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Abstract

In this paper, we show that the hinge loss can be interpreted as the
neg-log-likelihood of a semi-parametric model of posterior probabilities.
From this point of view, SVMs represent the parametric component of a
semi-parametric model fitted by a maximum a posteriori estimation pro-
cedure. This connection enables to derive a mapping from SVMscores
to estimated posterior probabilities. Unlike previous proposals, the sug-
gested mapping is interval-valued, providing a set of posterior probabil-
ities compatible with each SVM score. This framework offersa new
way to adapt the SVM optimization problem to unbalanced classifica-
tion, when decisions result in unequal (asymmetric) losses. Experiments
show improvements over state-of-the-art procedures.

1 Introduction

In this paper, we show that support vector machines (SVMs) are the solution of a relaxed
maximum a posteriori (MAP) estimation problem. This relaxed problem results from fitting
a semi-parametric model of posterior probabilities. This model is decomposed into two
components: the parametric component, which is a function of the SVM score, and the
non-parametric component which we call a nuisance function. Given a proper binding of
the nuisance function adapted to the considered problem, this decomposition enables to
concentrate on selected ranges of the probability spectrum. The estimation process can
thus allocate model capacity to the neighborhoods of decision boundaries.

The connection to semi-parametric models provides a probabilistic interpretation of SVM
scores, which may have several applications, such as estimating confidences over the pre-
dictions, or dealing with unbalanced losses. (which occur in domains such as diagnosis,
intruder detection, etc). Several mappings relating SVM scores to probabilities have al-
ready been proposed (Sollich 2000, Platt 2000), but they aresubject to arbitrary choices,
which are avoided here by their integration to the nuisance function.

The paper is organized as follows. Section 2 presents the semi-parametric modeling ap-
proach; Section 3 shows how we reformulate SVM in this framework; Section 4 proposes
several outcomes of this formulation, including a new method to handle unbalanced losses,
which is tested empirically in Section 5. Finally, Section 6briefly concludes the paper.

∗This work was supported in part by the IST Programme of the European Community, under the
PASCAL Network of Excellence IST-2002-506778. This publication only reflects the authors’ views.



2 Semi-Parametric Classification

We address the binary classification problem of estimating adecision rule from a learning
setLn = {(xi, yi)}

n
i=1, where theith example is described by the patternxi ∈ X and

the associated responseyi ∈ {−1, 1}. In the framework of maximum likelihood estima-
tion, classification can be addressed either via generativemodels,i.e. models of the joint
distributionP (X, Y ), or via discriminative methods modeling the conditionalP (Y |X).

2.1 Complete and Marginal Likelihood, Nuisance Functions

Let p(1|x;θ) denote the model ofP (Y = 1|X = x), p(x;ψ) the model ofP (X) andti
the binary response variable such thatti = 1 whenyi = 1 andti = 0 whenyi = −1.
Assuming independent examples, the complete log-likelihood can be decomposed as

L(θ,ψ;Ln) =
∑

i

ti log(p(1|xi;θ))+(1− ti) log(1−p(1|xi;θ))+log(p(xi;ψ)) , (1)

where the two first terms of the right-hand side represent themarginal or conditional like-
lihood, that is, the likelihood ofp(1|x;θ).

For classification purposes, the parameterψ is not relevant, and may thus be qualified as a
nuisance parameter (Lindsay 1985). Whenθ can be estimated independently ofψ, maxi-
mizing the marginal likelihood provides the estimate returned by maximizing the complete
likelihood with respect toθ andψ. In particular, when no assumption whatsoever is made
onP (X), maximizing the conditional likelihood amounts to maximize the joint likelihood
(McLachlan 1992). The density of inputs is then considered as a nuisance function.

2.2 Semi-Parametric Models

Again, for classification purposes, estimatingP (Y |X) may be considered as too demand-
ing. Indeed, taking a decision only requires the knowledge of sign(2P (Y = 1|X = x)−1).
We may thus consider looking for the decision rule minimizing the empirical classification
error, but this problem is intractable for non-trivial models of discriminant functions.

Here, we briefly explore how semi-parametric models (Oakes 1988) may be used to re-
duce the modelization effort as compared to the standard likelihood approach. For this,
we consider a two-component semi-parametric model ofP (Y = 1|X = x), defined as
p(1|x;θ) = g(x;θ) + ε(x), where the parametric componentg(x;θ) is the function of in-
terest, and where the non-parametric componentε is a constrained nuisance function. Then,
we address the maximum likelihood estimation of the semi-parametric modelp(1|x;θ)



















min
θ,ε

−
∑

i

ti log(p(1|xi;θ)) + (1 − ti) log(1 − p(1|xi;θ))

s. t. p(1|x;θ) = g(x;θ) + ε(x)
0 ≤ p(1|x;θ) ≤ 1
ε−(x) ≤ ε(x) ≤ ε+(x)

(2)

whereε− andε+ are user-defined functions, which place constraints on the non-parametric
componentε. According to these constraints, one pursues different objectives, which can
be interpreted as either weakened or focused versions of theoriginal problem of estimating
preciselyP (Y |X) on the whole range[0, 1].

At the one extreme, whenε− = ε+, one recovers a parametric maximum likelihood prob-
lem, where the estimate of posterior probabilitiesp(1|x;θ) is simplyg(x;θ) shifted by the
baseline functionε. At the other extreme, whenε−(x) ≤ −g(x) andε+(x) ≥ 1 − g(x),
p(1|·;θ) perfectly explains (interpolates) any training sample foranyθ, and the optimiza-
tion problem inθ is ill-posed. Note that the optimization problem inε is always ill-posed,
but this is not of concern as we do not wish to estimate the nuisance function.
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Figure 1: Two examples ofε−(x) (dashed) andε+(x) (plain)vs.g(x) and resultingǫ-tube
of possible values for the estimate ofP (Y = 1|X = x) (gray zone)vs.g(x).

Generally, asε is not estimated, the estimate of posterior probabilitiesp(1|x;θ) is only
known to lie within the interval[g(x;θ) + ε−(x), g(x;θ) + ε+(x)]. In what follows, we
only consider functionsε− andε+ expressed as functions of the argumentg(x), for which
the interval can be recovered fromg(x) alone. We also requireε−(x) ≤ 0 ≤ ε+(x), in
order to ensure thatg(x;θ) is an admissible value ofp(1|x;θ).

Two simple examples are displayed in Figure 1. The two first graphs representε− andε+

designed to estimate posterior probabilities up to precision ǫ, and the correspondingǫ-tube
of admissible estimates knowingg(x). The two last graphs represent the same functions
for ε− andε+ defined to focus on the only relevant piece of information regarding decision:
estimating whereP (Y |X) is above1/2. 1

2.3 Estimation of the Parametric Component

The definitions ofε− andε+ affect the estimation of the parametric component. Regarding
θ, when the values ofg(x;θ) + ε−(x) andg(x;θ) + ε+(x) lie within [0, 1], problem (2)
is equivalent to the following relaxed maximum likelihood problem







min
θ,ε

−
∑

i

ti log(g(xi;θ) + εi) + (1 − ti) log(1 − g(xi;θ) − εi)

s. t. ε−(xi) ≤ εi ≤ ε+(xi) i = 1, . . . , n
(3)

whereε is ann-dimensional vector of slack variables. The problem is qualified as relaxed
compared to the the maximum likelihood estimation of posterior probabilities byg(xi;θ),
because modeling posterior probabilities byg(xi;θ) + εi is a looser objective.

The monotonicity of the objective function with respect toεi implies that the constraints
ε−(xi) ≤ εi andεi ≤ ε+(xi) are saturated at the solution of (3) forti = 0 or ti = 1 re-
spectively. Thus, the loss in (3) is the neg-log-likelihoodof the lower or the upper bound on
p(1|xi;θ) respectively. Provided thatg, ε− andε+ are defined such thatε−(x) ≤ ε+(x),
0 ≤ g(x) + ε−(x) ≤ 1 and0 ≤ g(x) + ε+(x) ≤ 1, the optimization problem with respect
to θ reduces to

min
θ

−
∑

i

ti log(g(xi;θ) + ε+(xi)) + (1 − ti) log(1 − g(xi;θ) − ε−(xi)) . (4)

Figure 2 displays the losses for positive examples corresponding to the choices ofε− and
ε+ depicted in Figure 1 (the losses are symmetrical around 0.5 for negative examples).
Note that the convexity of the objective function with respect to g depends on the choices
of ε− andε+. One can show that, providingε+ andε− are respectively concave and convex
functions ofg, then the loss (4) is convex ing.

Whenε−(x) ≤ 0 ≤ ε+(x), g(x) is an admissible estimate ofP (Y = 1|x). However,
the relaxed loss (4) is optimistic, below the neg-log-likelihood ofg. This optimism usually

1Of course, this naive attempt to minimize the training classification error is doomed to failure.
Reformulating the problem does not affect its convexity: itremains NP-hard.
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Figure 2: Losses for positive examples (plain) and neg-log-likelihood of g(x) (dotted)vs.
g(x). Left: for the functionε+ displayed on the left-hand side of Figure 1; right: for the
functionε+ displayed on the right-hand side of Figure 1.

results in a non-consistent estimation of posterior probabilities (i.e g(x) does not converge
towardsP (Y = 1|X = x) as the sample size goes to infinity), a common situation in
semi-parametric modeling (Lindsay 1985). This lack of consistency should not be a con-
cern here, since the non-parametric component is purposelyintroduced to address a looser
estimation problem. We should therefore restrict consistency requirements to the primary
goal of having posterior probabilities in theǫ-tube[g(x) + ε−(x), g(x) + ε+(x)].

3 Semi-Parametric Formulation of SVMs

Several authors pointed the closeness of SVM and the MAP approach to Gaussian pro-
cesses (Sollich (2000) and references therein). However, this similarity does not provide a
proper mapping from SVM scores to posterior probabilities.Here, we resolve this difficulty
thanks to the additional degrees of freedom provided by semi-parametric modelling.

3.1 SVMs and Gaussian Processes

In its primal Lagrangian formulation, the SVM optimizationproblem reads

min
f,b

1

2
‖f‖2

H + C
∑

i

[1 − yi(f(xi) + b)]+ , (5)

whereH is a reproducing kernel Hilbert space with norm‖ · ‖H, C is a regularization
parameter and[f ]+ = max(f, 0).

The penalization term in (5) can be interpreted as a Gaussianprior onf , with a covariance
function proportional to the reproducing kernel ofH (Sollich 2000). Then, the interpreta-
tion of the hinge loss as a marginal log-likelihood requiresto identify an affine function of
the last term of (5) with the two first terms of (1). We thus lookfor two constantsc0 and
c1 6= 0, such that, for all values off(x) + b, there exists a value0 ≤ p(1|x) ≤ 1 such that

{

p(1|x) = exp−(c0 + c1[1 − (f(x) + b)]+)
1 − p(1|x) = exp−(c0 + c1[1 + (f(x) + b)]+)

. (6)

The system (6) has a solution over the whole range of possiblevalues off(x) + b if and
only if c0 = log(2) andc1 = 0. Thus, the SVM optimization problem does not implement
the MAP approach to Gaussian processes.

To proceed with a probabilistic interpretation of SVMs, Sollich (2000) proposed a nor-
malized probability model. The normalization functional was chosen arbitrarily, and the
consequences of this choice on the probabilistic interpretation was not evaluated. In what
follows, we derive an imprecise mapping, with interval-valued estimates of probabilities,
representing the set of all admissible semi-parametric formulations of SVM scores.

3.2 SVMs and Semi-Parametric Models

With the semi-parametric models of Section 2.2, one has to identify an affine function of
the hinge loss with the two terms of (4). Compared to the previous situation, one has the
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Figure 3: Left: lower (dashed) and upper (plain) posterior probabilities [g(x) +
ε−(x), g(x) + ε+(x)] vs.SVM scoresf(x) + b; center: corresponding neg-log-likelihood
of g(x) for positive examplesvs.f(x)+b. right: lower (dashed) and upper (plain) posterior
probabilitiesvs.g(x), for g defined in (8).

freedom to define the slack functionsε− andε+. The identification problem is now


















g(x) + ε+(x) = exp−(c0 + c1[1 − (f(x) + b)]+)
1 − g(x) − ε−(x) = exp−(c0 + c1[1 + (f(x) + b)]+)
s.t. 0 ≤ g(x) + ε−(x) ≤ 1

0 ≤ g(x) + ε+(x) ≤ 1
ε−(x) ≤ ε+(x)

. (7)

Providedc0 = 0 and0 < c1 ≤ log(2), there are functionsg, ε− andε+ such that the
above problem has a solution. Hence, we obtain a set of probabilistic interpretations fully
compatible with SVM scores. The solutions indexed byc1 are nested, in the sense that, for
anyx, the length of the uncertainty interval,ε+(x)−ε−(x), is monotonically decreasing in
c1: the interpretation of SVM scores as posterior probabilities gets tighter asc1 increases.

The most restricted subset of admissible interpretations,with the shortest uncertainty inter-
vals, obtained forc1 = log(2), is represented in the left-hand side of Figure 3. The loss
incurred by a positive example is represented on the centralgraph, where the gray zone rep-
resents the neg-log-likelihood of all admissible solutions of g(x). Note that the hinge loss
is proportional to the neg-log-likelihood of the upper posterior probabilityg(x) + ε+(x),
which is the loss for positive examples in the semi-parametric model in (4). Conversely, the
hinge loss for negative examples is reached forg(x) + ε−(x). An important observation,
that will be useful in Section 4.2 is that the neg-log-likelihood of any admissible functions
g(x) is tangent to the hinge loss atf(x) + b = 0.

The solution is unique in terms of the admissible interval[g + ε−, g + ε+], but many
definitions of(ε−, ε+, g) solve (7). For example,g may be defined as

g(x;θ) =
2−[1−(f(x)+b)]+

2−[1+(f(x)+b)]+ + 2−[1−(f(x)+b)]+
, (8)

which is essentially the posterior probability model proposed by Sollich (2000), represented
dotted in the first two graphs of Figure 3.

The last graph of Figure 3 displays the mapping fromg(x) to admissible values ofp(1|x)
which results from the choice described in (8). Although theinterpretation of SVM scores
does not require to specifyg, it may worth to list some features common to all options.
First,g(x)+ ε−(x) = 0 for all g(x) below some thresholdg0 > 0, and conversely,g(x)+
ε+(x) = 1 for all g(x) above some thresholdg1 < 1. These two features are responsible
for the sparsity of the SVM solution. Second, the estimationof posterior probabilities is
accurate at0.5, and the length of the uncertainty interval onp(1|x) monotonically increases
in [g0, 0.5] and then monotonically decreases in[0.5, g1]. Hence, the training objective of
SVMs is intermediate between the accurate estimation of posterior probabilities on the
whole range[0, 1] and the minimization of the classification risk.



4 Outcomes of the Probabilistic Interpretation

This section gives two consequences of our probabilistic interpretation of SVMs. Further
outcomes, still reserved for future research are listed in Section 6.

4.1 Pointwise Posterior Probabilities from SVM Scores

Platt (2000) proposed to estimate posterior probabilitiesfrom SVM scores by fitting a lo-
gistic function over the SVM scores. The only logistic function compatible with the most
stringent interpretation of SVMs in the semi-parametric framework,

g(x;θ) =
1

1 + 4−(f(x)+b))
, (9)

is identical to the model of Sollich (2000) (8) whenf(x) + b lies in the interval[−1, 1].

Other logistic functions are compatible with the looser interpretations obtained by letting
c1 < log(2), but their use as pointwise estimates is questionable, since the associated
confidence interval is wider. In particular, the looser interpretations do not ensure that
f(x) + b = 0 corresponds tog(x) = 0.5. Then, the decision function based on the
estimated posterior probabilities byg(x) may differ from the SVM decision function.

Being based on an arbitrary choice ofg(x), pointwise estimates of posterior probabilities
derived from SVM scores should be handled with caution. As discussed by Zhang (2004),
they may only be consistent atf(x) + b = 0, where they may converge towards0.5.

4.2 Unbalanced Classification Losses

SVMs are known to perform well regarding misclassification error, but they provide skewed
decision boundaries for unbalanced classification losses,where the losses associated with
incorrect decisions differ according to the true label. Themainstream approach used to
address this problem consists in using different losses forpositive and negative examples
(Morik et al. 1999, Veropoulos et al. 1999),i.e.

min
f,b

1

2
‖f‖2

H+C+
∑

{i|yi=1}

[1 − (f(xi) + b)]++C−
∑

{i|yi=−1}

[1 + (f(xi) + b)]+ , (10)

where the coefficientsC+ andC− are constants, whose ratio is equal to the ratio of the
lossesℓFN andℓFP pertaining to false negatives and false positives, respectively (Lin et al.
2002).2 Bayes’ decision theory defines the optimal decision rule by positive classification
whenP (y = 1|x) > P0, whereP0 = ℓFP

ℓFP+ℓFN
. We may thus rewriteC+ = C · (1 − P0)

andC− = C · P0. With such definitions, the optimization problem may be interpreted
as an upper-bound on the classification risk defined fromℓFN andℓFP. However, the ma-
chinery of Section 3.2 unveils a major problem: the SVM decision function provided by
sign(f(xi) + b) is not consistent with the probabilistic interpretation ofSVM scores.

We address this problem by deriving another criterion, by requiring that the neg-log-
likelihood of any admissible functionsg(x) is tangent to the hinge loss atf(x) + b = 0.
This leads to the following problem:

min
f,b

1

2
‖f‖2

H + C





∑

{i|yi=1}

[− log(P0) − (1 − P0)(f(xi) + b)]+ +

∑

{i|yi=−1}

[− log(1 − P0) + P0(f(xi) + b)]+



 . (11)

2False negatives/positives respectively designate positive/negative examples incorrectly classified.
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Figure 4: Left: lower (dashed) and upper (plain) posterior probabilities [g(x) +
ε−(x), g(x)+ε+(x)] vs.SVM scoresf(x)+b obtained from (11) withP0 = 0.25; center:
corresponding neg-log-likelihood ofg(x) for positive examplesvs.f(x) + b. right: lower
(dashed) and upper (plain) posterior probabilitiesvs.g(x), for g defined byε+(x) = 0 for
f(x) + b ≤ 0 andε−(x) = 0 for f(x) + b ≥ 0.

This loss differs from (10), in the respect that the margin for positive examples is smaller
than the one for negative examples whenP0 < 0.5. In particular, (10) does not affect
the SVM solution for separable problems, while in (11), the decision boundary moves
towards positive support vectors whenP0 decreases. The analogue of Figure 3, displayed
on Figure 4, shows that one recovers the characteristics of the standard SVM loss, except
that the focus is now on the posterior probabilityP0 defined by Bayes’ decision rule.

5 Experiments with Unbalanced Classifications Losses

It is straightforward to implement (11) in standard SVM packages. For experimenting with
difficult unbalanced two-class problems, we used the Forestdatabase, the largest available
UCI dataset (http://kdd.ics.uci.edu/databases/covertype/). We con-
sider the subproblem of discriminating the positive class Krummholz (20510 examples)
against the negative class Spruce/Fir (211840 examples). The ratio of negative to positive
examples is high, a feature commonly encountered with unbalanced classification losses.

The training set was built by random selection of size 11 000 (1000 and 10 000 examples
from the positive and negative class respectively); a validation set, of size 11 000 was drawn
identically among the other examples; finally, the test set,of size 99 000, was drawn among
the remaining examples.

The performance was measured by the weighted risk functionR = 1
n
(NFNℓFN+NFPℓFP),

whereNFN andNFP are the number of false negatives and false positives, respectively. The
lossℓFP was set to one, andℓFN was successively set to 1, 10 and 100, in order to penalize
more and more heavily errors from the under-represented class.

All approaches were tested using SVMs with a Gaussian kernelon normalized data. The
hyper-parameters were tuned on the validation set for each of theℓFN values. We addition-
ally considered three tuning for the biasb: b̂ is the bias returned by the algorithm;b̂v the
bias returned by minimizingR on the validation set, which is an optimistic estimate of the
bias that could be computed by cross-validation. We also provide results forb∗, the optimal
bias computed on the test set. This “crystal ball” tuning maynot represent an achievable
goal, but it shows how far we are from the optimum. Table 1 compares the riskR obtained
with the three approaches for the different values ofℓFN.

The first line, withℓFN = 1 corresponds to the standard classification error, where all
training criteria are equivalent in theory and in practice.The bias returned by the algorithm
is very close to the optimal one. ForℓFN = 10 and ℓFN = 100, the models obtained
by optimizingC+/C− (10) andP0 (11) achieve better results than the baseline with the
crystal ball bias. While the solutions returned byC+/C− can be significantly improved



Table 1: Errors for 3 different criteria and for 3 different models over the Forest database

ℓFN Baseline, problem (5) C+/C−, problem (10) P0, problem (11)
b̂ b∗ b̂ b̂v b∗ b̂ b̂v b∗

1 0.027 0.026 0.027 0.027 0.026 0.027 0.027 0.026
10 0.167 0.108 0.105 0.104 0.094 0.095 0.104 0.094
100 1.664 0.406 0.403 0.291 0.289 0.295 0.291 0.289

by tuning the bias, our criterion provides results that are very close to the optimum, in the
range of the performances obtained with the bias optimized on an independant validation
set. The new optimization criterion can thus outperform standard approaches for highly
unbalanced problems.

6 Conclusion

This paper introduced a semi-parametric model for classification which provides an inter-
esting viewpoint on SVMs. The non-parametric component provides an intuitive means of
transforming the likelihood into a decision-oriented criterion. This framework was used
here to propose a new parameterization of the hinge loss, dedicated to unbalanced classifi-
cation problems, yielding significant improvements over the classical procedure.

Among other prospectives, we plan to apply the same framework to investigate hinge-like
criteria for decision rules including a reject option, where the classifier abstains when a
pattern is ambiguous. We also aim at defining losses encouraging sparsity in probabilistic
models, such as kernelized logistic regression. We could thus build sparse probabilistic
classifiers, providing an accurate estimation of posteriorprobabilities on a (limited) pre-
defined range of posterior probabilities. In particular, wecould derive decision-oriented
criteria for multi-class probabilistic classifiers. For example, minimizing classification er-
ror only requires to find the class with highest posterior probability, and this search does
not require precise estimates of probabilities outside theinterval [1/K, 1/2], whereK is
the number of classes.
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