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Abstract. This work presents a neural network for the retrieval of im-
ages from text queries. The proposed network is composed of two main
modules: the first one extracts a global picture representation from local
block descriptors while the second one aims at solving the retrieval prob-
lem from the extracted representation. Both modules are trained jointly
to minimize a loss related to the retrieval performance. This approach
is shown to be advantageous when compared to previous models relying
on unsupervised feature extraction: average precision over Corel queries
reaches 26.2% for our model, which should be compared to 21.6% for
PAMIR, the best alternative.

1 Introduction

A system for the retrieval of images from text queries is essential to take full ben-
efit from large picture databases such as stock photography catalogs, newspaper
archives or website images. A widely used solution to this problem is to manually
annotate each image in the targeted database and then use a text search engine
over the annotations. However, this approach is time-consuming and hence costly,
moreover it often results in incomplete and biased annotations which degrades re-
trieval performance. Therefore, several approaches to avoid this manual step have
been proposed in the literature [1–4]. These approaches are either generative auto-
captioning models or discriminative retrieval models. Generative auto-captioning
models aims at inferring textual captions from pictures that can then be searched
with a text retrieval system [1, 3, 4], while discriminative retrieval models do not
introduce an intermediate captioning step and are directly trained to optimize a
criterion related to retrieval performance [2].

In this work, a discriminative approach is proposed. This approach relies on a
neural network composed of two main modules: the first module extracts global
image features from a set of block descriptors, while the second module aims
at solving the retrieval task from the extracted features. The training of both
modules is performed simultaneously through gradient descent, meaning that im-
age feature extraction and global decision parameters are inferred to optimize
a retrieval criterion. This block-based neural network (BBNN) contrasts with
previous discriminative models, such as [2], in which the extraction of image rep-
resentation is chosen prior to training. This difference is shown to yield significant
improvement in practice and BBNN is reported to outperform both generative
and discriminative alternatives over the benchmark Corel dataset [5] (e.g. BBNN
reaches 26.2% average precision over evaluation queries which should be compared
to 21.6% for PAMIR, the best alternative, see Section 5).



The remainder of this paper is organized as follows: Section 2 briefly describes
the related work, Section 3 introduces the proposed approach, Section 4 describes
the text and visual features used to represent queries and images. Next, Section 5
presents the experiments performed over the benchmark Corel dataset. Finally,
Section 6 draws some conclusions.

2 Related Work

As mentioned in introduction, most of the work in image retrieval from text
queries focussed on generative models that attempt to solve the image auto-
annotation task. These models include Cross-Media Relevance Models (CMRM) [3],
Probabilistic Latent Semantic Analysis (PLSA) [4] and Latent Dirichlet Annota-
tion (LDA) [1]. In general, these models introduce different conditional indepen-
dence assumptions between the observation of text and visual features in an image
and the parameters of the model, θ, are selected to maximize the (log) likelihood
of some annotated training images, i.e.

θ∗ = argmax

N∑

i=1

log P (pi, ci|θ),

where (p1, . . . , pN ) and (c1, . . . , cN ) correspond to the N available training pic-
tures and their captions. The trained models are then applied to associate a
caption (or a distribution over text terms) to each of the unannotated test images
and a text retrieval system is then applied over these textual outputs.

The training process of these models hence aims at maximizing the training
data likelihood, which is not directly related to the targeted retrieval task, i.e.
ranking a set of pictures P with respect to a query q such that the picture relevant
to q appear above the others. Better performance can be achieved with a more
suitable criterion, as recently shown by the discriminative model PAMIR [2]. To
the best of our knowledge, the PAMIR approach is the first attempt to train a
model to retrieve images from text queries through the optimization of a ranking
criterion over a set of training queries. Previous discriminative models have only
focussed on categorization ranking problems (e.g. [6, 7]), i.e. the task of ranking
unseen images with respect to queries known at training time, which is not a true
retrieval task in which an unseen query can be submitted.

In this work, we propose to train a neural network with a criterion similar to
the one introduced in [2]. This neural network consists of two modules, the first one
extracts an image representation from a set of local descriptors and the second one
relies on the inferred representation to solve the retrieval problem. The training of
both layers is performed jointly through gradient descent (see Section 3). This ap-
proach is inspired from convolutional neural networks (CNN) [8] which have been
successfully applied to various classification/detection tasks [8, 9]: these models
also formulate the identification of a suitable image representation and the classi-
fication from this representation as a joint problem. The proposed neural network
hence contrasts with the PAMIR model for which the image representation is a-
priori chosen. Our experiments over the benchmark Corel corpus show that this
difference actually yields a significant improvement, e.g. P10 reaches 10.2% for
BBNN compared to 8.8% for PAMIR (see Section 5).



3 A Neural Network for Image Retrieval
This section presents the loss function L adopted to discriminatively train an
image retrieval model. It then describes the neural network proposed for image
retrieval and its training procedure.

3.1 Discriminative Training for Image Retrieval

Before introducing a loss suitable for image retrieval, we should first recall the
objective of a retrieval model: given a query q and a set of pictures P , a retrieval
model M should ideally rank the pictures of P such that the pictures relevant to
q appear above the others, i.e.

∀q, ∀p+ ∈ R(q), ∀p− /∈ R(q), rkM (q, p+) < rkM (q, p−), (1)

where R(q) is the set of queries relevant to q and rkM (q, p) is the rank of picture
p in the ranking outputted by M for query q.

In order to achieve such an objective, retrieval models generally introduce
a scoring function F that assigns a real value F (q, p) to any query/picture pair
(q, p). Given a query q, this function is used to rank the pictures of P by decreasing
scores. In this case, the ideal property (1) hence translate to:

∀q, ∀p+ ∈ R(q), ∀p− /∈ R(q), F (q, p+) > F (q, p−). (2)

In order to identify an appropriate function F from a set of training data, the
following loss has been introduced [10],

L(F ; Dtrain) =

N∑

k=1

l(F ; qk, p+

k , p−k )

=

N∑

k=1

max(0, ǫk − F (qk, p+

k ) + F (qk, p−k )) (3)

where ∀k, ǫk > 0 and Dtrain is a set of N triplets {(qk, p+

k , p−k ), ∀k = 1, . . . , N}
in which qk is a text query, p+

k is a picture relevant to q and p−k is a picture
non-relevant to q. This loss L can be referred to as a margin loss since it penalizes
the functions F for which there exists training examples (qk, p+

k , p−k ) for which
the score F (qk, p+

k ) is not greater than F (qk, p−k ) by at least a margin of ǫk. This
loss has already been successfully applied to text retrieval problems [10, 11] and
to image retrieval problems [2].

Regarding the choice of the margin value ǫk, two alternatives have been pro-
posed previously [2]. A first option, constant-ǫ, is to set ǫk to be the same for all
examples, e.g. ∀k, ǫk = 1 (the value 1 is chosen arbitrarily here, any positive value
would lead to the same optimization problem). Another option, text-ǫ, which can
be applied only if the training pictures are annotated with textual captions, is
to set ǫk to be greater than the difference of scores outputted by a text retrieval
system F text, i.e.

ǫk = max(ǫ, F text(qk, c+

k )− F text(qk, c−k )), (4)

where c+

k , c−k are the captions of the pictures p+

k , p−k and ǫ > 0. This second
option has previously shown to be more effective [2] and will hence be used in the
following.
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Fig. 1. The 4 successive layers of BBNN: local feature extraction (L1), spacial averaging
(A2), text mapping (T3) and text matching (M4).

3.2 Block-Based Neural Network Architecture

As explained above, our goal is to identify a scoring function q, p → F (q, p)
that minimizes L(F ; Dtrain). For that purpose, we first introduce the block-based
neural network (BBNN), q, p→ Fw(q, p), and we then explain how the parameters
w∗ that minimize w → L(Fw; Dtrain) are identified through stochastic gradient
descent.

The proposed neural network is composed of 4 layers (see Figure 1): the local
feature extraction layer L1, the averaging layer A2, the text mapping layer T 3 and
the query matching layer M4. The first layer L1 extracts local feature descriptors
from different positions of the input picture p. The second layer A2 computes the
average of the local feature vectors extracted by L1. The text mapping layer T 3
then projects the output of A2 into the text space. The layer M4 finally compares
the obtained textual vector with the input query q leading to the output F (q, p).
The layers are detailed as follows:

L1: Local Feature Extraction This layer extracts the same type of features at
different positions of the input picture p through the following process: first, p
is divided into B (possibly overlapping) blocks of the same size, {b1, . . . , bB},
and each block is assigned a vector representation, i.e. bi ∈ R

N0 (see Section 4).
The same parametric function is then applied over each block vector,

∀i, fi = tanh(W1bi + B1),

where tanh is the component-wise hyperbolic tangent function, W1 ∈ R
N1×N0

and B1 ∈ N1 are the model parameters. The output dimension N1 is a hyper-
parameter of the model.

A2: Spacial Averaging This layer summarizes the B output vectors of L1 into
a single N1-dimensional vector through averaging:

f =
1

B

B∑

i=1

fi.

The succession of L1 and A2 is inspired from the bag-of-visterms (BOV)
representation which has been widely used in computer vision in the recent
years, e.g. [1, 12]. In this case, a first quantization layer maps each vector bi



to a single discrete value among Nv, which is equivalent to map bi to a Nv

dimensional binary vector in which only one component is 1. In a second step,
the input image is represented by a histogram through the averaging of its
binary vectors. Here, we replace the quantization step by L1, which has two
main advantages: first, the vectors fi are continuous non-sparse vectors which
allows to better model correlation between blocks. Second, the parameters of
L1 are inferred jointly with the next layer parameters to solve the retrieval
problem. This contrasts with the BOV approach in which the quantization
parameters are generally inferred through generative learning (e.g. k-means
clustering).

T 3 : Text Mapping This layer takes as input the representation f of picture p
as outputted by A2. It then outputs a bag-of-words (BOW) vector t, i.e. a
vocabulary-sized vector in which each component i represents the weight of
term i in picture p (see Section 4 for further description on the BOW represen-
tation). This mapping from f to t is performed according to the parametric
function:

t = W3 tanh(W2f + B2) + B3

where W2 ∈ R
N2×N1 , B2 ∈ R

N2 , W3 ∈ R
V ×N2 and B3 ∈ R

V are the parame-
ters of layer T 3, V is the vocabulary size and N3 is a hyperparameter to tune
the capacity of T 3.

M4: Query Matching This layer takes two BOW vectors as input: t, the output
of T 3 that represents the input picture p, and q, the input query. It then
outputs a real-valued score s. This score is the inner product of t and q,

s =

V∑

i=1

ti · qi.

This matching layer is inspired from the text retrieval literature in which text
documents and text queries are commonly compared according to the inner
product of their BOW representation [13].

This neural network approach is inspired from CNN classification models [8] for its
first layers (L1, A2, T 3) and from text retrieval systems for its last layer (i.e. BOW
inner product). Like CNN for classification, our model formulates the problem of
image representation and retrieval in a single integrated framework. Moreover like
CNN, our parameterization assumes that the final task can be performed through
the application of the same local feature extractor at different locations in the
image. Our BBNN approach is however not a CNN strictly speaking: the local
block descriptors bi to which the first layer is applied do not simply consist of
the gray level of the block pixels like in a CNN. In our case, we extract a N0

dimensional feature vector summarizing color and texture statistics of the block,
as explained in Section 4. This difference is motivated by two main aspects of
our task: color information is helpful for image retrieval (see previous works such
as [2]) and, moreover, the limited amount of training data prevents us from using
a purely data-driven feature extraction technique (see Section 5 which depicts the
small number of relevant pictures available for each query).



3.3 Stochastic Gradient Training Procedure

Stochastic gradient descent is the most widely used training technique for neural
networks applied to large corpora. Its main advantages are its robustness with re-
spect to local minima, and its fast convergence. We therefore decided to apply this
optimization technique to identify the weight vector w = [W1; W2; W3; B1; B2; B3]
that minimizes the loss w → L(Fw; Dtrain), which yields the following algorithm:

Initialize w.
Repeat

Pick (q, p+, p−) ∈ Dtrain randomly with replacement.
Compute the gradient ∂l

∂w
(Fw; q, p+, p−).

Update weights w ← w − λ ∂l
∂w

(Fw; q, p+, p−).
Until termination criterion.

It should be noted that this version of stochastic gradient training differs from
the most used implementation in its sampling process [14]: we choose to sample
a training triplet with replacement at each iteration rather than processing the
samples sequentially in a shuffled version of the training set. While having no
impact on the distribution of the examples seen during training, this difference
avoids the costly shuffle for large triplet sets (e.g. there are ∼ 108 triplets for the
Corel dataset presented in Section 5).

The other aspects of the training process are more classical: the weight ini-
tialization is performed according to the methodology defined in [14] and early
stopping is used as the termination criterion [14], i.e. training is stopped when
performance over a held-out validation set Dvalid stops improving. The learning
rate λ is selected through cross-validation, as are the other hyperparameters of
the model (i.e. N1, N2).

4 Text and Visual Features

In this section, we describe the bag-of-words representation used to represent text
queries and the edge and color statistics used to represent image blocks.

4.1 Text Features

The text queries are assigned a bag-of-words representation [13]. This represen-
tation assigns a vector to each query q, i.e. q = (q1, . . . , qV ) where V is the
vocabulary size and qi is the weight of term i in query q. In our case, this weight
is assigned according to the well known normalized tf idf weighting, i.e.

qi = tfq,i · idfi,

where the term frequency tfq,i is the number of occurrences of i in q and the inverse
document frequency idfi is defined as idfi = −log(ri), ri referring to the fraction of
training picture captions containing term i. It should be noted that this definition
of idf hypothesizes that each training picture is labeled with a caption. This is the
case for the Corel data used in our experiments (see Section 5). However, were
such captions to be unavailable, it would still be possible to compute idf over
another textual corpus, such as an encyclopedia.



Table 1. Query Set Statistics.

Qtrain Qvalid Qtest

Number of queries 7,221 1,962 2,241
Avg. # of rel. pic. per q. 5.33 2.44 2.37

Vocabulary size 179
Avg. # of words per query 2.78 2.51 2.51

4.2 Image Block Features

The image block descriptors bi, on which the first layer of our model relies (see
Section 3), summarizes edges and color statistics in the following manner.

Color information is represented through a NC -bin histogram. This histogram
relies on a codebook inferred from k-means clustering of the RGB pixels of
the training pictures.

Edge information is represented through uniform Local Binary Pattern (uLBP)
histograms. These histograms summarize texture information through the bi-
nary comparison of pixel intensities between each pixel and its eight neighbors.
These features have shown to be effective over various computer vision tasks,
including retrieval [15].

Color and edge histograms are then concatenated into a single block vector. Fur-
thermore, a log-scale is adopted in the histograms, i.e. each pixels count c is
replaced by log(1 + c), since such non-linear scalings have already shown to be
advantageous in previous work [16, 13].

5 Experiments and Results

This section first describes the experimental setup and then discusses the results.

5.1 Experimental Setup

The experiments presented in this section have been performed over the Corel

dataset according to the setup defined in [5]. This setup has been widely used
in the image retrieval community [3, 2, 4] and has become a kind of benchmark
protocol for image retrieval. The data used consist of 4, 500 development pictures
and 500 test pictures. The size of each picture is either 384 × 256 or 256 × 384.
We further split the development set into a 4, 000-picture training set and a 500-
picture validation set. This hence leads to three picture sets, Ptrain, Pvalid and
Ptest. Each picture is further labeled with a caption relying on a 179-word vo-
cabulary. These captions have been used for two purposes: for the definition of
relevance assessments (i.e. we considered a picture to be relevant to a query q if
its caption contained all query terms as explained in [2]) and for text − ǫ train-
ing (in this case, we used inner product of BOW vector as F text function, see
equation (4)).

The queries, Qtrain, Qvalid and Qtest, used for training, validation and evalu-
ation correspond to all subsets of the 179 vocabulary words for which there is at
least one relevant picture within the training, validation or test pictures respec-
tively. Table 1 summarizes query set statistics. The three query/picture datasets
(Qtrain, Ptrain), (Qvalid, Pvalid) and (Qtest, Ptest) have been respectively used to



Table 2. P10 and mean average precision (%) over test queries.

CMRM PLSA PAMIR BBNN

P10 5.8 7.1 8.8 10.2

AvgP 14.7 16.7 21.6 26.2

train the model (i.e. select the parameters that minimize the loss L), to select
the model hyperparameters (i.e. the learning rate λ and the number of hidden
units N1, N2) and to perform evaluation. For this evaluation, BBNN performance
is measured with precision at top 10 (P10) and average precision (AvgP), the
standard measures for information retrieval benchmarks [13]. These measures are
complementary and evaluate different retrieval scenarios: P10 focuses on the first
positions of the ranking, as the user of a web search engine would do, while
AvgP focuses on the whole ranking, as an illustrator requiring all pictures about
a specific theme would do. For any query, P10 measures the precision within top
10 positions (i.e. the percentage of relevant pictures within the 10 top-ranked
pictures), while AvgP corresponds to the average of precision measured at each
position where a relevant picture appears. Both measures have been averaged over
the whole query set. BBNN has then been compared with the alternative models
CMRM, PLSA and PAMIR which have been evaluated according to the same
setup, as explained in [2].

Regarding picture preprocessing, 64 × 64 square blocks have been extracted
every 32 pixels horizontally and vertically, leading to 77 blocks per picture. The
size has been chosen as a trade-off between obtaining rich block statistics (i.e.
having large blocks with many pixels) and extracting local patterns from the im-
age (i.e. having many small blocks). The overlap of 32 pixels has been selected
such that all pixels belong to the same number of blocks, which avoids the pre-
dominance of pixels located at the block borders. Concerning the color codebook
size, we defined NC = 50 which allows a perceptually good picture reconstruction
while keeping the block histogram size reasonable. Although it would be more
appropriate to select all these parameters through cross-validation, these a-priori
choices already led to promising results, as reported in the next section.

5.2 Results

Table 2 reports the results obtained over the test queries. BBNN outperforms all
other evaluated techniques for both measures. For AvgP, the relative improvement
over CMRM, PLSA and PAMIR is respectively +78%, +57% and +21%. For P10,
BBNN reaches 10.2%, which means that, on average,∼ 1 relevant picture appears
within the top 10 positions. This number corresponds to good performance consid-
ering the low number of relevant pictures per query (2.37 on average, see Table 1).
It fact, P10 cannot exceed 20.2% over Corel evaluation queries. In order to check
whether the improvements observed for P10 and AvgP on the whole query set
could be due to a few queries, we further compared BBNN results to those of the
other models according to the Wilcoxon signed rank test [17]. The test rejected
this hypothesis with 95% confidence for all models and both measures, which
is indicated by bold numbers in the table. This means that BBNN consistently
outperforms the alternative approaches on the test query set.



Table 3. P10 and mean average precision (%) over single-word test queries.

CMRM PLSA PAMIR BBNN

P10 17.8 21.3 25.3 28.5

AvgP 19.2 24.5 30.7 35.0

The results reported in Table 2 outline the effectiveness of discriminative ap-
proaches (PAMIR and BBNN) which both outperform the generative alternative
(CMRM and PLSA). This shows the appropriateness of the selected loss func-
tion (3) for image retrieval problems. This outcome is in agreement with the text
retrieval literature that recently reported good results with models relying on
similar criteria [10, 16, 11].

As mentioned above, a difference in performance is also observed between
the two discriminative models: BBNN is reported to outperform PAMIR (26.2%
vs 21.6% AvgP). Since both models rely on the optimization of the same loss
function, the observed difference is certainly due to the parameterization of the
models. On one hand, PAMIR takes as input a bag-of-visterms representation
of images, this representation being inferred from local descriptor through un-
supervised clustering [2]. On the other hand, BBNN formulates the problem of
representing images from local descriptors and the image retrieval task in a single
integrated framework (see Section 3). This joint formulation allows the identifica-
tion of a problem-specific image representation, which seems more effective than
the bag-of-visterms representation.

Since several studies report results only for single word queries (e.g. [4, 5]),
we also trained and evaluated the model over the subset of our train and test
queries containing only 1 word. The results of this experiments are reported in
Table 3. This evaluation further confirms the advantage of BBNN which yields a
significant improvement is this case also. It should be noted that the difference
observed between Table 2 and Table 3 does not mean that the retrieval models
are more adapted to single-word queries: it only reflects the fact that single-word
queries correspond to an easier retrieval problem (the average number of relevant
documents per query is 2.4 for the whole Qtest set and 9.4 for its single-word
query subset).

Overall, the results of both retrieval experiments confirm the advantage of
supervised feature extraction that has already been observed with CNN over
other tasks, such as classification or detection [8, 9].

6 Conclusions

We have introduced a discriminative model for the retrieval of images from text
queries. This model relies on a neural network architecture inspired from convo-
lutional neural networks [8]. The proposed network, Block-Based Neural Network
(BBNN), formulates the identification of global image features from local block
descriptors and the retrieval of images from such features as a joint problem.
This approach is shown to be effective over the benchmark Corel dataset [5]. In
particular, BBNN is reported to outperform both generative and discriminative
state-of-the-art alternatives. For instance, the mean average precision over Corel

test queries has been improved by 21% relative compared to the second best



model PAMIR [2] (26.2% vs 21.6%). These results are promising and need to be
confirmed over other datasets. It could also be interesting to extend the BBNN
approach such that it could be applied to other retrieval problems, such as video
retrieval.
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