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Abstract

Accurate prediction of ionospheric parameters is crucial for telecom-
munication companies. These parameters strongly rely on solar activity.
In this paper, we analyze the use of neural networks for sunspots time se-
ries prediction. Three types of models are tested and experimental results
are reported for a particular sunspots time series: the /R5 index.

1 Introduction

France Telecom’s research center, the Centre National d’Etudes des Telecom-
munications (CNET) has a ionospheric prediction service which publishes each
month prediction reports about ionospheric propagation of radio waves, ad-
dressed to users of long distance communications with mobiles (airplanes, ships,
cars), radio services or more generally to users of the frequency band between
3 and 30 MHz.

Since ionosphere conditions have a high variability and since radio services
use ionosphere, predictions are needed for these reports, which take into account
some ionospheric characteristics.

Tonosphere is the ionized region of terrestrial atmosphere which extends from
50 to 2000 km above earth surface. It is generally divided into three parts in
increasing altitude order: the D, E and F layers. The latter is the most ionized
and acts as a reflector for decametric waves propagation (or HF waves), from 3
to 30 MHz, depending upon ionization rate, and allows transmissions between
two far away terrestrial points.



To make accurate predictions we have to measure and analyze not only
several ionospheric parameters but also solar parameters. In fact ionospheric
state directly depends on solar activity, and in order to make a prediction of its
future state we have to predict this solar activity.

Solar activity level is represented by the relative number of sunspots R; (also
named international sunspot number) which presents short term fluctuations.
The monthly mean follows a cycle of around 11 years (but which varies in fact
from 9 to 14 years).

Most organizations making ionospheric predictions use a monthly index R12:
a twelve months running mean of R.

There exists a variety of methods that have been tested to predict this index.
The method that yields the best performance comes from (McNish and Lincoln,
1949): they describe a multiple regression technique that predicts annual or
monthly sunspot means based on computation of an average cycle which is then
modified by taking into account the current cycle behavior.

The CNET ionospheric prediction service uses another index called IR5, a
five months running mean of R, which seems more adapted to its users (Bour-
dila and Hanbaba, 1984). Its prediction is based on harmonic analysis, cycle
repetition after some years and relations between maximum solar activities and
duration of ascendant phases.

In fact, the CNET ionospheric prediction service measures and uses many
solar or ionospheric informations:

e the IR5 index,

the solar flux, which represents the solar radio noise,
¢ a long series of geomagnetic data, and

e ionospheric parameters such as the critical frequency of the ionospheric
F2 layer (called fof2) which is measured by sounding and represents the
maximal frequency that ensure a radio-electric link.

Among the above list, we decided to use this IR5 index for the experiments
reported in this paper mainly because sunspots series is known to be difficult to
predict, but the methods reported here could also be used for other ionospheric
time series.

Neural network models are an alternative to classical methods of time se-
ries prediction. In this paper we use them to predict the IR5 index. They are
currently successfully used in various fields: feature recognition such as hand-
written characters (Le Cun et al., 1989) or speech (Lippmann, 1989), image
compression (Cottrell et al., 1987), games (Tesauro, 1992), and many others.

The use of neural networks for time series prediction is relatively new: it was
first proposed by (Lapedes and Farber, 1987) but it is now applied on real world
time series like electric or water consumption (Canu et al., 1990; Park et al.,



1991) or financial and economical time series prediction (Varfis and Versino,
1990).

In the field of solar and terrestrial parameters prediction, (Koons and Gor-
ney, 1990) were the first to predict the timing and R value of the 227¢ cycle
maximum. Later, Lundstedt forecasted solar-terrestrial effects and geomagnetic
storms from solar wind data (Lundstedt, 1992; Lundstedt and Wintoft, 1994)
(see also the work of (Macpherson, 1993) on solar activity).

In this paper we propose a six months ahead IR5 prediction, given the past
values of this index (this six months delay is needed in order to edit and dis-
tribute a report to users) with a particular class of learning machine : the multi-
layer perceptron trained by backpropagation. In the next section we briefly
introduce neural networks for function approximation and specially prediction.
Then we present the particular problem we are trying to solve and the exact
neural network models we used.

Experiments and results are then given in details and compared to those
previously used by the CNET ionospheric prediction service. Conclusions and
remarks are given in the final section.

2 Neural Networks for Prediction

Suppose we have a given one-variable time series represented by the N values
{z1, 2, ---, zn}. Prediction then consists to find the future values {zy41,
zn42, -t (Takens, 1981) showed that if the series is deterministic, there
exists a scalar d (which is called the embedding dimension) and a function f
such that for every t > d:

Ty = f(®t-1,%e2,- -, ¥t_q) (1)

Then the prediction problem consists, given the first N values of a time
series, to find the appropriate d and f. Of course one usually cannot be sure a
given series is deterministic. Actually, statistical methods do exist to verify if
a series is deterministic and to evaluate d but they require the size of the series
to be on the order of 10¢ which is rarely the case in real world problems. For
the moment, let’s assume we know d and want to find f. This is where neural
networks comes in: it is a well known fact that they can be used as universal
function approximators (Cybenko, 1989; Funahashi, 1989; Hornik et al., 1989).

2.1 Introduction to Neural Networks

Neural networks! consist of a large number of highly connected nonlinear simple
units. In the models used in predictions, we can differentiate three types of units:

!For a more complete introduction to the field of neural networks, see for instance (Hertz
et al., 1991).



e input units which are set to the previous values of the time series: x;_1,
Zi_9, -, Ti_q Where d is the embedding dimension,

e output units which give the results of the neural network. In the simplest
case, we have only one output unit which should return z:,

¢ and finally hidden units which are neither input nor output units, but are
used to keep an internal representation of the problem.

Each connection between two units is directed and is given a weight. In fact,
the knowledge of the network is kept in these weights. Each hidden and output
units computes its value as the weighted sum of its inputs, passed through a
nonlinear function such as tanh(-).

Simple networks usually consists of layers of units where all units in one
layer are connected to all units in the next layer. See for instance Figure 1.

Outputs

Figure 1: Illustration of a simple neural network architecture.

The idea then is to find, for a given network architecture and a given time se-
ries, the weights that minimize a cost which is function of the difference between
the resulting values of the network and the desired values.



The time series is generally divided into two parts: a training set and a test
set. The training set (for instance the first values of the time series) is used
to find the weights by minimizing a cost function, whereas the test set (for
instance the last values of the time series) is used to verify the real prediction
performance of the network (that is, an estimated prediction error on future
time series values).

2.1.1 Cost Function.

There exists a variety of cost functions that can be used to optimize a neural
network performance. The most used cost function is the Least Mean Square
(or LMS) criteria which can be written as:

Jims = Z Z (yij — Ui j) (2)
i€eP €O

where J is the cost to minimize, P is the set of all patterns in the training
set, O is the set of all output units, g;; is the value of output unit j after
presentation of pattern 7, and y; ; is the desired value of corresponding output
unit.

In time series context, the patterns i € P are the set of vectors {&¢_1, z;_2,
<+, 24_q} where t varies from d+ 1 to the time series length, and there is usually
only one output unit which corresponds to ;.

One problem with the use of LMS criteria for time series prediction is the
difficulty to compare adequately prediction results from two different time series.
This can be done using a normalized version of the LMS, namely the Average
Relative Variance (or ARV) criteria (Weigend et al., 1992), which is the same
as the LMS criteria but normalized by the number of training examples N and
the estimated variance of the data &2:

11

—JrLms (3)

Jary = 2N

2.1.2 Learning mechanisms.

Given a cost function, a network architecture and some data (the time series),
the next step is to find the appropriate weights which minimize the cost function.
This is usually done using an iterative procedure which consists of the following
steps: first initialize the network weights randomly, then for each examples
in the training set, compute the network output while feeding the example as
input, compare the resulting output to the target and apply a correction to
all weights which minimize the error. One iteration is the presentation of all
examples. The procedure could last many iterations.

The most known learning mechanism for neural networks is the backpropa-
gation rule (Rumelhart et al., 1986) which dates back to 1986. It is a simple



gradient descent technique which minimizes the cost function in weight space.
The idea is to modify the weights in the opposite direction of the gradient of
the error with respect to the weights:

oJ
wi = Wi = g - (4)

where w; is a weight, J is the cost function, and p is a small real value which is
usually called the learning rate. ;—i is then calculated using the standard chain
rule by backpropagating error derivative information through all the connections.
Since 1986, a variety of improvements has been proposed (introduction of
a momentum term, use of conjugate gradient techniques, use of second order

information, etc)?.

2.1.3 Generalization and Model Selection.

One of the most important features of learning systems is their ability to gen-
eralize to new situations. As we have seen, a learning machine such as a neural
network is usually trained to minimize a cost function over a finite set of exam-
ples (the training set), but what we are really interested in is to find a function
which minimizes our cost function over all the input domain. Particularly, in
prediction problems, we train the network with past ezamples (thus, we mini-
mize a training error) but we really want our network to perform well on future
examples (thus, have a minimal generalization error). We usually use a test set
(data not used to minimize the cost) to estimate generalization error. If the
training set and the test set are drawn from the same (but unknown) probabil-
ity distribution (and hence have the same statistical properties) we expect both
costs (on training set and test set) to be minimized while effectively minimizing
only the first.

This is only true if we have enough training examples and if the network
architecture is adequate for the problem. If there are too many parameters
(weights) in the network, it will learn a function which is specific to the training
set and not to the whole real function. On the other hand, if there are not
enough parameters, the network will not be able to find an appropriate function.
Theoretical results such as (Vapnik, 1982) show that the smallest generalization
error we can reach is function of the training set size, the network capacity
(which is roughly a measure of the number of free parameters), and the training
error.

This means we have to find the best network architecture for a given prob-
lem and a given training set size. Many heuristics exist (such as described in
(Fahlman and Lebiere, 1990; Le Cun et al., 1990) but this is still a hard problem.

2 Again, refer to (Hertz et al., 1991) for an overview.



2.2 Finding the Embedding Dimension d

We have described a method to find the function f that gives us the next value
of a given time series. But this method requires that we already know the
embedding dimension d, which is used as the input size of our network. There
exists many statistical methods to estimates d, but they all suffer the same
problem: they need a huge amount of data3.

An alternative to these classical techniques is once again to use neural net-
works to find the best embedding dimension by simple cross-validation: cut
training set into two parts: the new training set and a validation set; then
compare the validation error (cost on the validation set) obtained after training
different network models (and more specifically different input sized networks)
with the new training set and keep the best model (with respect to valida-
tion error). The input dimension of this model is then a good estimate of the
embedding dimension d.

2.3 Horizon of Prediction

In most time series problems, one does not want to predict x;, the next value
of the series but rather z;4; with [ > 0, a future value in a mid or long range
horizon. To solve this kind of problem, there is (at least) two solutions: the
wterated prediction and the direct prediction.

The iterated prediction system consists in feeding the previously predicted
values &y, Zt41, -+, L4i—1 as inputs of the network to predict z:4; (remember
we do not know the exact values of x:, #141, -+, Z+4i—1, SO we use the ones
estimated by the network given the known past values).

The direct prediction system consists to train a network to learn directly
Teqr USING Tio1, T2, - -, Ti_q as inputs.

Obviously the direct prediction system can only be used when horizon [ is
small. In fact, experiments have shown that for short horizons (I < 10) it yields
better performance than the iterated prediction system, but as soon as ! gets
bigger, one should use the latter.

3 Problem Description

The CNET ionospheric prediction service has given us the IR) time series, which
can be written as:

1
IR5; = E(Rt_?’ 4+ Ri_a+ Rio1+ Ry + Riyq) (5)

where IR5; is the index for month ¢ and R; the mean sunspot number for
the same month.

3See (Abarbanel et al., 1993) for an extended review of these methods.



The time series begins in January 1849 and ends in December 1991, so we
have around 1700 values (in fact the series continues until now but for our
experiments and for correct comparisons, we had to use the same set of values
as the CNET prediction service used). As R, the IR5 index follows a mean cycle
of 11 years, ranging from 9 to 14 years. A cycle rise is around 4.5 years long
and it takes around 6.5 years to descend. Figure 2 shows the IR5 time series.

As explained before, we are interested in a six months ahead prediction of

IR5:

IR5H_5 = f([R5t_1 s IR5t_2, Tty IR5t_d) (6)

250 T T T T T T T

Sunspots Time Series ——

200 A

150 0

100 b

50 b

1 1 L 1 1 1 1
1860 1880 1900 1920 1940 1960 1980

Figure 2: The IR5 sunspots series.

4 Experimental Results

In this section, we describe the experiments we did, how data was used, what
kind of network models were tested, and finally we give some comparative re-
sults.

4.1 Data Preprocessing

An important step when one wants to use a learning machine is data prepro-
cessing. For instance, if the time series has a tendency (a non constant moving
mean), it should be removed (see for instance (Box and Jenkins, 1970) for an



introduction to time series analysis). Unfortunately, we don’t know actually if
the sunspots time series has a tendency because of the lack of data.

An other important preprocessing is the normalization stage. Data should
have a zero mean and values should range from [—1, 1] for neural networks to
perform well®. Each IR5 value had thus been normalized as follows:

IR5t — M

o max; <y [IR5; — 0

where N is the training set size, u is the training set mean, and z; is the
new series value.

4.2 Network Models

We tried three types of neural network models: a simple model, a modular model
and an Elman network. For all three models, we used cross-validation to select
the number of units in each layer. The number of input units (which is the
embedding dimension d) was empirically determined to be 40. The modular
model had one output unit (z;45), while the simple and Elman models had 6
output units which correspond to {z:, 141, - - -, 45}, but generalization error
was only computed on the 6! output which is the six months ahead prediction
we need.

4.2.1 The Simple Model.

The simple model is just the plain multi-layer perceptron with one hidden layer
of units. All input units are connected to all hidden units and all hidden units
are connected to all output units. There is no connection between input and
output units. Figure 3 shows the network.

4.2.2 The Modular Model.

The idea of the modular model comes from one important concept: we have
seen we shouldn’t use as many hidden units (and connections) as we want be-
cause this will result in generalization problems. We thus have to restrict the
number of free parameters (the connections). Modular systems tends to divide
problems into smaller and hopefully simpler ones. Thus, one can use two small
independant networks trying to find the solution by theirselves and then com-
bining their outputs using a third small network. This is exactly what we did.
The first small network tries to find z:y5 while the second tries to find also
intermediate values z;, - - -, Z144.

The output of the first network and the outputs of the second network are
then used as input to a third network, as can be seen in Figure 4. The three

4In fact, data should range between the two nonlinear parts of the function used in hidden
units in order to help initial learning. In our case, we used the tanh(-) function.
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Figure 3: The simple neural network architecture. A full line between two layers
means that all units in one layer are fully connected to all units in the other layer.
The number of units in a layer is given in its center. The dashed line means
external supervision is provided and the cost is minimized at that layer. In that
case the outputs are {z, - -, 2145} while the inputs are {&;_1, -+, @1_a0}.

networks are trained simultaneously and supervision is provided to all output
units. This means that connections of the first two networks are influenced
both by supervision provided by their respective network but also by the third
network, using the usual chain rule to find the exact error derivatives.

The total number of free parameters in the modular model is still half the
number of free parameters in the simple model.

4.2.3 Elman’s Recurrent Network.

(Elman, 1990) has proposed a partially recurrent neural network: a model in-
tended to deal with the structural aspects of language as it varies in time. This
model has been used by other authors and promises to be useful in various time
related domains.

This variant of the multi-layer perceptron consists in the addition of partially
recurrent links into the hidden layer. They serve to copy activations of hidden
layer units at a given time to an additional “context layer”, which in turn feeds
the activation back to the hidden layer at the next time step. The hidden layer
activation is thus a function both of current inputs and past hidden values. We
say it is a partially recurrent network because the recurrent weights are not
learned but rather fixed to 1. See Figure 5 for an illustration.

10
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Figure 4: The modular neural network architecture. A full line between two
layers/modules means that all units in one layer are fully connected to all units
in the other layer. The number of units in a layer is given in its center. The
dashed line means external supervision is provided and the cost is minimized
at that layer. In that case the output is either {z:y5} and {z, -, 2145} for
the intermediate output modules, or {z;45} for the final output module. The
inputs are {xs—1, -, Tt_a0}.

4.3 Results

For all three models, data was used as follows: we kept the last 238 examples
for the test set and used the other 1428 examples for the training set. Each
network was trained starting from initial random weights and the training was
stopped using a cross-validation method. We used the stochastic version of
backpropagation with a small weight decay of 107° to prevent overfitting and a
momentum term of 0.9.

11
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Figure 5: The Elman neural network architecture. A full line between two layers
means that all units in one layer are fully connected to all units in the other
layer. The dotted line means that the connection is fixed to 1 so there is no real
recurrence in this network. Furthermore this is a one-to-one type of connection
(which means this are only 13 connections and not 13 times 13 connections). The
dashed line means external supervision is provided and the cost is minimized at
that layer. The number of units in a layer is given in its center. In that case
the outputs are {x¢,- - -, 245} while the inputs are {z;—1, -, z¢_a0}.

Table 1: Comparison of the different predictors. ARV means the Average Rela-
tive Variance and is computed as indicated previously in the paper, while SEP
stands for Strong Error Percentage. It represents the percentage of test set
examples for which the distance between expected value and obtained value is
more than 30.

CNET  Simple Modular Elman
heuristic Net Net Net
ARV | 0.1130 0.0884  0.0748  0.0737
SEP 5.0420  5.0420 1.6807  1.6807

We can see in table 1 the generalization results for all three networks, com-
pared to the results given by the CNET prediction service. As we can see, all
three networks were better than the heuristic, but both modular and Elman
networks performed significantly better than the simple network. Fig. 6 shows
the best performance we obtained compared to the actual 238 test set values.

The distribution of the errors should also be verified. It would be better

12
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Figure 6: The desired curve corresponds to the 238 actual IR5 values used in the
test set, while the obtained curve corresponds to the best performance obtained
by a neural network.

to have a system that does many small errors than a system that does one big
prediction error. This is why we also show in table 1 the percentage of strong
errors obtained by the various predictors. We can see that once again, modular
and Elman models performed better than the simple model and the heuristic.
Fig. 6 shows that the network results strongly follows actual series.

5 Conclusion

We have seen in this paper the importance of ionospheric parameters accurate
prediction systems for telecommunications. Neural networks can be used for this
task and usually yield better results than classical methods but the particular
neural network models for a given time series has to be carefully chosen in order
to reach a good performance. Neural networks cannot be used as black boxes
and a good understanding of underlying mechanisms is necessary to use them
as prediction machines.

In this paper, we proposed two particular models, namely a modular model
and a partially recurrent model, specially chosen for the IR5 time series. Many
other models still need to be experimented, such as fully recurrent neural net-
works (Williams and Zipser, 1989), time-delay neural networks (Lang and Hin-
ton, 1988), radial basis functions (Moody and Darken, 1989; Poggio and Girosi,
1990) and adaptive mixtures of experts (Jacobs et al., 1991). We will also look at
these models in a perspective where we mix different input windows (embedding
dimension).

13
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