features were used as input to the ADIOS model. The la-
bels were constructed from the object tags provided in the
data.

The BioASQ data consisted of abstracts of medical arti-
cles and corresponding tags assigned by experts. We se-
lected the 5000 most frequent tags and applied doc2vec (Le
& Mikolov, 2014) to the corresponding abstracts using
the gensim library4, producing 500-dimensional feature
vectors per abstract, which were used as input to ADIOS.
We further selected only the abstracts that were assigned
at least four tags. This produced a multi-label dataset with
approximately one million examples.

All the datasets were randomly split into a fixed training
(60%), testing (20%) and validation sets (20%). The hyper-
parameters of all the models (the baselines and our pro-
posed ADIOS model) were tuned using the validation set.
Statistics of all the datasets are summarized in Table 2.

2http://mulan.sourceforge.net
3http://bioasq.org
4http://radimrehurek.com/gensim

http://mulan.sourceforge.net
http://bioasq.org
http://radimrehurek.com/gensim
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5.2. Experimental Setup

Baselines. In our experiments, we compared ADIOS to the
following baselines:

• Binary Relevance (BR) — (also called one-vs-all) is a
set of m independent logistic regression classifiers.

• Principle Label Space Transformation (PLST) (Tai &
Lin, 2012) learns a low dimensional representation of
the labels by performing an SVD on the label matrix.
Therefore, it assumes a low-rank label matrix and cap-
tures correlations between the labels.

• Multi-Label Prediction via Compressed Sensing
(MLCS) (Hsu et al., 2009). This approach also as-
sumes a low-rank label matrix. However, it embeds
the labels in a lower dimensional space using random
projections and relies on sparse recovery algorithms
such as Orthogonal Matching Pursuit (OMP) or Lasso
to recover the original labels from the predicted low
dimensional representation.

• FastXML (Prabhu & Varma, 2014) is an ensemble
method that learns a set of hierarchies over the feature
space to optimize the nDCG ranking metric.

• Multi-Layer Perceptron (MLP) trained to minimize
the cross-entropy (CE) loss as in (Nam et al., 2014).

Hyper-parameters selection. For all the compared mod-
els (ADIOS and baselines), we used the validation set to se-
lect the hyper-parameters. For neural network models, we
used hidden layers with 1024 ReLU units and trained the
models using Adagrad with 20 to 50% dropout and batch
normalization. Additionally, we used L2 regularization on
the weight matrices and L1 activity regularization on the
output layers when it improved performance (typical val-
ues ranged between 10−4 to 10−3 for all the datasets).

For PLST and MLCS, we used linear regression with L2

regularization to predict the low-dimensional embedding
of the labels. Moreover, we fixed, the dimensionality of
the embedding space to 500 on all datasets except on De-
licious and NUS-WIDE where we used 50. Larger embed-
ding dimensions did not increase performance. For MLCS,
we used Lasso to recover the original labels. For FastXML,
we fixed the number of trees per ensemble to 50.

Our model had a similar configuration to MLP: one hidden
layer with 1024 ReLU units between inputs and G1. We
then added another 512-dimensional ReLU hidden layer
between the hidden layer before G1 and G2 as well as di-
rect connections between G1 and G2, as illustrated in the
third diagram in Figure 1. Both hidden layers were regu-
larized with 20-50% dropout and batch normalization. Ad-
ditionally, activity regularization (with 10−4 to 10−3 coef-
ficients) was imposed on the output layers. ADIOS models

were implemented as an extension of the Keras machine
learning library5.

Metrics. One of the crucial differences between the tradi-
tional multi-class (or binary) and the multi-label settings is
the evaluation metrics of interest. While performance on
the former task is well summarized by two principal mea-
sures, precision and recall (and their combinations, such as
F1), performance on the latter can be assessed in a variety
of ways (Tsoumakas & Katakis, 2007). The main metrics
used for comparison are Macro-F1 and Micro-F1, which
are computed as follows:

• Macro-F1 is a category-based evaluation measure. It
weighs all categories equally and hence is more sensi-
tive to the ability of the classifier to detect rare classes.
Denoting the precision and recall of category c by Pc

and Rc, respectively, Macro-F1 is given by:

Pc =
TPc

TPc + FPc
, Rc =

TPc

TPc + FNc
,

Macro-F1 =
1

|C|
∑
c∈C

2Pc · Rc

Pc + Rc
.

where TPc, FPc and FNc denote respectively the true-
positives, false-positives, and false-negatives for the
class label c ∈ C.

• Micro-F1 is an instance-based evaluation measure
and therefore weights higher categories that have
higher fraction in the test set:

P =

∑
c∈C TPc∑

c∈C TPc + FPc
, R =

∑
c∈C TPc∑

c∈C TPc + FNc
,

Micro-F1 = 2
P · R

P + R
.

• Precision@K: It is the fraction of correct predictions
among the first K predicted labels. It measures how
well an algorithm performs as a ranking model.

Prediction. Both the baselines and ADIOS, once trained,
return scores for each label that need to be turned into spe-
cific predictions via thresholding. In the multilabel setting,
mere 0.5 threshold is usually suboptimal regarding the met-
rics of interest. Therefore, we employ adaptive threshold-
ing (Nam et al., 2014): For a given trained model (a base-
line or ADIOS), for each sample in the training data, we
find a threshold that maximizes F1 score when applied to
the model’s predictions. Next, we regress features of the
training data to these optimal thresholds. Finally, when
the model is tested on a new example, we obtain both

5Keras library: http://keras.io. Our code is available
at https://github.com/alshedivat/adios.

http://keras.io
https://github.com/alshedivat/adios
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Table 3. Predictiveness of features and MBC labels. Macro F1

score and P@5 were computed on the labels assigned to G2 pre-
dicted either from the features, X , or from the labels of G1.

Dataset X size G1 size maF1 on G2 P@5 on G2

X G1 X G1

Delicious 500 500 21.54 38.70 55.61 47.44
MediaMill 120 50 11.49 22.57 45.48 17.36
NUS-WIDE 500 40 11.93 10.64 12.83 25.36

the scores (returned by the model) and the adaptive label-
specific thresholds (predicted using regression)6.

5.3. Results

Predictiveness of Markov blankets. We start by validat-
ing our claim that given a good approximate MBC partition
of the labels into (G1, G2), the labels in G1 can, in fact, be
better predictors of the labels in G2 than the original fea-
tures. To that end, we first do an MBC partition of the set
of labels into two equal subsets G1 and G2. Then, we com-
pare an MLP trained on the original features with an MLP
trained on the labels from G1 (i.e., using them as input vec-
tors) to predict the labels in G2. In this task, we performed
experiments on three of the datasets and measured macro
F1 and P@5 to capture the global performance and good-
ness of ranking.

The results are presented in Table 3. We notice that the first
two datasets, Delicious, and MediaMill, Markov blankets
turn out to be far more predictive than the original features
regarding the macro F1 score. In other words, G1 labels
are better at predicting rare items in G2. At the same time,
features turn out to be outperforming G1 representations
concerning P@5 metric, which means that they are better
associated with the dominant (highly frequent) labels.

Interestingly, we observe quite an opposite behavior of pre-
dictiveness of features and G1 on the NUS-WIDE data.
Features marginally outperform G1 labels in macro F1, but
achieve twice lower P@5 score. Such behavior is poten-
tially the consequence of the low ratio of the number of
labels to the number of features in this dataset. Therefore,
the labels in G1 can capture only strong correlations while
the features possess higher discriminative power over all
the labels.

Nevertheless, we see that Markov blankets indeed have ad-
ditional discriminative power on one or the other metric.
Therefore, a clever combination of the information from
features and G1 labels can help to overcome performance
trade-offs. We further show that joint training of the pro-
posed ADIOS model with the additional hidden layer can
use this information and achieve state-of-the-art results re-

6The only exception in our experiments was FastXML model
which underperformed when adaptive thresholding was applied.
Therefore, we used FastXML as is.

garding both global and ranking metrics.

Table 4. Performance of the baselines and ADIOS on the five
datasets. The metrics used are macro F1 (maF1), micro F1 and
precision at K (P@K) for K = 1, 5, 10.

Data Model maF1 miF1 P@1 P@5 P@10

D
el

ic
io

us

BR 14.32 36.49 43.48 40.29 38.58

PLST 9.37 36.22 41.85 39.90 38.90

MLCS 2.08 20.14 32.90 22.26 22.39

FastXML 11.34 23.13 68.38 58.58 49.50
MLP 15.12 38.81 68.12 57.14 48.81

ADIOSRND 15.47 38.93 67.81 58.36 49.26

ADIOSMBC 17.69 39.31 69.66 59.13 49.36

M
ed

ia
M

ill

BR 7.00 57.27 65.31 43.79 23.62

PLST 6.56 56.57 65.12 44.60 23.67

MLCS 2.91 49.58 73.30 39.73 20.94

FastXML 11.16 33.25 82.45 51.98 33.24

MLP 9.71 59.06 86.93 55.12 35.47

ADIOSRND 14.72 56.22 87.55 55.56 35.57

ADIOSMBC 16.01 60.01 88.53 56.12 35.77

SU
N

20
12

BR 0.38 0.47 55.27 40.55 28.79
PLST 0.38 0.47 55.27 40.55 28.75

MLCS 0.72 0.76 35.55 23.19 14.83

FastXML 0.56 0.91 54.42 39.98 28.07

MLP 0.09 28.61 55.27 40.55 28.79
ADIOSRND 0.15 27.29 54.43 40.21 28.57

ADIOSMBC 0.18 30.32 56.42 40.86 28.80

N
U

S-
W

ID
E

BR 7.94 31.60 37.77 18.88 11.40

PLST 4.38 37.60 40.49 21.70 13.85

MLCS 1.87 28.23 27.75 18.54 12.37

FastXML 6.14 11.93 41.76 22.17 14.01

MLP 14.00 42.09 51.72 27.53 17.87

ADIOSRND 11.41 41.87 55.46 29.50 18.68

ADIOSMBC 14.14 41.85 56.39 29.65 19.71

B
io

A
SQ

BR 0.03 14.69 13.74 13.49 6.78

PLST 0.03 14.69 13.80 13.48 6.77

MLCS 0.03 14.73 11.98 13.95 7.01

FastXML 0.19 3.80 19.55 13.68 9.20

MLP 14.86 42.40 67.46 41.32 27.52

ADIOSRND 15.91 43.11 66.97 40.96 27.46

ADIOSMBC 16.14 43.49 67.28 41.77 27.98

Table 5. Performance rank of the models on different metrics av-
eraged over all datasets.

Model
Average performance rank on a given metric
maF1 miF1 P@1 P@5 P@10

BR 4.0 4.6 5.2 5.4 5.8

PLST 5.0 4.8 5.6 5.6 5.4

MLCS 5.4 6.0 6.0 6.0 6.0

FastXML 4.0 6.2 3.4 3.8 3.2

MLP 3.6 2.2 2.8 2.8 2.6

ADIOSRND 2.8 3.0 2.8 2.6 2.4

ADIOSMBC 1.6 1.2 1.2 1.0 1.2

The main result. We now compare ADIOS to the previ-
ously described baselines on five datasets. To further vali-
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Figure 2. Left two charts: Macro F1 computed on G2 labels for ADIOS and MLP on Delicious and MediaMill. Both models had the
same number of parameters. Right two charts: Macro F1 for MLP and ADIOS trained on small subsets of Delicious and MediaMill.

date the importance of learning a partition and the effective-
ness of Algorithm 1, we also demonstrate the performance
of an ADIOS architecture for which the partitions (G1, G2)
are created at random. We call this approach ADIOSRND
as opposed to the model using a learned partition which
we denote ADIOSMBC. On each dataset, ADIOSRND has
the same architecture as the best performing ADIOSMBC
model. All the results are shown in Table 4. This table is
complemented by Table 5 that contains the average ranks
of every approach over the datasets on each of the five per-
formance measures we use. The average ranks are used
to decide the significance of the of the results by using a
Bonferroni-Dunn test as suggested by Demšar (2006).

First, ADIOSMBC consistently outperforms all the com-
pared methods on all the datasets across all the performance
measures we consider in this study. Indeed, it achieves
good results both on ranking metrics and classification ones
while most of the other baselines are more specialized to
one metric. For example, FastXML is particularly opti-
mized for ranking (it is trained by minimizing nDCG);
as a result, it achieves good P@K while having low F1-
measures globally.

As suggested by the results of Table 3, combining the
soft predictions of G1 with high level hidden features to
predict labels in G2 boosts performance even when the
original features are supposedly more predictive of labels
in G2. This is typically the case for the NUS-WIDE
dataset where such combination leads to improved Macro
F1 score. Note that to achieve such improvements; it was
important to learn a proper approximate MBC partition
of the labels rather than randomly assign them to G1 and
G2 layers. Indeed, on the same NUS-WIDE dataset, for
example, ADIOSRND has substantially lower classification
scores (Micro and Macro F-measures) than MLP despite
using the same architecture as ADIOSMBC.

In real-world multi-label applications, it is often the case
that only a handful of target labels is of particular interest.
In such case, one may use the rest of the labels as auxil-

iary to form an approximate Markov blanket for the target
labels. We compared ADIOSMBC and MLP in such sce-
nario on Delicious and MediaMill data by varying the size
of G1 layer and testing both models on G2 labels only. The
left two charts of Figure 2 demonstrate the superiority of
ADIOS.

Also, as depicted in the right two plots of Figure 2,
ADIOSMBC has a better behavior than MLP in the small
sample setting. In particular on MediaMill, when we con-
sider only 40% of the training data, the Macro F-1 of
ADIOS is almost twice as good as MLP. This opens sev-
eral perspectives regarding a better use of supervision to
boost classification performance when data is scarce.

6. Perspectives
As available datasets become bigger and richer in terms of
their annotations, multi-label classification becomes an im-
portant class of problems to handle with modern machine
learning approaches. The advent of deep architectures has
mostly focused on extracting complex representations from
input data. In this paper, we presented ADIOS, an approach
to better learn problems with underlying unknown struc-
tured label space. We have shown that using a factor repre-
sentation of labels, determined by a learned Markov Blan-
ket can result in improved performance with reduced com-
plexity. While we have experimented with only 2 layers of
labels, some problems can potentially benefit from an even
deeper factorization. The approach could also be useful for
zero-shot learning when one wants to predict G2 in situ-
ations where only G1 is observed during training. It also
paves the way to new methods for transfer learning when
the information for G1 is available, but the actual task of
interest is G2.
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