
BOOSTING HMMS WITH AN APPLICATION TO SPEECH RECOGNITION

Christos Dimitrakakis and Samy Bengio

IDIAP
CP952

1920 Martigny
Switzerland

ABSTRACT

Boosting is a general method for training an ensemble of classifiers
with a view to improving performance relative to that of a single
classifier. While the original AdaBoost algorithm has been defined
for classification tasks, the current work examines its applicability
to sequence learning problems, focusing on speech recognition.
We apply boosting at the phoneme model level and recombine ex-
pert decisions using multi-stream techniques.

1. INTRODUCTION

Boosting and other ensemble learning methods attempt to com-
bine multiple hypotheses from a number ofexpertsinto a single
hypothesis. This is feasible for classification and regression prob-
lems, where the hypothesis is a fixed-length, real-valued vector.
Other problems, such as sequence prediction and sequential deci-
sion making, can also be cast in the classification and regression
framework, thus making the application of ensemble methods to
these problems feasible. However in some cases the hypothesis is
a sequence of symbols of unspecified length. One such applica-
tion is speech recognition, where the hypothesis can be a sequence
of words or phonemes. The most common machine learning al-
gorithms for sequence processing employ Hidden Markov Models
(HMMs) - however, little research has been done in designing new
ensemble learning algorithms that are specific to HMMs, or to se-
quence processing in general.

This paper attempts to fill this gap by examining methods for
boosting with HMMs with an application to speech recognition.
Specifically, we are applying boosting to HMM training at the
phoneme classification level. This results in an ensemble of mod-
els, where each model has been trained on a different part of the
data, namely on a subset of the phoneme segments. Ensemble
performance is then examined at the phoneme classification level.
Furthermore, we investigate a number of multi-stream techniques
to recombine the separate models for use in continuous speech
recognition. The paper is organised as follows: An introduction to
boosting and Hidden Markov Models is given in sections 2 and 3.
A review of related research and an outline of methods used in this
paper is given in section 4. Experiments on two speech recognition
tasks are described in section 5. We conclude with an outline of
open research problems in this direction.

This work was carried out in the framework of the Swiss National
Center of Competence in Research (NCCR) on Interactive Multimodal In-
formation Management (IM2).

2. BOOSTING

Boosting algorithms [1, 2, 3] are a family of ensemble methods for
improving the performance of classifiers by training and combin-
ing a number ofexpertsthrough an iterative process that focuses
the attention of each new expert to the training examples that were
hardest to classify by previous ones. The most successful boosting
algorithm for classification is AdaBoost [3], where an ensemble of
experts is able to decrease the training error exponentially fast as
long as each one has a classification error smaller than 50%.

More precisely, an AdaBoost ensemble is composed of a set
of ne experts,E = {e1, e2, ..., ene}. For each inputx ∈ X, each
expertei produces an outputyi ∈ Y . These outputs are combined
according to the reliabilityβi ∈ [0, 1] of each expert:

y =

neX
i=1

βiyi.

The expert training is an iterative process, which begins with train-
ing a single expert and subsequently trains each new expert in turn,
until a termination condition is met. The experts are trained on
bootstrap replicates of the training datasetD = {di|i ∈ [1, N]},
with di = (xi, yi). The probability of adding exampledi to the
bootstrap replicateDj is denoted aspj(di), with

P
i pj(di) = 1.

At the end of each boosting iterationj, βj is calculated according
to βj = 1

2
ln

1+εj

1−εj
whereεh is the average loss of expertej , given

by εj =
P

i pj(di)l(di), wherel(di) is thesample lossof exam-
ple di. If, for any predicateπ, we let [π] be 1 if π holds and 0
otherwise, it can be defined as:l(di) = [hi 6= yi]. After training
in the current iteration is complete, the sampling probabilities are
updated so thatpj(di) is increased for misclassified examples and
decreased for correctly classified examples according to:

pj+1(di) =
pj(i)e

βl(di)

Zj
,

whereZj is a normalisation factor to makeDj+1 into a distribu-
tion. Thus, incorrectly classified examples are more likely to be
included in the next bootstrap data set. Because of this, the expert
created at each boosting iteration concentrates on harder parts of
the input space.

3. HIDDEN MARKOV MODELS

A Hidden Markov Model is defined as a set ofns statesQ =
{q1, q2, ..., qns}, transition probabilities from stateqk to stateqj

and emission probabilities for each stateqk. The following as-
sumes a basic knowledge of HMMs and introduces the basic no-
tation and the definition of two tasks related to sequence recogni-
tion: the classification of a given sequence to one of ana priori
known number of classes, which amounts to selecting the most
likely class from the available selection; and the task of sequence
decoding, which amounts to finding the most likely state sequence
through a given model, given an observation sequence.

3.1. Sequence Classification

Let us define a sequence ofn observations asS = {s1, s2, ..., sn}.
Given a set ofnc classesC = {c1, c2, ..., cnc} we wish to deter-
mine which classci ∈ C the sequence belongs to.

We train one HMMmi for each classci. For each model
mi ∈ M = {m1, m2, ..., mnc}, we can calculatep(S|mi) for
a given sequenceS. Assuming the distribution ofci is modelled
by mi the class posterior can also be calculated, according to the
Bayes rule:p(mi|S) = p(S|mi)p(mi)

p(S)
. The most likely modelm∗

is then selected, withm∗ = arg maxj p(mj |S).

3.2. Sequence Decoding

For the simple case where the objective is to determine the class
that a particular sequence belongs to, the Bayes Classifier approach
described in section 3.1 is adequate. For other applications, such
as continuous speech recognition [4], this approach is no longer
feasible. In the former case we know thatS belongs to one of
a finite number of phoneme classes. In the latter case,S corre-
sponds to a sequence of segments of different classes, with the
number and position of segments being unknown. Ideally, one
would like to exhaustively search through the complete space of
possible class sequences that would correspond toS and select the
one whose likelihood is the highest. However, this is too expen-
sive in computation time, so the Viterbi algorithm is used to find
the maximum-likelihood state sequence instead.

Assume a sequenceS and a set of HMMsM = {mi|i ∈
[1, nc]}, where each modelmi ∈ M has a set ofnsi statesQi =
{qi,j |j ∈ [1, nsi]} and an emission distributionp(y|qi,j) at each
state. Then for each sequence samplesk ∈ S it is possible to
calculate the likelihood ofsk given stateqi,j ∈ Q, denoted by
p(sk|qi,j). The states that make up each modelmi correspond
to speech data within a short time-frame, while the models them-
selves may correspond to simple phonetic classes, such as phonemes.
The departure from the previous application of HMMs to sequence
classification is that instead of evaluatingp(mj |S) for each model,
the models are incorporated into a larger HMM, with statesQ =
{Qi|i ∈ [1, ns]} whose transitions represent the allowed transi-
tions from one phonetic class to the next. These transitions define
the vocabulary and language model from which allowed words and
sequences of words are obtained. Then, givenp(sk|qi,j)∀mi ∈
M, qi,j ∈ Qi, sk ∈ S, we can calculate the likelihood of any
given pathV = (v1, v2, .., vn), where eachvk ∈ V corresponds
to one of the possibleqi,j and the set of all possible paths of length
n isQn. This is simply

p(V) =

nY
k=1

p(sk|vk)p(vk|vk−1). (1)

The aim of the Viterbi search is to find an optimal path

V ∗ = arg max
V ∈Qn

p(V).

The process is optimal in the sense that the maximally-likely
state sequence is found. However, this is not the same as finding
the maximally-likely sequence of words.

3.3. Multi Stream Decoding

When the information is coming from multiple streams, or when
there are multiple hypothesis models available, it can be advanta-
geous to employ multi-stream decoding techniques [5]. In multi-
stream decoding each sub-unit modelmj is comprised ofne sub-
modelsmj = {mi

j |i ∈ [1, ne])} associated with the sub-unit
level at which the recombination of the input streams should be
performed. Furthermore the dataS is split into a number of vector
components calledstreamssuch asS = (S1, S2, ..., Sne).

We consider the case of state-locked multi-stream decoding,
where all sub-models are forced to be at the same state. Thus,
the problem formulation remains as in the previous section, but
this time we are considering likelihoods of combinations of states,
rather than of single states. More specifically, we wish to find the
pathV = (v1, v2, ..., vn) where eachv ∈ V is a vector of states
across models:vk = (qi

k|i ∈ [1, ne]) and

p(sk|vk) =

neY
i=1

p(si
k|qi

k)wi (2)

or, in an alternative formulation:

p(sk|vk) =

neX
i=1

p(si
k|qi

k)wi (3)

where path likelihoods are calculated according as previously
(equation 1) andwi represents the reliability of expertei.

4. BOOSTING HMMS

Boosting had originally been defined for classification tasks, and
recently it was generalised to the regression case (See [1] for an
overview). However, the amount of research in the application
of boosting to sequence learning has been comparatively small: In
[6], boosting was used in a speech recognition task. That particular
system was HMM-based with ANNs for computing the posterior
phoneme probabilities at each state. The boosting itself was per-
formed at the ANN level, using AdaBoost with confidence-rated
predictions and in which the sample loss function was the frame
error rate. The resulting decoder system differed from a normal
HMM/ANN hybrid in that each ANN was replaced by a mixture
of ANNs. Boosting was also applied in the same context in [7],
but in this case the example selection was done at the sentence
level, through the use of a sample loss function that considered a
classification as correct if its word error rate was below a certain
threshold.

The work presented here explores the use of boosting for HMMs
that employ Gaussian Mixture Models at the state level. Unlike
previous approaches, we apply boosting at the phoneme level, by
treating the problem as a phoneme classification task. This results
in a number of base models for each phoneme. We explore the use
of various methods to combine the models for use in a continuous
speech recognition task.

4.1. Model Training At The Phoneme Level

The simplest way to apply boosting to HMM training is to cast the
problem into a classification framework. This is possible at the
phoneme classification level, where each classci corresponds to
one of the possible phonemes. As long as the available training
data are annotated in time so that subsequences containing single
phoneme data can be extracted, it is natural to adapt each Hid-
den Markov Modelmi to a single classci out of the possiblenc,
and combine the models into a Bayes Classifier in the manner de-
scribed in section 3.1. A Bayes Classifier can then be used as an
expert in the AdaBoost framework.

More specifically, each exampledk in the training datasetD
will be a sequence segment corresponding to data from a single
phonemeci ∈ C. So each exampledk would be of the form
dk = (Sk, yk), with yk ∈ C andSk being a subsequence of fea-
tures corresponding to single phoneme data. At each iterationj of
the AdaBoost algorithm, a new classifierej is created, which con-
sists of a set of Hidden Markov Models{mj

1, m
j
2, ..., m

j
nc
}. Each

modelmj
i is adapted to the set of examples{dk ∈ Dj |yk = ci}.

It is naturally expected that this type of training will improve
performance in phoneme classification tasks and this is tested in
section 5.1. Different ways of combining the ensembles resulting
from this training in order to perform sequence recognition are
described in section 5.2.

 0.1

 0.105

 0.11

 0.115

 0.12

 0.125

 0.13

 1 2 3 4 5 6 7 8 9 10

C
la

ss
ifi

ca
tio

n
E

rr
or

Number of AdaBoost Iterations

Phoneme Classification Results

Bayes Test
AdaBoost Test

Fig. 1. Classification errors in testing for a boosted ensemble of
Bayes Classifiers as the number of experts is increased at each it-
eration of boosting. For reference, the corresponding errors for a
Bayes Classifier trained on the complete training set are also in-
cluded.

5. EXPERIMENTAL RESULTS

5.1. Phoneme Classification

An experiment was performed to test whether it is possible to apply
boosting to a sequence classification problem, namely a phoneme
classification task. The phoneme data was based on a pre-segmented
version of the OGI Numbers 95 (N95) data set [8]. This data
set was converted from the original raw audio data into a set of
features based on Mel-Frequence Cepstrum Coefficients (MFCC)
[4] (with 39 components, consisting of three groups of 13 coef-
ficients, namely the static coefficients and their first and second

Expert A

Expert B

Expert C

Expert A

Expert B

Expert C

B

w

wB

wA
Aw

w

C
Cw

Phoneme 1

B

w

wB

wA
Aw

w

C
Cw

Phoneme 2

Phoneme 2Phoneme 1

Word 1

Word 2

Fig. 2. Single-path decoding for two vocabulary words consisting
of two phonemes each. When there is only one expert the decod-
ing process is done normally. In the multiple expert case, phoneme
models from each expert are connected in parallel. The transition
probabilities leading from the anchor states to the Hidden Markov
Model corresponding to each experts are calculated from the ex-
pert weightsβi of each expert.

derivatives) that were extracted from each frame. The data con-
tains 27 distinct phonemes, consisting of 3233 training utterances
and 1206 test utterances. The segmentation of the utterances into
their consisting phonemes resulted in 35562 training segments and
12613 test segments, totalling 486537 training frames and 180349
test frames respectively. Since the data was pre-segmented, the
classification could be performed using a Bayes Classifier com-
posed of 27 Hidden Markov Models, each one corresponding to
one class. Given a particular sequenceS, model likelihoods are
calculated and the Bayes Classifier emits a class label which de-
pends on which Hidden Markov Model had the highest posterior
class probability. The HMMs themselves were composed of five
hidden states1 in a left-to-right topology and the distributions cor-
responding to each state were modelled with a Gaussian Mixture
Model employing ten Gaussian distributions.2

It then becomes possible to apply the boosting algorithm by
using Bayes Classifiers as the experts. The N95 data was pre-
segmented into training examples, so that each one was a segment
containing a single phoneme. Thus, bootstrapping was performed
by sampling through these examples. Furthermore, the classifica-
tion error of each classifier is used to calculate the weights nec-
essary for the weighted voting mechanism. The data that was
used for testing was also segmented to subsequences consisting
of single phoneme data, so that the models could be tested on the
phoneme classification tasks. The results, shown in Figure 1, were
validated against the performance of a single Bayes Classifier that
was trained on the complete data set. In this case the classification
error is continuously reduced, reaching an error of 10.3%, which,
with 95% confidence, is statistically significantly better than the
baseline system.

1including two non-emitting states: the initial and final states
2These values are within the range commonly employed in phoneme

recognition tasks where the data is composed of MFCC features. There
was no attempt to perform cross-validation in order to choose those hyper-
parameters optimally.

 0.072

 0.074

 0.076

 0.078

 0.08

 0.082

 0.084

 0.086

 0.088

 0.09

 1 2 4 8 16 32

W
or

d
E

rr
or

 R
at

e

Number of AdaBoost Iterations

Phoneme-Level Boosting Test Set Decoder Results

Baseline Test
ROVER Test

Single-Stream Test
Multi-Stream Prod Test
Multi-Stream Sum Test

Fig. 3. Word error rates in testing when training with segmentation
information. Decoding results are shown for a single HMM, and
for single-path and multi-stream (product and sum) recombination
schemes.

5.2. Continuous Speech Recognition

The approach described in section 5.1 is only suitable when the
data is segmented at the phoneme level both during training and
testing. However we can still employ boosting by training with
segmented data to produce a number of expert models which can
then be recombined during decoding on unsegmented data. We
explore three different recombination techniques:’

The first technique employed for sequence decoding uses an
HMM comprising of all phoneme models created during the boost-
ing process, connected in the manner shown in Figure 2. Decoding
is performed using the Viterbi algorithm in order to find a sequence
of states maximising the likelihood of the sequence. Only single
state likelihoods are considered in this case, so only single models
are contributing to the final decision. The transition probabilities
leading from anchor states to each model are calculated from the
boosting weightsβi so that they sum to one and represent the con-
fidence weight of each expert according to:

wi =
βiPne
j βj

. (4)

The models may also be combined using multi-stream de-
coding. This has the advantage of utilising information from all
boosted models. We experimented with two types of multi-stream
decoding: exponentially weighted product (equation 2) and weighted
sum (equation 3). In both cases the stream weights are given by
equation 4.

Experimental results comparing the performance of the above
techniques to that of an HMM using segmentation information for
training are shown in Figure 3. An improvement on the baseline
system was observed for all models, with the weighted-sum multi-
stream model performing markedly better. However, the perfor-
mance deteriorates after 3 iterations. This could be attributed to the
effects of noise3 and the use of state-locked techniques for multi-
stream decoding. Application of the same models to the training

3The AdaBoost algorithm is quite robust with respect to noise, but for
high noise levels a regularisation method is necessary [1].

data yielded substantially better and continuous performance in-
creases, with the weighted-sum model reaching an error of 2.7%,
compared to the 7% achieved by the baseline system.

6. CONCLUSION AND FUTURE WORK

In this paper we presented a method for the application of boost-
ing to complete HMMs, rather than at the frame level. State-locked
multi-stream decoding techniques were investigated for model re-
combination in a continuous speech recognition task. As was ex-
pected, the application of boosting to phoneme classification re-
sulted in a significant performance increase, in both the test and
the training error. The same was true of the training error in the
continuous speech recognition task. The test error was lower than
that of the baseline system with a statistical significance level of
86%.

This lack of good generalisation in decoding might be reme-
died by pursuing alternative techniques to the state-locked multi-
stream methods, such as a Monte Carlo approximation to the full
likelihood estimation. Another subject of future research is the ap-
plication of boosting at the sentence level. This poses additional
difficulties, since treating the problem as a classification task is
no longer feasible. However it may be possible to apply recently
developed boosting techniques for regression problems [1, 9] by
defining an appropriate distance metric to be minimised by the re-
gression process, such as the word error rate.

7. REFERENCES

[1] Ron Meir and Gunnar R̈atch, “An introduction to boosting
and leveraging,” inAdvanced Lectures on Machine Learning,
LNCS, pp. 119–184. Springer, 2003.

[2] Robert E. Schapire and Yoram Singer, “Improved boosting al-
gorithms using confidence-rated predictions,”Machine Learn-
ing, vol. 37, no. 3, pp. 297, 1999.

[3] Yoav Freund and Robert E. Schapire, “A decision-theoretic
generalization of on-line learning and an application to boost-
ing,” Journal of Computer and System Sciences, vol. 55, no.
1, pp. 119–139, 1997.

[4] Lawrence R. Rabiner and Biing-Hwang Juang,Fundamentals
of Speech Recognition, PTR Prentice-Hall, Inc., 1993.

[5] Stéphane Dupont, Hervé Bourlard, and Christophe Ris, “Ro-
bust speech recognition based on multi-stream features,” in
Proc. of ESCA/NATO Workshop on Robust Speech Recogni-
tion for Unknown Communication Channels, Pont--Mousson,
France, Apr. 1997, pp. 95–98.

[6] H. Schwenk, “Using boosting to improve a hybrid
HMM/neural network speech recogniser,” inProc. ICASSP
’99, 1999, pp. 1009–1012.

[7] G. Cook and A. Robinson, “Boosting the performance of con-
nectionist large vocabulary speech recognition,” inProc. IC-
SLP ’96, Philadelphia, PA, 1996, vol. 3, pp. 1305–1308.

[8] R. A. Cole, K. Roginski, and M. Fanty, “The ogi numbers
database,” Tech. Rep., Oregon Graduate Institute, 1995.

[9] Jerome H. Friedman, “Greedy function approximation: A gra-
dient boosting machine,”The Annals of Statistics, vol. 29, no.
5, 2001.

