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Abstract

In this paper, we show that the hinge loss can be interpredetha
neg-log-likelihood of a semi-parametric model of postepmbabilities.
From this point of view, SVMs represent the parametric congm of a
semi-parametric model fitted by a maximum a posteriori egtiiom pro-
cedure. This connection enables to derive a mapping from Seddes
to estimated posterior probabilities. Unlike previousgamsals, the sug
gested mapping is interval-valued, providing a set of past@robabil-
ities compatible with each SVM score. This framework offaraew
way to adapt the SVM optimization problem to unbalancedsifigs-
tion, when decisions result in unequal (asymmetric) losE&periments
show improvements over state-of-the-art procedures.

1 Introduction

In this paper, we show that support vector machines (SVMs}ter solution of a relaxed
maximum a posteriori (MAP) estimation problem. This relhpeoblem results from fitting

a semi-parametric model of posterior probabilities. Thisdel is decomposed into two
components: the parametric component, which is a functfdhe SVM score, and the

non-parametric component which we call a nuisance funci@imen a proper binding of

the nuisance function adapted to the considered probldmd#dtomposition enables to
concentrate on selected ranges of the probability spectrline estimation process can
thus allocate model capacity to the neighborhoods of datisoundaries.

The connection to semi-parametric models provides a pititadinterpretation of SVM
scores, which may have several applications, such as ¢stgr@nfidences over the pre-
dictions, or dealing with unbalanced losses. (which ocowtdmains such as diagnosis,
intruder detection, etc). Several mappings relating SVires to probabilities have al-
ready been proposed (Sollich 2000, Platt 2000), but thewg@bgect to arbitrary choices,
which are avoided here by their integration to the nuisanoetfon.

The paper is organized as follows. Section 2 presents themametric modeling ap-
proach; Section 3 shows how we reformulate SVM in this fraorwSection 4 proposes
several outcomes of this formulation, including a new mdttachandle unbalanced losses,
which is tested empirically in Section 5. Finally, Sectiohré&fly concludes the paper.

*This work was supported in part by the IST Programme of th@fesn Community, under the
PASCAL Network of Excellence IST-2002-506778. This pution only reflects the authors’ views.



2 Semi-Parametric Classification

We address the binary classification problem of estimatidgdision rule from a learning
setl, = {(xi,v:)}",, where theith example is described by the patteetnc X and
the associated respongec {—1,1}. In the framework of maximum likelihood estima-
tion, classification can be addressed either via generatodels,i.e. models of the joint
distribution P(X,Y"), or via discriminative methods modeling the conditioRglk”| X).

2.1 Complete and Marginal Likelihood, Nuisance Functions

Let p(1]x; @) denote the model aP(Y = 1|X = x), p(x; 1)) the model of P(X) andt;
the binary response variable such that= 1 wheny; = 1 andt; = 0 wheny; = —1.
Assuming independent examples, the complete log-likelihzan be decomposed as

L(6,¢; L) = Zti log(p(1]xi;0)) + (1—t:) log(1—p(1|xi; 6)) +log(p(xi; ¢)) , (1)

where the two first terms of the right-hand side representrthgginal or conditional like-
lihood, that is, the likelihood ob(1|x; 6).

For classification purposes, the paramefés not relevant, and may thus be qualified as a
nuisance parameter (Lindsay 1985). Wigecan be estimated independentlyipf maxi-
mizing the marginal likelihood provides the estimate redt by maximizing the complete
likelihood with respect t@ and1). In particular, when no assumption whatsoever is made
on P(X), maximizing the conditional likelihood amounts to maximthe joint likelihood
(McLachlan 1992). The density of inputs is then considesed auisance function.

2.2 Semi-Parametric Models

Again, for classification purposes, estimatiR¢Y | X') may be considered as too demand-
ing. Indeed, taking a decision only requires the knowledga (2P(Y = 1|X = x)—1).
We may thus consider looking for the decision rule minimigine empirical classification
error, but this problem is intractable for non-trivial mdglef discriminant functions.

Here, we briefly explore how semi-parametric models (Oalg88)1 may be used to re-
duce the modelization effort as compared to the standaetitikod approach. For this,
we consider a two-component semi-parametric moddP@ = 1|X = x), defined as
p(1]x;0) = g(x; 0) + e(x), where the parametric componeiik; 0) is the function of in-
terest, and where the non-parametric componé&w constrained nuisance function. Then,
we address the maximum likelihood estimation of the semap@tric modep(1|x; 8)
min - — Y " #;log(p(1]x5;0)) + (1 — t:) log(1 — p(1[x;; 6))
0,c p
s.t. p(1x;0) = g(x;0) + &(x) 2
0<p(l]x;0) <1
e (x) <e(x) <ef(x)
wheres~ ands™ are user-defined functions, which place constraints ondheparametric
component. According to these constraints, one pursues differerdativies, which can
be interpreted as either weakened or focused versions ofitieal problem of estimating
preciselyP(Y'|X) on the whole rang#, 1].

At the one extreme, whetT = ™, one recovers a parametric maximum likelihood prob-
lem, where the estimate of posterior probabilié€s|x; 0) is simply g(x; @) shifted by the
baseline function. At the other extreme, wheiT (x) < —g(x) ande™(x) > 1 — g(x),
p(1]-; @) perfectly explains (interpolates) any training sampledoy 6, and the optimiza-
tion problem in@ is ill-posed. Note that the optimization problemdis always ill-posed,
but this is not of concern as we do not wish to estimate theamgis function.
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Figure 1: Two examples af (x) (dashed) and™ (x) (plain)vs. g(x) and resulting-tube
of possible values for the estimate BfY = 1| X = x) (gray zoneys. g(x).

Generally, ag is not estimated, the estimate of posterior probabilitieidx; 8) is only
known to lie within the intervalg(x; 8) + ¢~ (x), g(x; ) + 7 (x)]. In what follows, we
only consider functions™ ande™ expressed as functions of the argumgt), for which
the interval can be recovered fropix) alone. We also require™ (x) < 0 < ¢*(x), in
order to ensure thaf(x; ) is an admissible value gf(1|x; 0).

Two simple examples are displayed in Figure 1. The two firaphs represent™ ands™
designed to estimate posterior probabilities up to prenisiand the correspondingtube

of admissible estimates knowingx). The two last graphs represent the same functions
for e~ ande™ defined to focus on the only relevant piece of informatiorarding decision:
estimating wheré?(Y'| X ) is abovel /2.1

2.3 Estimation of the Parametric Component

The definitions ot~ ands™ affect the estimation of the parametric component. Reggrdi
0, when the values of(x; 0) + £~ (x) andg(x; 0) + e+ (x) lie within [0, 1], problem (2)
is equivalent to the following relaxed maximum likelihooaplem

nelin - Zti log(g(x4;0) + ;) + (1 —t;) log(1 — g(x;;0) — ;)

s.t.oe7(x) <g <ef(xs) i=1,...,n

wheree is ann-dimensional vector of slack variables. The problem is ifjedl as relaxed
compared to the the maximum likelihood estimation of pastgrrobabilities byg(x;; 8),
because modeling posterior probabilitiesdiy;; 0) + ¢; is a looser objective.

®3)

The monotonicity of the objective function with respecttamplies that the constraints
e~ (x;) < g; ande; < eT(x;) are saturated at the solution of (3) fgr= 0 or¢; = 1 re-
spectively. Thus, the loss in (3) is the neg-log-likelihadthe lower or the upper bound on
p(1]x;; 0) respectively. Provided that e~ ande™ are defined such that (x) < ¥ (x),

0 < g(x)+e (x) < Tando < g(x) + et (x) < 1, the optimization problem with respect
to 6 reduces to

min — Z tilog(g(xs;0) + &7 (%)) + (1 —t;) log(1 — g(xi;0) —e~ (%)) . (4)

Figure 2 displays the losses for positive examples corredipg to the choices of~ and

eT depicted in Figure 1 (the losses are symmetrical aroundd.Bidgative examples).
Note that the convexity of the objective function with resip® g depends on the choices
of e~ ande™. One can show that, providing ande™ are respectively concave and convex
functions ofg, then the loss (4) is convex in

Whene™(x) < 0 < e*(x), g(x) is an admissible estimate éf(Y = 1|x). However,
the relaxed loss (4) is optimistic, below the neg-log-likebd ofg. This optimism usually

10Of course, this naive attempt to minimize the training dfisation error is doomed to failure.
Reformulating the problem does not affect its convexityeihains NP-hard.
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Figure 2: Losses for positive examples (plain) and neglikgjihood of g(x) (dotted)vs.
g(x). Left: for the functions* displayed on the left-hand side of Figure 1; right: for the
functione™ displayed on the right-hand side of Figure 1.

results in a non-consistent estimation of posterior prditials (i.e g(x) does not converge
towardsP(Y = 1|X = x) as the sample size goes to infinity), a common situation in
semi-parametric modeling (Lindsay 1985). This lack of éstency should not be a con-
cern here, since the non-parametric component is purpodetyluced to address a looser
estimation problem. We should therefore restrict consisteequirements to the primary
goal of having posterior probabilities in theube[g(x) + ¢~ (x), g(x) + e*(x)].

3 Semi-Parametric Formulation of SVMs

Several authors pointed the closeness of SVM and the MAPoaphprto Gaussian pro-
cesses (Sollich (2000) and references therein). Howenisrsimilarity does not provide a
proper mapping from SVM scores to posterior probabilitiésre, we resolve this difficulty
thanks to the additional degrees of freedom provided by -gmrametric modelling.

3.1 SVMs and Gaussian Processes
In its primal Lagrangian formulation, the SVM optimizatiproblem reads

IIfljigl%HfH%“rCZ[l_yi(f(xi)+b)]+ : (5)

where’H is a reproducing kernel Hilbert space with nofim ||+, C is a regularization
parameter anflf]; = max(f,0).

The penalization term in (5) can be interpreted as a Gaupsianon f, with a covariance
function proportional to the reproducing kernel#f(Sollich 2000). Then, the interpreta-
tion of the hinge loss as a marginal log-likelihood requieslentify an affine function of
the last term of (5) with the two first terms of (1). We thus Idoktwo constantg, and
c1 # 0, such that, for all values of(x) + b, there exists a valué < p(1|x) < 1 such that

p(1]x) exp —(co + 1l — (f(x) +b)]+) (6)
1—p(1fx) exp—(co + 1l + (f(x) +0)]4)
The system (6) has a solution over the whole range of possitiles of f(x) + b if and

only if ¢ = log(2) ande¢; = 0. Thus, the SVM optimization problem does not implement
the MAP approach to Gaussian processes.

To proceed with a probabilistic interpretation of SVMs, Il (2000) proposed a nor-
malized probability model. The normalization functionaswhosen arbitrarily, and the
consequences of this choice on the probabilistic inteagicat was not evaluated. In what
follows, we derive an imprecise mapping, with intervalued estimates of probabilities,
representing the set of all admissible semi-parametriofitations of SVM scores.

3.2 SVMs and Semi-Parametric Models

With the semi-parametric models of Section 2.2, one hasdntify an affine function of
the hinge loss with the two terms of (4). Compared to the previsituation, one has the
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Figure 3: Left: lower (dashed) and upper (plain) posterioobabilities [g(x) +
e7(x), g(x) + T (x)] vs. SVM scoresf (x) + b; center: corresponding neg-log-likelihood
of g(x) for positive exampless. f(x)+b. right: lower (dashed) and upper (plain) posterior
probabilitiesvs. g(x), for g defined in (8).

freedom to define the slack functions ande™. The identification problem is now

g(x) +e(x) =exp—(co+ e[l = (f(x) + b))

1 —g(x) —e (x) =exp—(co+eci[l + (f(x) +b)]+)

st. 0<g(x)+e(x)<1 . 7)
0<g(x)+et(x) <1
e”(x) <et(x)

Providedcy = 0 and0 < ¢; < log(2), there are functiong, e~ ande™ such that the
above problem has a solution. Hence, we obtain a set of piladt@tinterpretations fully
compatible with SVM scores. The solutions indexed:bware nested, in the sense that, for
anyx, the length of the uncertainty interval; (x) — e~ (x), is monotonically decreasing in
c1: the interpretation of SVM scores as posterior probabgitjets tighter ag increases.

The most restricted subset of admissible interpretatiwits,the shortest uncertainty inter-
vals, obtained for; = log(2), is represented in the left-hand side of Figure 3. The loss
incurred by a positive example is represented on the cagriph, where the gray zone rep-
resents the neg-log-likelihood of all admissible solusiofig(x). Note that the hinge loss

is proportional to the neg-log-likelihood of the upper @o&ir probabilityg(x) + e (x),
which is the loss for positive examples in the semi-paraicetodel in (4). Conversely, the
hinge loss for negative examples is reachedyfor) + e~ (x). An important observation,
that will be useful in Section 4.2 is that the neg-log-likelod of any admissible functions
g(x) is tangent to the hinge loss fAfx) + b = 0.

The solution is unigue in terms of the admissible inteffyal- e~, g + 1], but many
definitions of(¢ ™, ™, g) solve (7). For example;, may be defined as

9—[1—(F(x)+b)]+
9%:0) = oG Lo TG ®

which is essentially the posterior probability model pregdby Sollich (2000), represented
dotted in the first two graphs of Figure 3.

The last graph of Figure 3 displays the mapping frg(xr) to admissible values gf(1|x)
which results from the choice described in (8). Althoughititerpretation of SVM scores
does not require to specify, it may worth to list some features common to all options.
First, g(x) + &~ (x) = 0 for all g(x) below some thresholgh > 0, and conversely(x) +
et(x) = 1 for all g(x) above some threshold < 1. These two features are responsible
for the sparsity of the SVM solution. Second, the estimatibposterior probabilities is
accurate afl.5, and the length of the uncertainty intervalpfi|x) monotonically increases
in [go, 0.5] and then monotonically decreasedrb, g;]. Hence, the training objective of
SVMs is intermediate between the accurate estimation afepios probabilities on the
whole rangg0, 1] and the minimization of the classification risk.



4 Outcomes of the Probabilistic Interpretation

This section gives two consequences of our probabilisterjpretation of SVMs. Further
outcomes, still reserved for future research are listeckirtiGn 6.

4.1 Pointwise Posterior Probabilities from SVM Scores

Platt (2000) proposed to estimate posterior probabilfties SVM scores by fitting a lo-
gistic function over the SVM scores. The only logistic fupotcompatible with the most
stringent interpretation of SVMs in the semi-parametrériework,
1
9056) = o =Geam) ©)
is identical to the model of Sollich (2000) (8) wh¢(ix) + b lies in the interva[—1, 1].

Other logistic functions are compatible with the looseeiptetations obtained by letting
a1 < log(2), but their use as pointwise estimates is questionablege gime associated
confidence interval is wider. In particular, the looser iptetations do not ensure that
f(x) +b = 0 corresponds tg(x) = 0.5. Then, the decision function based on the
estimated posterior probabilities hyx) may differ from the SVM decision function.

Being based on an arbitrary choicegif), pointwise estimates of posterior probabilities
derived from SVM scores should be handled with caution. Asused by Zhang (2004),
they may only be consistent #tx) + b = 0, where they may converge towar@s.

4.2 Unbalanced Classification Losses

SVMs are known to perform well regarding misclassificatimog but they provide skewed
decision boundaries for unbalanced classification losgksre the losses associated with
incorrect decisions differ according to the true label. Thnanstream approach used to
address this problem consists in using different lossepdsitive and negative examples
(Morik et al. 1999, Veropoulos et al. 1999k.

win SIS BHCT Y M=) +DL 40T 3 [+ () +), s (10)
{ilyi=1} {ilyi=—1}
where the coefficient€’ ™ and C'~ are constants, whose ratio is equal to the ratio of the
lossedrn and/rp pertaining to false negatives and false positives, resmdg(Lin et al.
2002)2 Bayes’ decision theory defines the optimal decision rule dsitjve classification

whenP(y = 1|x) > Py, whereP, = ZFPZTZFN' We may thus rewrit€t = C - (1 — F)

andC~ = C - Fy. With such definitions, the optimization problem may be iipteted
as an upper-bound on the classification risk defined #fpmand/rp. However, the ma-
chinery of Section 3.2 unveils a major problem: the SVM decisunction provided by
sign(f(x;) + b) is not consistent with the probabilistic interpretatiorSMM scores.

We address this problem by deriving another criterion, byuiéng that the neg-log-
likelihood of any admissible functiongx) is tangent to the hinge loss éfx) + b = 0.
This leads to the following problem:

I?igléufua + 0| Y [-log(P) — (1 Po)(f(x:) + b)), +
’ {ilyi=1}

> [~log(l— Py) + Po(f(xi) + )], | - (11)
{ilyi=—1}

2False negatives/positives respectively designate pesitgative examples incorrectly classified.



o
@
w s o

L(g(,1)

N
0 S oLt
-10 0 10 20 0 10 20 0 025 05 075 1
f(x)+b f(x)+b 9(x)

|
Lo e
o

Figure 4: Left: lower (dashed) and upper (plain) posterioobabilities [g(x) +
e7(x), g(x)+et(x)] vs. SVM scoresf (x) + b obtained from (11) with?, = 0.25; center:
corresponding neg-log-likelihood gfx) for positive exampless. f(x) + b. right: lower
(dashed) and upper (plain) posterior probabilitiesy(x), for g defined bye™* (x) = 0 for
f(x)+b<0ande(x) =0for f(x)+b > 0.

This loss differs from (10), in the respect that the margingositive examples is smaller
than the one for negative examples whign < 0.5. In particular, (10) does not affect
the SVM solution for separable problems, while in (11), theeidion boundary moves
towards positive support vectors whéy decreases. The analogue of Figure 3, displayed
on Figure 4, shows that one recovers the characteristidseec§tandard SVM loss, except
that the focus is now on the posterior probabilitydefined by Bayes’ decision rule.

5 Experiments with Unbalanced Classifications Losses

It is straightforward to implement (11) in standard SVM pagks. For experimenting with
difficult unbalanced two-class problems, we used the Faastbase, the largest available
UCI dataset it t p: // kdd. i cs. uci . edu/ dat abases/ covertype/). We con-
sider the subproblem of discriminating the positive clasarkmholz (20510 examples)
against the negative class Spruce/Fir (211840 examplég) ratio of negative to positive
examples is high, a feature commonly encountered with amigald classification losses.

The training set was built by random selection of size 11 A@®Q and 10 000 examples
from the positive and negative class respectively); a ailich set, of size 11 000 was drawn
identically among the other examples; finally, the testafetize 99 000, was drawn among
the remaining examples.

The performance was measured by the weighted risk funﬂi@n% (NenleN+ Neplep),
whereNgy andNgp are the number of false negatives and false positives, cégply. The
loss/pp Was set to one, anfl was successively setto 1, 10 and 100, in order to penalize
more and more heavily errors from the under-represented.cla

All approaches were tested using SVMs with a Gaussian kemebrmalized data. The
hyper-parameters were tuned on the validation set for efitie 6rn values. We addition-
ally considered three tuning for the biisb is the bias returned by the algorithm‘ the
bias returned by minimizing on the validation set, which is an optimistic estimate of the
bias that could be computed by cross-validation. We alseigeaesults fob*, the optimal
bias computed on the test set. This “crystal ball” tuning mayrepresent an achievable
goal, but it shows how far we are from the optimum. Table 1 carapthe risk? obtained
with the three approaches for the different valueéaf.

The first line, with/px = 1 corresponds to the standard classification error, where all
training criteria are equivalent in theory and in practitke bias returned by the algorithm
is very close to the optimal one. Férxy = 10 and/pxy = 100, the models obtained
by optimizingC+/C~ (10) andP, (11) achieve better results than the baseline with the
crystal ball bias. While the solutions returned @y /C~ can be significantly improved



Table 1: Errors for 3 different criteria and for 3 differenbdels over the Forest database
lrn || Baseline, problem (5] C*/C—, problem (10) Py, problem (11)
b b* b by b* b by b*
1 0.027 0.026 0.027 0.027 0.026 0.027 0.027 0.026

10 || 0.167 0.108 0.105 0.104 0.094 0.095 0.104 0.094
100 || 1.664 0.406 0.403 0.291 0.289 0.295 0.291 0.289

by tuning the bias, our criterion provides results that @/ ¢lose to the optimum, in the
range of the performances obtained with the bias optimizedroindependant validation
set. The new optimization criterion can thus outperfornm@tad approaches for highly
unbalanced problems.

6 Conclusion

This paper introduced a semi-parametric model for clasdifin which provides an inter-
esting viewpoint on SVMs. The non-parametric componentigies an intuitive means of
transforming the likelihood into a decision-oriented eribn. This framework was used
here to propose a new parameterization of the hinge losgated to unbalanced classifi-
cation problems, yielding significant improvements overthassical procedure.

Among other prospectives, we plan to apply the same franmetedanvestigate hinge-like
criteria for decision rules including a reject option, wlehe classifier abstains when a
pattern is ambiguous. We also aim at defining losses encimgragarsity in probabilistic
models, such as kernelized logistic regression. We couwld Huild sparse probabilistic
classifiers, providing an accurate estimation of postgriobabilities on a (limited) pre-
defined range of posterior probabilities. In particular, weelld derive decision-oriented
criteria for multi-class probabilistic classifiers. Foragxple, minimizing classification er-
ror only requires to find the class with highest posteriompatuility, and this search does
not require precise estimates of probabilities outsidenterval [1/K,1/2], whereK is
the number of classes.
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