Gradient-Based Estimates of Return
Distributions

Christos Dimitrakakis and Samy Bengio

IDIAP Research Institute, 4 Rue de Simplon, Martigny CH 1920, Switzerland
dimitrak@idiap.ch bengio@idiap.ch

Abstract. We present a general method for maintaining estimates of
the distribution of parameters in arbitrary models. This is then applied
to the estimation of probability distributions over actions in value-based
reinforcement learning. While this approach is similar to other techniques
that maintain a confidence measure for action-values, it nevertheless of-
fers an insight into current techniques and hints at potential avenues of
further research.

1 Introduction

A large number of problems in both supervised and reinforcement learning are
solved with parametric methods. In this framework we attempt to approximate
a function f*(-) via a parameterised function f(6,-), given samples of f*, with
parameters # € R™. We focus on incremental optimisation methods for which an
optimisation operator M(C, 6), where C is an appropriately defined cost, can be
defined as a stochastic process that is continuous with respect to 8. We define
the sequence {0} as 0,11 = M(C, 0;).

In reinforcement learning, samples of f* are generated actively. Asymptotic
convergence results exist for such methods under apropriate sampling ssump-
tions. If we maintain a distribution of ; (rather than a simple vector of param-
eters), we may be able to use it to generate samples in an optimal sense. In this
paper we explore simple gradient-based methods for measuring the accuracy of
our estimates. Two cases are considered: variance estimates and gradient esti-
mates. A naive variance estimate, arising from simple assumptions, is given and
its relation to the gradient is detailed. The relation of the gradient to convergence
is outlined and finally a simple gradient estimate is given.

1.1 Variance Estimates

In the general setting, for each 6; we sample a single value M; from M(C,8;),
where M is considered as a random process. In our setting we will attempt to
also maintain a confidence measure for our parameters. We will attempt to do
this by measuring the variance of the process at the current point 6.



Firstly, we assume that M, it is bounded! and we attempt to estimate
E[M,] ~ E[M,]. The simplest possible estimate can be achieved by assuming
that M is a zero-mean process, leading to E[M;] = 6;.

We may further assume that M is Lipschitz continuous with respect to 6,
(a function f satisfies a Lipschitz continuity assumption in some set S if there
exists L € R such that ||V f(a) — Vf(b)|| < L|la — b for all a,b € S). Using an

expone, we obtain a variance estimate of the form
Visr = (1= QOVi + C(B[M;] — 6p41)(B[M;] — 6141, (1)

with ¢ € [0,1]. Now we may use V; for our estimate of the variance of M(C, 6;).

Definition 11 (Naive variance estimate) By assuming that M is a zero-
mean process, i.e. that E[M;] = 6;, we have:

Vigr = (1= QOVi + (0 — 0141) (0 — 0r41)". (2)

Definition 12 (Counting variance estimate) By assuming E[M;] = 0;41,
i.e. that M is a deterministic process, we have:

Vigr = (1= QVi. 3)

The latter method is equivalent to a class of counting schemes whereby we in-
crease our certainty about the mean of some random variable with each obser-
vation. With an appropriate choice for ¢ such schemes can be adequate for some
problems.

We may further add a small positive constant to the above updates such
that the variance does not eventually reach zero, if it is desirable. In the case
where we maintain a set of parameters which are updated separately (such as in
tabular reinforcement learning methods, which are further discussed in Section
2.1), then it is also appropriate to maintain separate variance estimates. In the
following section we discuss how such estimates are related to the convergence
of the stochastic operator M for the case when it expresses a stochastic gradient
descent step.

Relation of Variance Estimates to Convergence In the general case, es-
timating |6 — 6*|, the distance to a solution, can be as difficult as determining
0* itself. While in the general case it is not possible to determine convergence,
in certain special cases it presents a manageable task. To give a simple example,
when the cost surface is quadratic (i.e C = a(6* —0)?) we have |0* — 0| = a|V,C]|
and the magnitude of the steps we are taking is directly related to the conver-
gence. It is easy to show that the mean update we have defined is an approximate
measure of the gradient under some conditions.

! For stochastic gradient methods, under the condition that the partial derivative of
the cost with respect to the parameters is bounded, all M; are bounded.



From (1), we have
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where e is a noise process such as the stochastic gradient error term. For
the case when n, = 1/k we have, with better approximation as ¢ — oo, and if
0 = C(0) for all k (i.e. when v — 0)

trace(V) o |[VC(0)||> + E*[e],

where e is the noise term from a stochastic gradient method.

1.2 Gradient Estimates

The relation of those estimates to the gradient is of interest because of the
relationship of the gradient to the distance from the minimum under certain
conditions. In particular, when V2C(f) is positive definite, the following holds :

Lemma 11 Let 0* be a local minimum of C and 0 € S, with S = {0 : [|0—0%| <
0}, 6 > 0. If there exists m > 0 such that

m|z||? < Z/'V2C(0)z, VY z¢eR", (4)
then every 0 € S satisfying ||VC(0)|| < € also satisfies
16— 6% < c/m, C(6) - C(87) < fm.

The proof is quite straightforward and is omitted due to lack of space. We
may now define a simple estimate for the gradient itself.

Definition 13 (Gradient estimate) By using similar assumptions as in the
variance estimates, we may obtain an estimate of the gradient at time t:

U1 = (1= QU + ((E[My] — 0141) (5)

It is perhaps of interest to note that both the naive variance estimate and the
velocity variance estimates can be used to determine convergence of parameters.
It is interesting to note that for gradient methods with errors, the variance
estimate includes the noise term. For reinforcement learning problems with noisy
rewards this is significant, because it is related to the variance of the return. If
we attempt to use such convergence criteria to select actions, either estimate
may prove advantageous depending on the task.



2 Action Selection

Most, if not all, reinforcement learning (RL) methods can be viewed as a com-
bination of estimation and sampling. Given a state space S and an action space
A, an agent selects actions a € A according to a policy 7 : § — A. The aim
of reinforcement learning is described as finding a policy 7* that maximises a
utility function, for which the only available information is reward samples r;.
This is usually formulated as finding a policy 7* = {p(a|s)|(s,a) € S x A} such
that

7" = argmax E[R|w], (6)

s

with Ry = > 30 o ¥*7e4k+1, where v € [0,1) is a discount parameter such that
rewards far into the future are less important than closer ones.

An important subset of reinforcement learning methods is formed by value-
based methods (which are the focus of [6]). These generate an evaluation for
every possible action and state pair and the policy is defined in terms of this.
State-action evaluations are usually noted in short-hand as Q(s,a) = E[Ry|s; =
s,a; = a,7], i.e. the expected cost/return if we take action a at state s while
following policy 7. Value function updates typically employ temporal-difference
methods, whereby parameters are adjusted in the direction of the temporal-
difference error, which has the form 6 = r; + 7E[Rt+1\st+1,at,w] - Q(s,a). In
some cases parameters are adjusted according to an importance weight, which
usually takes the form of an eligibility trace e;, defined for each parameter 6;.

2.1 Application of Variance Estimates to Action Values

These variance estimates can be applied with relative ease to action value rein-
forcement learning using either a tabular or an approximation architecture. The
naive variance estimate (2) is particularly interesting because, for the tabular
case, its use results in algorithm that is similar to [5]. For this reason we shall
concentrate on this particular estimate, but we will also be contrasting it to a
gradient-related estimate.

In the following short sections we consider the application of such an estimate
to reinforcement learning; firstly in the tabular and secondly in the function
approximation case. Lastly, we describe action selection mechanisms, using the
developed variance estimates, that can be applied to either case.

Tabular Action Value Methods The tabular reinforcement learning case can
be obtained by defining a 6 for each state-action pair @, so that we maintain
separate variance estimates for each one. Then we consider that at each time
step the operator sample M; can be defined as My = Q;11(s,a) = Qi(s,a) +
o(re + E[Ri41] — Qi(s, a)). By substituting this into (2), we obtain

Vigr = (1= QV, + (66, (7)



where § = Q41 — Q¢ is the (scaled) temporal-difference error vector. For the
standard tabular case, all elements of § will be 0 apart from the element cor-
responding to the action a, which is the one to be updated and the covariance
matrix 60" will have a single non-zero diagonal element.

By re-arranging the terms of (7) we arrive at

Vier — Vi = (66— V) (8)
which can be written in expanded form as
Viri(s,a) = Vi(s,a) = ((6(s,a) — Vi(s, a)). (9)

In the following we briefly describe how eligibility traces can be integrated
in our framework.

Eligibility Traces and Variance Estimates Let us assume that the return
R; is given by a probability distribution of the form p(Ry|s:, at, 7). Clearly, we
may estimate E[R:|ss, ar, 7| by averaging the returns while following policy .
However, we can assume that the distribution of R; depends upon the distribu-
tion of R;y1. We assume an exponential distribution for this prior dependency
and thus we have p(Ryy1|St41, ary1,7) = Ap(Req1]8e, ae, ™) + (1 — A)W, where
W is the distribution of some unknown process.

The relation to eligibility traces is clear. We assume that an exponential prior
in time governs the probability distribution of R;. Thus, we can perform impor-
tance sampling on our parameters through the use of this prior: in other words
each new sample should influence each parameter according to its importance
weight.

Let us remind that in RL methods employing eligibility traces, the update &
is applied to all the evaluations of all state-action pairs (s,a) proportionally to
the eligibility trace e(s,a). By viewing eligibility traces as importance weights
we can integrate them easily with our variance estimates. This results in the
following update for each parameter’s estimate.

V;t+1<57a') = (1 - Ce(sa a))Vt(Sa a) + Ce(sv a)55/7 (1())

or in compact form
Vitr = (I = Ce)Vi + Cedd’, (11)

where [ is the identity matrix.

Function Approximation Methods We consider approaches where the value
function is approximated with a parametrised function Qg : S — RIAl
Gradient methods are a commonly used method for adapting the parameters
0. Given %g—g = VeQVC, we consider an update of the form M; = 0; +d; for
our parameters, where d; is the gradient descent update. Then we simply apply

(7) for this case and we obtain a covariance matrix for the parameters.



3 Conclusion

In this paper, we proposed a simple framework for action selection. that employs
simple techniques for the estimation parameter distributions. The are neverthe-
less quite adequate for the task and which bypass the need for state-action visit
counts. In preliminary experiments it was found that the use of the smoothed
gradient estimate is particularly efficient in some tasks. On the other hand, the
naive variance estimates that we outline are a generalisation of simple count-
ing schemes and the scheme used in the prioritised sweeping algorithm [4] and
that used in the RI method [5]. We feel that the connection between those es-
timates, the gradient, and its relation to convergence offer some justification to
the previously ad hoc use of such techniques.

In preliminary experiments[3], we have used a naive sampling method for ac-
tion selection, wherein the actions are selected proportionally to the probability
of their being the best action. Future work would include investigating the use
of explicit estimates for the value of exploration, which is one of the approaches
outlined in [2]. Thare are also some interesting theoretical questions, such as
the relationship of our model, and its possible application to policy-gradient
methods (i.e. [1]).
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