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Abstract

Ensemble algorithms can improve the performance of a given learning algorithm
through the combination of multiple base classifiers into an ensemble. In this paper
we attempt to train and combine the base classifiers using an adaptive policy. This
policy is learnt through a Q-learning inspired technique. Its effectiveness for an
essentially supervised task is demonstrated by experimental results on several UCI
benchmark databases.
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1 Introduction

The problem of pattern classification has been addressed in the past us-
ing supervised learning methods. In this context, a set of N example pat-
terns D̂ = {(x1, y1), (x2, y2), ..., (xN , yN)} is presented to the learning machine,
which adapts its parameter vector so that when input vector xi is presented
to it the machine outputs the corresponding class yi ∈ {1, 2, . . . , c}, where
c ∈ N is the number of classes. Let us denote the output of a learning machine
for a particular vector xi as h(xi). The classification error for that particular
example can be designated as li = 1 if h(xi) 6= yi and 0 otherwise. Thus, the
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classification error for the set of examples D̂ can be summarised as the empir-
ical error L̂ =

∑
i li/N , which is simply the zero-one loss. If D̂ is a sufficiently

large representative sample taken from a distribution D, then L̂ should be
close to the generalization error, L =

∫
pD(x)l(x). In practice, however, the

training set provides limited sampling of the distribution D, leading to prob-
lems such as overfitting. Adding the effects of the classifier’s inherent bias and
variance, we will have L > L̂.

Since the generalization error cannot be directly observed, it has been common
to use a part of the training data for validation in order to estimate it. This has
led to the development of techniques mainly aimed at reducing the over-fitting
caused by limited sampling, such as early stopping and K-fold cross-validation.

Another possible solution is offered by ensemble methods, such as the mixture
of experts (MOE) architecture [2], bagging [3] and boosting [4]. The boosting
algorithm AdaBoost has been shown to significantly outperform other ensem-
ble techniques. While the good performance of MOE and bagging is related
to the independence of experts and the reduction of classifier variance, theo-
retical results explaining the effectiveness of AdaBoost relate it to the margin
of classification [5]. See Appendix A for a description of margins.

In this work, which is an extended version of a paper presented at ESANN
2004 [1], the possibility of using an adaptive rather than a fixed policy for
training and combining base classifiers is investigated. The field of reinforce-
ment learning (RL) [6] provides natural candidates for use in adaptive policies.
In particular, the policy is adapted using Q-learning [7], a method that im-
proves a policy through the iterative approximation of an evaluation function
Q. Previously Q-learning had been used in a similar mixture model applied
to a control task [8]. An Expectation Maximisation based mixtures of ex-
perts (MOE) algorithm for supervised learning was presented in [9]. In this
paper, we attempt to solve the same task as in the standard MOE model,
but through the use of reinforcement learning rather than expectation max-
imization techniques. A description of the similarities between reinforcement
learning and expectation maximisation methods for multi-expert architectures
was presented in [10].

The rest of the paper is organised as follows. The framework of reinforcement
learning is introduced in Section 2. Section 2.2 outlines how the RL methods
are employed in this work and describes how the system is implemented. Ex-
periments are described in Section 3, followed by conclusions and suggestions
for future research.
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2 General Architecture

The objective in classification tasks is to reduce the expected value of the
error, E{l}. The empirical loss L̂ provides an unbiased estimate of this error
in the mean-square sense. The suggested classifier ensemble consists of a set of
n base classifiers, or experts, E = {e1, e2, ..., en} and a controlling agent that
selects the experts to make classification decisions and to train on particular
examples. The controlling agent must learn to make decisions so that E{l}
is minimised. We employ reinforcement learning for the purpose of finding an
appropriate behaviour for the agent.

The following section will give a brief introduction to the field of reinforce-
ment learning and in particular Q-learning. Subsequent sections detail how
Q-learning can be employed in classification tasks and potential problems
with the technique are discussed. On the whole, however, it is estimated that
reinforcement learning can provide an interesting alternative to supervised
learning techniques even for supervised-learning tasks.

2.1 Reinforcement Learning

Reinforcement learning is concerned with the interaction between an agent
and the environment it is embedded in. The reinforcement learning problem
consists of finding an optimal way for the agent to behave in the environment.
It differs from the supervised learning in that there is no direct guidance as
to what the agent should learn, i.e. there is no explicit teacher. However some
supervision is supplied to the agent in the form of a reward signal that is
informative as to how well the agent is performing.

More formally, for the agent we define a set of states s ∈ S, which can be
thought of as corresponding to environmental observations, and a set of actions
a ∈ A which can be applied by the agent to the environment. At each time
step t the agent is at state st = s and chooses action at = a. After the action
is taken, the agent receives a reward rt and it enters a new state st+1 = s′,
both of which are generated by the environment. A policy π : S × A → [0, 1]
is defined as a set of probabilities:

π =
{
p(a|s)

∣∣∣∣(s, a) ∈ S ×A
}

for selecting an action a given the state s. The objective is to find the policy
that maximises the expected value of the cumulative discounted future reward
of the agent, starting at time t. This quantity, otherwise called the return, is
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defined as:

Rt =
∞∑

k=0

γkrt+k+1, (1)

where γ ∈ [0, 1) is a scalar discount factor. Accordingly, the optimal policy
can be defined as the policy which maximises the expected value of the return:

π∗ = arg max
π

E{Rt|π}.

One can think of γ as a mechanism for weighing the importance of rewards in
the distant future relative to immediate rewards. When γ → 0, the optimal
policy is the policy that maximises the expected value of the immediate reward
only. When γ → 1, the optimal policy is that which maximises the expected
value of all future rewards.

If the expected return of all policies had been known a priori we would have
been able to trivially select the optimal one. However in general this is not the
case and we need to perform the search through the iterative application of
two steps. The first step involves estimating the return of the current policy. In
the second step we generate an improved policy using our new and improved
estimates. The policy evaluation step does not need to be complete, meaning
that our evaluation is merely adjusted towards a more accurate value after
having had some experience with the current policy π. Indeed, in Q-learning,
which is the algorithm that is used in this paper, both the evaluation and
the policy updates occur at every time step of experience. Q-learning employs
mapping from state-action pairs to expected returns in order to maintain both
the evaluation and a representation of the current policy. We briefly explain
how this mapping is used in Q-learning below. For more information and
an introduction to reinforcement one could turn to the book by Sutton and
Barto [6]. A more in-depth look of the algorithm is offered in the book by
Bertsekas and Tsitsiklis [11].

The algorithm’s first step involves estimating the return of actions under the
current policy π. More specifically, we define Qπ : S ×A → R as the expected
return of taking action a when being at state s at time t and following π
thereafter:

Qπ
t (s, a) = E

{ ∞∑

k=0

γkrt+k+1

∣∣∣∣st = s, at = a, π
}
.

Qπ
t itself is unknown and we maintain instead an estimate Qt for each state

action pair. Herein we employ the Q-learning update when action aj is selected
in state s:

Qt+1(s, aj) = Qt(s, aj) + η(r + γ max
i

Qt(s
′, ai)−Qt(s, aj)), η > 0. (2)

The second step involves deriving a policy π from the updated estimates Q.
This can be derived from the evaluations Q(s, a) either deterministically, by
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always selecting the action aj with the largest estimate of expected return,
or stochastically. There are two commonly used stochastic selection mecha-
nisms. The first, ε-greedy action selection, selects the highest evaluated action
with probability (1 − ε), with ε ∈ [0, 1], otherwise it selects a random action.
Softmax action selection selects action aj with probability eQ(s,aj)/

∑
i e

Q(s,ai).
Stochastic action selection is in general necessary so that all state-action pairs
are sampled frequently enough to have accurate estimates of the expected
return.

2.2 Implementation

We employ an architecture with n experts, implemented as multi-layer per-
ceptrons (MLPs), and a further MLP with n outputs and parameters θ which
acts as the controlling agent. All the MLPs have a single hidden layer with
hyperbolic tangent units and are trained using steepest gradient descent. The
expert MLPs use a softmax output and a cross-entropy criterion, which are
suitable for a maximum likelihood classification training. In this setting we
attempt to minimise

ED̂{y log h(x)}.
The state space of the controlling agent is S ≡ X , the same as the classifiers’
input space and its outputs approximate Q(s, aj). Thus, it is implemented
with an MLP which has the same number of inputs as the expert MLPs and
with a number of outputs equal to the number of possible actions.

At each time step t a new example x is presented to the ensemble and each
expert ei emits a classification decision hi : X → {0, 1}c. The ensemble makes
a classification decision of the form f(x) =

∑
i wihi(x), with

∑
i wi = 1. We

examine the case where the number of actions is equal to the number of
experts and in which taking action aj corresponds to setting wi = 1 for i = j
and wi = 0 otherwise. Thus, taking action aj results in expert ej making the
classification decision. We also chose to use the action aj to select the expert
to be trained on the particular example. As an aside, note that under a given
policy, the expected value of wi given x corresponds to E{wi|x} = p(ai|x),
the probability of action ai given x. In this manner one could write, for the
softmax action selection method,

E{wi|x} = p(ai|x) =
eQ(x,ai)

∑
j eQ(x,aj)

. (3)

The classification decision at time t results in a reward rt+1 ∈ {0, 1}, which is
1 if the example is classified correctly and 0 otherwise. As noted before, we use
the gradient form of the Q-learning update (2). The derivative of the cost func-
tion with respect to the network outputs is δ = rt+1+γ maxi Q(s′, ai)−Q(s, aj).
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We use steepest gradient descent with learning rate η > 0. Note also that when
γ = 0, the Q-learning update is indistinguishable from other state-action value
temporal difference updates such as Sarsa(c.f. [6] for a description). The algo-
rithm is implemented as follows:

(1) Select example xt randomly from X .
(2) Given s = xt, choose aj ∈ A according to a policy derived from Q (for

example using ε-greedy action selection) .
(3) Take action aj, observe rt+1 and the next state s′ = xt+1, chosen randomly

from X .
(4) δ = rt+1 + γ maxi Qt(s

′, ai)−Qt(s, aj).
(5) θt+1 = θt + ηδ∇θQt(s, aj) .
(6) s = s′.
(7) Loop to 2, unless termination condition is met.

2.2.1 Choice of γ

In the algorithm we have described, the state is completely determined by
the example xt. Since this example is selected randomly (steps 1,3), we have
p(st+1 = s′|st = s, at = a) = p(st+1 = s′), leading to

E{Rt|st = s, at = a} = E{rt+1|st = s, at = a}+∑

k=1

γkE{rt+k+1|st = s, at = a}

= E{rt+1|st = s, at = a}+∑

k=1

γk
∑

s′
E{rt+k+1|st+k = s′}p(st+k = s′|st = s, at = a)

= E{rt+1|st = s, at = a}+
∑

k=1

γk
∑

s′
E{rt+k+1|st+k = s′}p(st+k = s′)

= E{rt+1|st = s, at = a}+ E{r}∑

k=1

γk

where there is an implicit dependency on the policy π. Thus, there is no tem-
poral structure to be exploited by the full reinforcement learning framework,
at least in the visible part of the state. In other words, the classification task is
similar to an n-armed bandit problem 1 since the next state is not influenced
by the agent’s actions. For the above reasons, we have set the value of γ to
zero. Maximisation of the expected value of equation (1), when γ = 0 amounts
to maximising

E{Rt} = E{rt+1}.

1 In the n-armed bandit problem the objective is to choose an optimal action among
n. The reward at each time step only depends upon the action taken and a state
s, but the state s does not depend upon the action taken. Thus, the optimal policy
is the same no matter what the value of γ is, as the action taken at time t only
influences rt+1 and not any later rewards.
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Since the optimal policy π∗ is the policy that maximises this value, we have

π∗ = arg max
π

E{rt+1|π}.

Because of our definition of the reward, this is equivalent to finding the policy
that minimises the empirical error.

This loss of temporal structure might be considered unfortunate. Indeed, the
task is more accurately described as a partially observable process since the
parameters of the classifiers constitute a state which changes depending on
the agent’s actions. This would formally necessitate the need for γ > 0, and
potentially the need to approximate the hidden state with some kind of model.
Nevertheless, it seems reasonable to argue that the part of the system state
which can be expressed as a function of the classifiers’ parameters will change
rapidly at the initial stages of learning and then stabilise when each local
expert approaches its region of convergence. If this is true, then the problem
is similar to a semi-stationary bandit problem and a value of γ = 0 is still
appropriate, i.e. there is nothing to be gained by adding temporal structure
since old states can never be revisited, at least not with the particular set of
actions we have defined.

However there exist some sequence classification applications for which this is
not so. These include event detection tasks, such as the detection of the onset
of failures in dynamical systems. In particular, if we are defining a state model
for the state that defines a joint distribution for actions, observations and
state, then the state may no longer be degenerate. This is so in the case where
each expert is a hidden Markov model, and where we use the action to switch
between models. We, however, concentrate on the simple semi-stationary case,
for which interesting parallels with the mixture of experts algorithm can be
drawn.

2.2.2 Comparison with Mixture of Experts

The mixture of experts algorithm shares a number of similarities with the
one presented here. A comparison between a mixture of experts using a modi-
fied version of the EM algorithm and the Q-learning algorithm was presented
in [10]. We refrain from introducing new symbols whenever possible in this
section, in order to emphasise the relations between algorithms.

In the mixtures of experts framework each expert ei makes a classification
decision hi : X → Rc, with |hi|1 = 1, where | · |1 denotes the l1 norm. Thus
hi(x) can be described as probability distribution over the classes given the
data x. We use p(y|x, i) to note the probability that expert ei outputs class
y, given x. Similarly, the gating mechanism is used to create a probability
distribution over the experts given the data, p(i|x), commonly referred to as
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the prior of each expert. Thus in order to find the probability of each class
given the data we simply use p(y|x) =

∑
i p(y|x, i)p(i).

In order to adjust the parameters of the gating mechanism, both in the gra-
dient and the EM versions of the algorithm, we estimate the corresponding
posterior as p(i|x, y) = p(y|x,i)p(i|x)

p(y|x)
. This is the main contrast with the reinforce-

ment learning method we are employing, since the action selection mechanism
only considers binary decisions made by the classifiers. Instead of actually cal-
culating p(i|x, y) we are treating the reinforcement rt as a stochastic variable
that depends on the action ai and for which E{r|x, y, π, ai} = p(i|x, y).

3 Experimental Results
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Fig. 1. Test classification error using on 9 UCI benchmark datasets. Results are
shown for a single MLP (MLP), and mixtures of 32 experts that have been trained
with boosting (Boost), mixture of experts (MoE), and Q-learning (RL).

In order to evaluate the effectiveness of this approach we have performed a set
of experiments on 9 datasets that are available from the UCI Machine Learning
Repository [12]. For each dataset there was a separate training and test set.
We used cross-validation on the training set in order to select the number of
hidden units for the base classifier. Each classifier was then trained on the
whole training set for 100 iterations and a learning rate η = 0.01 was used.
This was selected by fixing the number of iterations a priori and then choosing
the learning rate so that the temporal difference error could converge by the
end of 100 iterations. The discount parameter γ for the controlling agent was
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set to 0, for the reasons explained in Section 2.2.1. The results reported here
are for ε-greedy actions selection, with ε = 0.1. Results with softmax action
selection do not appear significantly different. 2
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Fig. 2. Cumulative margin distribution for RL on the ionosphere dataset, with an
increasing number of experts. See Appendix A for an explanation of margins.

A comparison was made between the RL-controlled mixture, a single MLP,
the Mixture of Experts and AdaBoost using MLPs. As Figure 1 summarises,
the ensembles generally manage to improve test performance compared to
that of the base classifier. The RL mixture outperforms AdaBoost and MOE
4 and 7 times out of 9 respectively. For each dataset we have also calculated
the cumulative margin distribution resulting from equation (A.1). For the RL
mixture there was a constant improvement in the distribution in most datasets
when the number of experts was increased (c.f. Figure 2), though this did not
always result in an improvement in generalisation performance.

2 For this particular problem, and with γ = 0, the expected return of the best
action can be at most 1 while that of the worst action can be at 0. The probability
of the greedy action in ε-greedy methods, given n actions, is n + 1/n − ε. For the
softmax method, we would have a similarly flat distribution if all other experts have
a similar evaluation, which is to be expected for this particular problem.
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4 Conclusions and Future Research

The aim of this work was to demonstrate the feasibility of using adaptive
policies to train and combine a set of base classifiers. While this purpose has
arguably been reached, there still remain some questions to be answered, such
as under what conditions the margin of classification is increased when using
this approach.

An interesting aspect of this problem is the state space of the agents. As has
been noted in Section 2.2, the initial parameters of the experts constitute a
part of the (in our case, unobservable) state space which is only briefly visited
by the agent. As learning progresses, the parameters of each expert converge
to a steady state. For the case where information about the expert parameters
is not included in the state, the problem becomes a slowly changing n-armed
bandit task, which in the end becomes stationary. If we include such infor-
mation in the state, then we are faced with a slightly different reinforcement
learning problem than the one commonly encountered. This occurs because
there exist a subspace of the state vector (related to the data) which is sampled
frequently and another subspace (related to the state of the experts) where
only a single trajectory is sampled. The question is firstly what techniques,
short of resetting the experts to an initial state, can be applied to sample more
trajectories and secondly how can knowledge from more trajectories be used
to aid in the search for a better stationary point.

Enlarging the space of actions poses another interesting problem. Suppose
for example that the best decision that we can make for a particular input
is to combine the outputs of two experts, rather than use a single expert’s
output. In order to generalise for this case, we define a set of possible weight
combinations; each possible combination constitutes a different action. In (3)
we defined the expectation of expert weights for a particular input under a
softmax policy. In general, however, it is possible to maintain a probability
distribution for the weights, rather than a simple expectation. After assuming
a joint distribution for the weights we can estimate the conditional density
of the return given the weights. Action selection could be done by sampling
from the joint distribution of weights, or else importance sampling techniques
could be used. This is part of our current work in the field of action selection.

An alternative to action value methods for such enlarged spaces is provided
by direct gradient descent in policy space [13]. These have also been theoret-
ically proven to converge in the case of multiple agents and could be much
more suitable for problems in partially observable environments and with large
state-action spaces.
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A Classification Margin

The margin distribution for the two class case can be defined as:

margin
f

(x, y) = yf(x),

where x ∈ X , y ∈ {−1, 1} and f : X → [−1, 1]. In general, the hypothesis h(x)
can be derived from f(x) by setting h(x) = sign(f(x)). In this case, |f(x)| can
be interpreted as the confidence in the label prediction. For the multi-class
case, let fy(x) be the model’s estimate of the probability of class y given input
x. In this case the margin is defined as:

margin
f

(x, y) = fy(x)−max
y′ 6=y

fy′(x). (A.1)

Thus the margin can serve as a measure of how far away from the threshold
classification decisions are made. A particular measure is the minimum margin
over the set D̂, i.e.:

margin
min

(D̂) = min
(x,y)∈D̂

marginf (x, y).

It is argued [5] that AdaBoost is indirectly maximising this margin, leading to
more robust performance. Although there exist counterexamples for which the
minimum margin is not an adequate predictor of generalisation [14], attempts
to apply algorithms that directly maximise the margin have obtained some
success [15,16].
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