
Phoneme and Sentence-Level Ensembles for

Speech Recognition∗

Christos Dimitrakakis

FIAS, Frankfurt, Germany

christos.dimitrakakis@gmail.com

Samy Bengio

Google, Mountain View, CA, USA

bengio@google.com

March 17, 2011

Abstract

We address the question of whether and how boosting and bagging

can be used for speech recognition. In order to do this, we compare two

different boosting schemes, one at the phoneme level, and one at the

utterance level, with a phoneme level bagging scheme. We control for

many parameters and other choices, such as the state inference scheme

used. In an unbiased experiment, we clearly show that the gain of boosting

methods compared to a single hidden Markov model is in all cases only

marginal, while bagging significantly outperforms all other methods. We

thus conclude that bagging methods, which have so far been overlooked

in favour of boosting, should be examined more closely as a potentially

useful ensemble learning technique for speech recognition.

1 Introduction

This paper examines the application of ensemble methods to hidden Markov
models (HMMs) for speech recognition. We consider two methods: bagging and
boosting. Both methods feature a fixed mixing distribution between the ensem-
ble components, which simplifies the inference, though it does not completely
trivialise it.

This paper follows up on and consolidates previous results [10, 11, 12] that
focused on boosting. The main contributions are the following. Firstly, we use
an unbiased model testing methodology to perform the experimental compari-
son between the various different approaches. A larger number of experiments,
with additional experiments on tri-phones, shed some further light on previous
results [11, 12]. Secondly, the results indicate that, in an unbiased comparison,

∗This work was supported in part by the IST program of the European Community, under
the PASCAL Network of Excellence, IST-2002-506778, funded in part by the Swiss Federal
Office for Education and Science (OFES) and the Swiss NSF through the NCCR on IM2, and
the EU-FP7 project IM-CLeVeR

1

at least for the dataset and features considered, bagging approaches enjoy a
significant advantage to boosting approaches. More specifically, bagging consis-
tently exhibited a significantly better performance than either any of the boost-
ing approaches examined. Furthermore, we were able to obtain state-of-the art
results on this dataset using a simple bagging estimator on tri-phone models.
This indicates that perhaps a shift towards bagging and perhaps more gener-
ally, empirical Bayes methods, may be advantageous for any further advances
in speech recognition.

Section 2 introduces notation and provides some background to speech recog-
nition using hidden Markov models. In addition, it discusses multi-stream meth-
ods for combining multiple hidden Markov models to perform speech recogni-
tion. Finally, it introduces the ensemble methods used in the paper, bagging
and boosting, in their basic form.

Section 3 discusses related work and their relation to our contributions, while
section 4 gives details about the data and the experimental protocols followed.

In the speech model considered, words are hidden Markov models composed
of concatenations of phonetic hidden Markovmodels. In this setting it is possible
to employ mixture models at any temporal level. Section 5 considers mixtures at
the phoneme model level, where data with a phonetic segmentation is available.
We can then restrict ourselves to a sequence classification problem in order to
train a mixture model. Application of methods such as bagging and boosting
to the phoneme classification task is then possible. However, using the resulting
models for continuous speech recognition poses some difficulties in terms of
complexity. Section 5.1 outlines how multi-stream decoding can be used to
perform approximate inference in the resulting mixture model.

Section 6 discusses an algorithm, introduced in [12], for word error rate
minimisation using boosting techniques. While it appears trivial to do so by
minimising some form of loss based on the word error rate, in practice successful
application additionally requires use of a probabilistic model for inferring error
probabilities in parts of misclassified sequences. The concepts of expected label
and expected loss are introduced, of which the latter is used in place of the
conventional loss. This integration of probabilistic models with boosting allows
its use in problems where labels are not available.

Sections 7 and 8 conclude the paper with an extensive comparison between
the proposed models. It is clearly shown that the neither of the boosting ap-
proaches employed manage to outperform a simple bagging model that is trained
on pre-segmented phonetic data. Furthermore, in a follow-up experiment, we
find that the performance of bagging when using tri-phone models achieves state
of the art results for the dataset used. These are significant findings, since most
of the recent ensemble-based hidden Markov model research on speech recogni-
tion has focused invariably on boosting.

2 Background and notation

Sequence learning and sequential decision making deal with the problem of
modelling the relationship between sequential variables from a set of data, and
then using the models to make decisions. In this paper, we examine two types
of sequence learning tasks: sequence classification and sequence recognition.

The sequence classification task entails assigning a sequence to one or more of

2

a set of categories. More formally, we assume a finite label set Y and a possibly
uncountably infinite observation set X . We denote the set of sequences of length
n as Xn , ×nX , and the null sequence set by X 0 , ∅. Finally, we denote the
set of all sequences by X ∗ ,

⋃∞
n=0 X

n. We observe sequences x = x1, x2, . . .,
with xi ∈ X and x ∈ X ∗ and we use |x| to denote the length of a sequence x,
while xt:T = xt, xt+1, . . . , xT denotes subsequences. In sequence classification,
each x ∈ X ∗ is associated with a label y ∈ Y. A sequence classifier f ∈ F , is
a mapping f : X ∗ → Y, such that f(x) corresponds to the predicted label, or
classification decision, for the observed sequence x.

We focus on probabilistic classifiers, where the predicted label is derived from
the conditional probability of the class given the observations, or posterior class
probability P(y | x), with x ∈ X ∗, y ∈ Y, where we make no distinction between
random variables and their realisations. More specifically, we consider a set of
models M and an associated set of observation densities and class probabilities
{ p(x | y, µ),P(y | µ) : µ ∈ M} indexed by µ. The posterior class probability
according to model µ can be obtained by using Bayes’ theorem:

P(y | x, µ) =
p(x | y, µ)P(y | µ)

p(x | µ)
. (1)

Any model µ can be used to define a classification rule.

Definition 2.1 (Bayes classifier). A classifier fµ : X ∗ → Y that employs (1)
and makes classification decisions according to:

fµ(x) = argmax
y∈Y

P(y | x, µ), (2)

is referred to as a Bayes classifier, or a Bayes decision rule.

Formally, this task is exactly the same as non-sequential classification. The
only practical difference is that the observations are sequences. However, care
should be taken as this makes the implicit assumption that the costs of all
incorrect decisions are equal.

In sequence recognition, we attempt to determine a sequence of events from a
sequence of observations. More formally, we are given a sequence of observations
x and are required to determine a sequence of labels y ∈ Y∗, i.e. the sequence
y = y1, y2, . . . , yk, |y| ≤ |x|, with maximum posterior probability P(y | x). In
practice, models are used for which it is not necessary to exhaustively evaluate
the set of possible label sequences. One such simple, yet natural, class is that
of hidden Markov models.

2.1 Speech recognition with hidden Markov models

Definition 2.2 (Hidden Markov model). A hidden Markov model (HMM) is a
discrete-time stochastic process, with state variable st in some discrete space S,
and an observation variable xt ∈ X , such that:

P(st|st−1, st−2, . . .) = P(st|st−1) (3)

P(xt|st, xt−1, st−1, xt−2, . . .) = P(xt|st). (4)

The model is characterised by the observation distribution P(xt|st), the transi-
tion distribution P(st|st−1) and the initial state distribution P(s1) ≡ P(s1|s0).
These dependencies are shown graphically in Fig. 1.

3

st st+1

xt xt+1

Figure 1: Graphical representation of a hidden Markov model, with arrows
indicating dependencies between variables. The observations xt and the next
state st+1 only depend on the current state st.

s1 s2 s3

x1 x2 x3

Figure 2: Graphical representation of a phoneme model with 3 emitting states,
as well as initial and terminal non-emitting states. The arrows depict depen-
dencies between specific states. All the phoneme models used in this paper
employed the above topology.

Training consists of two steps. First, selecting a class of hidden Markov
models M, with each model µ ∈ M corresponding to a pair of transition and
observation densities P(st|st−1, µ), P(xt|st, µ). The second step is to select a
model from M. By additionally defining a prior density p(µ) over M, we can
try to find the maximum a posteriori (MAP) model µ∗ ∈ M, given a set of
observation sequences D:

µ∗ = argmax
µ∈M

p(µ|D).

The class M is restricted to models with a particular number of states and
allowed transitions between states. In this paper, the optimisation is performed
through expectation maximisation.

The most common way to apply such models to speech recognition is to as-
sociate each state s with phonological units a ∈ A, such as phonemes, syllables,
or words, through a distribution P(a|s), which takes values in {0, 1} in usual
practice: thus, each state is mapped to only one phoneme. This is done by
modelling each phoneme as a small HMM (Fig. 2) and combining them into a
larger HMM, such as the one shown in Figure 3, with a set of parallel chains
such that each chain maps to one word; for example, given that we are in the
state s = 4 at some time t, then we are also definitely (i.e. with probability
1) in Word A and Phoneme B at time t. In general, if we can determine the
probabilities for sequences of states, we can also determine the most probable
sequence of words or phonemes. That is, given a sequence of observations x1:T

we calculate the state distribution P(s1:T |x1:T) and subsequently a distribution
over phonologies, to wit the probabilities of possible word, syllable or phoneme
sequences. Thus, the problem of recognising word sequences is reduced to the
problem of state estimation.

4

7 8 9 11 1210

1 2 3 4 5 6

Phoneme B Phoneme C

Phoneme BPhoneme A

B

Word A

Word B

Figure 3: A hidden Markov model for speech recognition. The figure depicts
how models of three phonemes, A, B, C are used to construct a single hidden
Markov model for distinguishing between two different words. The states are
indexed uniquely. Black circles indicate non-emitting states.

2.2 Multi-stream decoding

When we wish to combine evidence from n different models, state estimation is
significantly harder, as the number of effective states is |S|n. However, multi-
stream decoding techniques can be used as an approximation to the full mixture
model [29]. Such techniques derive their name from the fact that they were
originally used to combine models which had been trained on different streams
of data or features [27]. In this paper, we instead wish to combine evidence
from models trained on different samples of the same data.

In multi-stream decoding each sub-unit model corresponding to a phono-
logical unit a is comprised of n sub-models a = { ai : i ∈ [1, n] } associated
with the sub-unit level at which the recombination of the input streams should
be performed. For any given a, and a distribution over models π(ai | a), the
observation density conditioned on the unit a can be written as

π(x | a) =
n∑

i=1

p(x | ai)π(ai | a), (5)

where π(ai | a) can be seen as a weight for expert i. This may vary across a,
but herein we consider the case where the weight is fixed, i.e. π(ai | a) = wi for
all a. We consider state-locked multi-stream decoding, where all sub-models are
forced to be at the same state. This can be viewed as creating another Markov
model with emission distribution:

π(xt | st, a) =
n∑

i=1

p(xt | st, ai)π(ai | a). (6)

An alternative is the exponentially weighted product of emission distribu-
tions.

π(xt | st, a) =
n∏

i=1

p(xt | st, ai)
π(ai|a). (7)

However this approximation does not arise from (5), but from assuming a fac-
torisation of the observations p(xt | st) =

∏n

i=1 p(x
i
t | st), which is useful when

there is a different model for different parts of the observation vector.

5

Multi-stream techniques are hardly limited to the above. For example Misra
et al. [28] describes a system where π is related to the entropy of each sub-
model, while Ketabdar et al. [20] describes a multi-stream method utilising
state posteriors. We, however, shall concentrate on the two techniques outlined
above, as well as a single-stream technique to be described in Section 5.1.

2.3 Ensemble methods

We investigate the use of ensemble methods in the class of static mixture models
for speech recognition. Such methods construct an aggregate model from a set
of base hypotheses M , {µi : i = 1, . . . , N }. Each hypothesis µi indexes a set
of conditional distributions {P(·|·, µi) : i = 1, . . . , N }. To complete the model,
we employ a set of weights W , {wi : i = 1, . . . , N } corresponding to the
probability of each base hypothesis, so that wi , P(µi). Thus, we can form a
mixture model, assuming P(µi | x) = P(µi) for all x ∈ X ∗:

P(· | ·,M,W) =

N∑
i=1

wi P(· | ·, µi). (8)

Two questions that arise when training such models are how to select M and
W . In this paper, we consider two different approaches, bagging and boosting.

2.3.1 Bagging

Bagging [5] can be seen as a method for sampling the model space M. We first
require a learning algorithm Λ : (X ∗ × Y)∗ → M that maps1 from a dataset
D ∈ (X ∗×Y)∗ of data pairs (x, y) to models µ ∈ M. We then sample N datasets
Di from a distribution D, for i = 1, . . . , N . For each Di, the learning algorithm
Λ generates a model µi , Λ(Di). The models M , {µi : i = 1, . . . , N } can be
combined into a mixture with wi =

1
N

for all i:

P(y|x,M,W) =
1

N

N∑
i=1

P(y|x, µi). (9)

In Bagging, Di is generated by sampling with replacement from the original
dataset D, with |Di| = |D|. Thus, Di is a bootstrap replicate of D.

2.3.2 Boosting

Boosting algorithms [16, 25, 32] are another family of ensemble methods. The
most commonly used boosting algorithm for classification is Ada-Boost [16].
Though many variants of Ada-Boost for multi-class classification problems exist,
in this work we will use Ada-Boost.M1.

An Ada-Boost ensemble is a mixture model composed of N models µi and
weights wi, as in the previous section. The models and weights are created in
an iterative manner. At iteration j, the model µj , Λ(Dj) is created from
a weighted bootstrap sample Dj of the training dataset D = { di : i ∈ [1, n] },
with di = (xi, yi). The probability of adding example di to the bootstrap

1While we restrict our selves to the deterministic case for simplicity, bagging is applicable
to stochastic learning algorithms as well.

6

replicate Dj is denoted as pj(di), with
∑

i pj(di) = 1. At the end of iteration j
of Ada-Boost.M1, βj is calculated according to:

βj = ln
1− εj
εj

, (10)

where εj ,
∑

i pj(di)ℓ(di) is the empirical expected loss of the j-th, with

ℓ(di) , I {hi 6= yi} being the sample loss of example di, where I {·} is an indi-
cator function. At the end of each iteration, sampling probabilities are updated
according to:

pj+1(di) =
pj(di) exp(βjℓ(di))

Zj

, (11)

where Zj ,
∑

i pj(di) exp(βjℓ(di)), is a normalisation factor. Thus, incorrectly
classified examples are more likely to be included in the next bootstrap data
set. The final model is a mixture with N components µi and weights wi ,

βi/
∑N

j=1 βj .

3 Contributions and related work

The original Ada-Boost algorithm had been defined for classification and re-
gression tasks, with the regression case receiving more attention recently (see
[25] for an overview). In addition, research in the application of boosting to
sequence learning and speech recognition has intensified [6, 26, 37, 40]. The
application of other ensemble methods, however, has been limited to random
decision trees [7, 35]. In our view, bagging [5] is a method that has been some-
what unfairly neglected and we present results that show that it can outperform
boosting in an unbiased experiment.

One of the simplest ways to apply ensemble methods to speech recogni-
tion is to employ them at the state level. For example Schwenk [34] proposed a
HMM/artificial neural network (ANN) system, with the ANNs used to compute
the posterior phoneme probabilities at each state. Boosting itself was performed
at the ANN level, using Ada-Boost with confidence-rated predictions, using the
frame error rate as the sample loss function. The resulting decoder system dif-
fered from a normal HMM/ANN hybrid in that each ANN was replaced by a
mixture of ANNs that had been provided via boosting. Thus such a technique
avoids the difficulties of performing inference on mixtures, since the mixtures
only model instantaneous distributions. Zweig and Padmanabhan [42] appear
to be using a similar technique, based on Gaussian mixtures. The authors addi-
tionally describe a few boosting variants for large-scale systems with thousands
of phonetic units. Both papers report mild improvements in recognition.

One of the first approaches to utterance-level boosting is due to Cook and
Robinson [9], who employed a boosting scheme where the sentences with the
highest error rate were classified as ’incorrect’ and the rest ’correct’, irrespec-
tive of the absolute word error rate of each sentences. The weights of all frames
constituting a sentence were adjusted equally and boosting was applied at the
frame level. This however does not manage to produce as good results as the
other schemes described by the authors. In our view, which is partially sup-
ported by the experimental results in Section 6, this could have been partially
due to the lack of a temporal credit assignment mechanism such as the one we

7

present. An early example of a non-boosting approach for the reduction of word
error rate is [2], which employed a “corrective training scheme”.

In related work on utterance-level boosting, Zhang and Rudnicky [39] com-
pared use of the posterior probability of each possible utterance for adjusting the
weights of each utterance with a “non-boosting” method where the same weights
are adjusted according to some function of the word error rate. In either case,
utterance posterior probabilities are used for recombining the experts. Since
the number of possible utterances is very large, not all possible utterances are
used, but an N -best list. For recombination, the authors consider two meth-
ods: Firstly, choosing the utterance with maximal sum of weighted posterior
(where the weights have been determined by boosting). Secondly, they con-
sider combining via ROVER, a dynamic programming method for combining
multiple speech recognisers [see 15]. Since the authors’ use of ROVER entails
using just one hypothesis from each expert to perform the combination, in [40]
they consider a scheme where the N -best hypotheses are reordered according
to their estimated word error rate. In further work [41] the authors consider a
boosting scheme for assigning weights to frames, rather than just to complete
sentences. More specifically, they use the currently estimated model to obtain
the probability that the correct word has been decoded at any particular time,
i.e. the posterior probability that the word at time t is at given the model and
the sequence of observations. In our case we use a slightly different formalism
in that we calculate the expectation of the loss according to an independent
model.

Finally, Meyer and Schramm [26] propose an interesting boosting scheme
with a weighted sum model recombination. More precisely, the authors employ
Ada-Boost.M2 at the utterance level, utilising the posterior probability of each
utterance for the loss function. Since the algorithm requires calculating the
posterior of every possible class (in this case an utterance) given the data, exact
calculation is prohibitive. The required calculation however can be approxi-
mated by calculating the posterior only for the subset of the top N utterances
and assuming the rest are zero. Their model recombination scheme relies upon
treating each expert as a different pronunciation model. This results in essen-
tially a mixture model in the form of equation 5, where the weight of each expert
is derived from the boosting algorithm. They further robustify their approach
through a language model. Their results indicate a slight improvement (in the
order of 0.5%) in a large vocabulary continuous speech recognition experiment.

More recently, an entirely different and interesting class of complementary
models were proposed in [6, 7, 35]. The core idea is the use of randomised deci-
sion trees to create multiple experts, which allows for more detailed modelling
of the strengths and weaknesses of each expert, while [6] presents an extensive
array of methods for recombination during speech recognition. Other recent
work has focused on slightly different applications. For example, a boosting
approach for language identification was used in [23, 37], which utilised an en-
semble of Gaussian mixture models for both the target class and the anti-model.
In general, however, bagging methods, though mentioned in the literature, do
not appear to be used and recent surveys, such as [6, 17, 38] do not include
discussions of bagging.

8

3.1 Our contribution

This paper presents methods and results for the use of both boosting and bag-
ging for phoneme classification and speech recognition. Apart from synthesising
and extending our previous results [11, 12], the main purpose of this paper
is to present an unbiased experimental comparison between a large number of
methods, controlling for the appropriate choice of hyper-parameters and using
a principled statistical methodology for the evaluation of the significance of the
results. If this is not done, then it is possible to draw incorrect conclusions.

Section 5 describes our approach for phoneme-level training of ensemble
methods (boosting and bagging). In the phoneme classification case, the for-
mulation of the task is essentially the same as that of static classification; the
only difference being that the observations are sequences rather than single val-
ues. As far as we know, our past work [11] is the only one employing ensemble
methods at the phoneme level. In Section 5, we extend our previous results by
comparing boosting and bagging in terms of both classification and recognition
performance and show, interestingly, that bagging achieves the same reduction
in recognition error rates as boosting, even though it cannot match boosting’s
classification error rate reduction. In addition, the section compares a number
of different multi-stream decoding techniques.

Another interesting way to apply boosting is to use it at the sentence level,
for the purposes of explicitly minimising the word error rate. Section 6 presents
a boosting-based approach to minimise the word error rate originally introduced
in [12].

Finally, Section 7 presents an extensive, unbiased experimental compari-
son, with separate model selection and model testing phase, between the pro-
posed methods and a number of baseline systems. This shows that the simple
phoneme-level bagging scheme outperforms all of the other boosting schemes ex-
plored in this paper them significantly. Finally, further results using tri-phone
models, indicate state-of-the-art performance is achievable for this dataset using
bagging, but not boosting.

4 Data and methods

The phoneme data was based on a pre-segmented version of the OGI Numbers
95 (N95) data set [8]. This data set was converted from the original raw au-
dio data into a set of features based on Mel-Frequency Cepstrum Coefficients
(MFCC) [30] (with 39 components, consisting of three groups of 13 coefficients,
namely the static coefficients and their first and second derivatives) that were
extracted from each frame. The data contains 27 distinct phonemes (or 80
tri-phones in the tri-phone version of the dataset) that compose 30 dictionary
words. There are of 3233 training utterances and 1206 test utterances, contain-
ing 12510 and 4670 words respectively. The segmentation of the utterances into
their constituent phonemes resulted in 35562 training segments and 12613 test
segments, totalling 486537 training frames and 180349 test frames respectively.
The feature extraction and phonetic labelling is described in more detail in [19].

9

4.1 Performance measures

The comparative performance measure used depends on the task. For the
phoneme classification task, the classification error is used, which is the per-
centage of misclassified examples in the training or testing data set. For the
speech recognition task, the word error rate (12) is used:

WER =
Nins +Nsub +Ndel

Nwords
, (12)

where Nins is the number of word insertions, Nsub the number of word substitu-
tions and Ndel the number of word deletions. These numbers are determined by
finding the minimum number of insertions, substitutions, or deletions necessary
to transform the target utterance into the emitted utterance for each example
and then summing them for all the examples in the set.

4.2 Bootstrap estimate for speech recognition

In order to establish the significance of the reported results, we employ a boot-
strap method [c.f. 14]. More specifically, we use the approach suggested by
Bisani and Ney [3] for speech recognition. It amounts to using the results of
speech recognition on a test set of sentences as an empirical distribution of
errors. Using this method, we obtain a bootstrap estimate of the probability
distribution of the difference in word error rate ∆W between two systems, from
B bootstrap samples ∆Wk of the word error rate difference:

P(∆W > u) =

∫ ∞

u

p(∆W) d∆W ≈
1

B

B∑
k=1

I {∆Wk > u} , (13)

where I {·} is an indicator function. This approximates the probability that
system A is better than system B by more than u. See [14] for more on the
properties of the bootstrap and [36] for the convergence of empirical processes
and their relation to the bootstrap.

4.3 Parameter selection

The models employed have a number of hyper-parameters. In order to perform
unbiased comparisons, we split the training data into a smaller training set of
2000 utterances and a hold-out set of 1233 utterances. For the preliminary
experiments performed in Sections 5 and 6, we train all models on the small
training set and report the performance on both the training and the hold-out
set. For the experiments in Section 7, each model’s hyperparameters are selected
independently on the hold-out set. Then the model is trained on the complete
training set and evaluated in the independent test set.

For the classification task (Sec. 5), we used pre-segmented data. Thus, the
classification could be performed using a Bayes classifier composed of 27 Hidden
Markov Models, each one corresponding to one class. Each phonetic HMM was
composed of the same number of hidden states,2 in a left-to-right topology and
the distributions corresponding to each state were modelled with a Gaussian

2and an additional two non-emitting states: the initial and final states

10

mixture model, with each Gaussian having a diagonal covariance matrix. In
Sec. 5.2, we select the number of states per phoneme from {1, 2, 3, 4, 5}, and the
mixture components from {10, 20, 30, 40} in the hold-out set for a single HMM
and then examine whether bagging or boosting can improve the classification
or speech recognition performance.

In all cases, the diagonal covariance matrix elements of each Gaussian were
clamped to a lower limit of 0.2 times the global variance of the data. For continu-
ous speech recognition, transitions between word models incurred an additional
likelihood penalty of exp(−15) while calculating the most likely sequence of
states. Finally, in all continuous speech recognition tasks, state sequences were
constrained to remain in the same phoneme for at least three acoustic frames.

For phoneme-level training, the adaptation of each phoneme model was per-
formed in two steps. Firstly, the acoustic frames belonging to each phonetic
segment were split into a number of equally-sized intervals, where the number of
intervals was equal to the number of states in the phonetic model. The Gaussian
mixture components corresponding to the data for each interval were initialised
via 25 iterations of the K-means algorithm (see, for example [4]). After this
initialisation was performed, a maximum of 25 iterations of the EM algorithm
were run on each model, with optimisation stopping earlier if at any point in
time t, the likelihood Lt satisfied the stopping criterion (Lt−Lt−1)/Lt < ǫ, with
ǫ = 10−5 being used in all experiments that employed EM for optimisation.

For the utterance-level training described in Section 6, the same initialisation
was performed. The inference of the final model was done through expectation
maximisation (using the Viterbi approximation) on concatenated phonetic mod-
els representing utterances. Note that performing the full EM computation is
costlier and does not result in significantly better generalisation performance,
at least in this case. The stopping criterion and maximum iterations were the
same as those used for phoneme-level training.

Finally, the results in Section 7 present an unbiased comparison between
models. In order to do this, we selected the parameters of each model, such as
the number of Gaussians and number of experts, using the performance in the
hold out set. We then used the selected parameters to train a model on the full
training dataset. The models were evaluated on the separate testing dataset
and compared using the bootstrap estimate described in Section 4.2.

5 Phoneme level bagging and boosting

A simple way to apply ensemble techniques such as bagging and boosting is
to cast the problem into the classification framework. This is possible at the
phoneme level, where each class y ∈ Y corresponds to a phonemes. As long as
the available data are annotated so that subsequences containing single phoneme
data can be extracted, it is natural to adapt each hidden Markov model µy to
a single class y out of the possible |Y|, where | · | denotes the cardinality of the
set, and combine the models into a Bayes classifier in the manner described in
Section 2. Such a Bayes classifier can then be used as an expert in an ensemble.

In both cases, each example d in the training datasetD is a sequence segment
corresponding to data from a single phoneme. Consequently, each example d has
the form d = (x, y), with x ∈ X ∗ being a sub-sequence of features corresponding
to single phoneme data and y ∈ Y being a phoneme label.

11

s11 s12 s13

h x1 x2 x3

s21 s22 s23

Figure 4: A phoneme mixture model. The generating model depends on the
hidden variable h, which determines the mixing coefficients between model 1 and
2. The random variable h may in general depend on other variables. The distri-
bution of the observation is a mixture between the two distributions predicted
by the two hidden models, mixed according to the mixture model h.

Both methods iteratively construct an ensemble of N models. At each it-
eration j, a new classifier hj is created, consisting of a set of hidden Markov

models: hj = {µj
1, µ

j
2, ..., µ

j

|Y|}. Each model µj
y is adapted to the set of examples

{dk ∈ Dj | yk = y}, where Dj is a bootstrap replicate of D. In order to make

decisions, the experts are weighted by the mixture coefficients wi , π(hi). The
only difference between the two methods is the distribution that Dj is sampled
from and the definition of the coefficients.

For bagging, Dj is sampled uniformly from D and the probability over the
mixture components is also uniform, i.e. π(hi) = N−1.

For boosting, Dj is sampled from D using the distribution defined in equa-
tion (11), in p. 7, while the expert weights are defined as π(hi) = βi/

∑
j βj ,

where β is given by (10), in p. 7. The Ada-Boost method used was Ada-
Boost.M1.

Since previous studies in non-sequential classification problems had shown
that an increase in generalisation performance may be obtained through the
use of those two ensemble methods, it was expected that they would have a
similar effect on performance in phoneme classification tasks. This is tested in
Section 5.2. While using the resulting phoneme classification models for con-
tinuous speech recognition is not straightforward, we describe some techniques
for combining the ensembles resulting from this training in order to perform
sequence recognition in Section 5.1.

5.1 Continuous speech recognition with mixtures

The approach described is easily suitable for phoneme classification, since each
phonetic model is now a mixture model (Fig. 4), which can be used to clas-
sify phonemes given pre-segmented data. However, the phoneme mixtures can
also be combined into a speech recognition mixture. Thus, we can still em-
ploy ensemble methods for the full speech recognition problem by training with
segmented data to produce a number of expert models which can then be re-

12

combined during decoding on unsegmented data.

Component of
state−locked path

Component of
unconstrained path

Expert A

Expert B

Expert C

B

w

wB

wA
Aw

w

C
Cw

Phoneme 1 Phoneme 2

Word 2

Expert A

Expert B

Expert C

B

w

wB

wA
Aw

w

C
Cw

Phoneme 2Phoneme 1

Word 1

Figure 5: Single-path multi-stream decoding for two vocabulary words consist-
ing of two phonemes each. When there is only one expert the decoding process
is done normally. In the multiple expert case, phoneme models from each ex-
pert are connected in parallel. The transition probabilities leading from the
anchor states to the Hidden Markov Model corresponding to each experts are
the weights wi of each expert.

The first technique employed for sequence decoding uses an HMM compris-
ing all phoneme models created during the boosting process, connected in the
manner shown in Figure 5. Each phase of the boosting process creates a sub-
model i, which we will refer to as expert for disambiguation purposes. Each
expert is a classification model that employs one hidden Markov model for each
phoneme. For some sequence of observations, each expert calculates the pos-
terior probability of each phonetic class given the observation and its model.
Two types of techniques are considered for employing the models for inferring
a sequence of words.

In the single stream case, decoding is performed using the Viterbi algorithm
in order to find a sequence of states maximising the posterior probability of the
sequence. A normal hidden Markov model is constructed in the way shown in
Figure 5, with each phoneme being modelled as a mixture of expert models. In
this case we are trying to find the sequence of states {st = sji} with maximum
likelihood. The transition probabilities leading from anchor states (black circles
in the figure) to each model are set to wi = π(hi).

This type of decoding would have been appropriate if the original mixture
had been inferred as a type of switching model, where only one sub-model is

13

