arXiv:1610.08613v1 [cs.LG] 27 Oct 2016

Can Active Memory Replace Attention?

tukasz Kaiser Samy Bengio
Google Brain Google Brain
lukaszkaiser@google.com bengio@google.com
Abstract

Several mechanisms to focus attention of a neural networketected parts of

its input or memory have been used successfully in deepifeamodels in re-

centyears. Attention has improved image classificatioag@captioning, speech
recognition, generative models, and learning algorithasks, but it had probably
the largest impact on neural machine translation.

Recently, similar improvements have been obtained ustegmtive mechanisms
that do not focus on a single part of a memory but operate ouf &lin parallel,
in a uniform way. Such mechanism, which we aatlive memory, improved over
attention in algorithmic tasks, image processing, and imegative modelling.

So far, however, active memory has not improved over ataritr most natural

language processing tasks, in particular for machine latios. We analyze this
shortcoming in this paper and propose an extended modetigéanemory that

matches existing attention models on neural machine &tosland generalizes
better to longer sentences. We investigate this model aplhiexwhy previous

active memory models did not succeed. Finally, we discusswéttive memory
brings most benefits and where attention can be a betterechoic

1 Introduction

Recent successes of deep neural networks have spanned oraaynd, from computer vision|[1]

to speech recognition[2] and many other tasks. In particséauence-to-sequence recurrent neural
networks (RNNs) with long short-term memory (LSTM) cell$ fiave proven especially successful
at natural language processing (NLP) tasks, including imadhanslation[4, 5,16].

The basic sequence-to-sequence architecture for madhingdtion is composed of an RNN en-
coder which reads the source sentence one token at a timesausfbrms it into a fixed-sized state
vector. This is followed by an RNN decoder, which generdteddrget sentence, one token at atime,
from the state vector. While a pure sequence-to-sequenuaeeat neural network can already ob-
tain good translation results|[4}, 6], it suffers from thetftmat the whole sentence to be translated
needs to be encoded into a single fixed-size vector. Thislglemnifests itself in the degradation of
translation quality on longer sentences (see Figure 6) artd Bven more when there is less training
data [7].

In [5], a successful mechanism to overcome this problem wesemted: a neural model of attention.
In a sequence-to-sequence model with attention, one sefanoutputs of all steps of the encoder
and concatenates them tar@mory tensor. At each step of the decoder, a probability distidiout
over this memory is computed and used to estimate a weightzdge encoder representation to be
used as input to the next decoder step. The decoder can loeusedhn different parts of the encoder
representation while producing tokens. Fidgure 1 illustsat single step of this process.

The attention mechanism has proven useful well beyond tlvlhimatranslation task. Image models
can benefit from attention too; for instance, image captigmhodels can focus on the relevant parts
of the image when describing it/[8]; generative models faag®s yield especially good results with

30th Conference on Neural Information Processing Syst&iizg 2016), Barcelona, Spain.

http://arxiv.org/abs/1610.08613v1

new state new memory = memory

o rr]

mask over memory

memory

A X N N N N A

Figure 1: Attention model. The state vector is used to compuprobability distribution over
memory. Weighted average of memory elements, with focus@obdthem, is used to compute the
new state.

attention, as was demonstrated by the DRAW maddel [9], wHerenetwork focuses on a part of the
image to produce at a given time. Another interesting use-far the attention mechanism is the
Neural Turing Machine [10], which can learn basic algorithamd generalize beyond the length of
the training instances.

While the attention mechanism is very successful, one itapblimitation is built into its definition.
Since the attention mask is computed using a Softmax, it ipiten tries to focus on a@ingle
element of the memory it is attending to. In the extreme calse,known a$ard attention [8], one

of the memory elements is selected and the selection isttaising the REINFORCE algorithm
(since this is not differentiable) [11]. It is easy to demate that this restriction can make some
tasks almost unlearnable for an attention model. For exaimgansider the task of adding two
decimal numbers, presented one after another like this:

Input (1250 +|2]|3|1]|5
Output || 3|5[6|5

A recurrent neural network can have the carry-over in itesiad could learn to shift its attention to
subsequent digits. But that is only possible if theretas®attention heads, attending to the first and
to the second number. If only a single attention mechanispnésent, the model will have a hard
time learning this task and will not generalize properliywas demonstrated ih [12, 113].

A solution to this problem, already proposed in the receaatdiure (for instance, the Neural GPU
from [12]), is to allow the model to access and change all isrmory at each decoding step. We
will call this mechanism amctive memory. While it might seem more expensive than attention
models, it is actually not, since the attention mechanisedad¢o compute an attention score for all
its memory as well in order to focus on the most appropriate pae approximate complexity of an
attention mechanism is therefore the same as the compleiibye active memory. In practice, we
get step-times around7 second for an active memory model, the Extended Neural Getduced
below, and1.2 second for a comparable model with an attention mechanism.a&ive memory
can potentially make parallel computations on the whole orgnas depicted in Figufd 2.

new memaory

memory

.t rrrrr 1 1 [|

Figure 2: Active memory model. The whole memory takes pathexcomputation at every step.
Each element of memory is active and changes in a uniformevgy, using a convolution.

Active memory is a natural choice for image models as thewlliswperate on a canvas. And
indeed, recent works have shown that actively updating dineas that will be used to produce the
final results can be beneficial. Residual networks [14], tiveently best performing model on the
ImageNet task, falls into this category. [n[15] it was shothiat the weights of different layers

of a residual network can be tied (so it becomes recurrerif)pwt degrading performance. Other
models that operate on the whole canvas at each step weenpedsn [16/ 17]. Both of these

models are generative and show very good performance,iyighiktter results than the original
DRAW model. Thus, the active memory approach seems to beer lobbice for image models.

But what about non-image models? The Neural GRPUSs [12] detraiad that active memory yields
superior results on algorithmic tasks. But can it be appiteceal-world problems? In particular,
the original attention model brought a great success taraldanguage processing, esp. to neural
machine translation. Can active memory be applied to tels¢a a large scale?

We answer this question positively, by presenting an exdersf the Neural GPU model that yields
good results for neural machine translation. This modehadlus to investigate in depth a number of
guestions about the relationship between attention andeanemory. We clarify why the previous
active memory model did not succeed on machine translatjoshbwing how it is related to the
inherent dependencies in the target distributions, andudy s few variants of the model that show
how a recurrent structure on the output side is necessatytéinogood results.

2 Active Memory Models

In the previous section, we used the teactive memory broadly, referring to any model where every
part of the memory undergoes active change at every ste. i§m contrast to attention models
where only a small part of the memory changes at every staphere the memory remains constant.

The exact implementation of an active change of the memoghtwiary from model to model. In
the present paper, we will focus on the most common ways b@age is implemented that all rely
on theconvolution operator.

The convolution acts on a kernel bank and a 3-dimensionaoten Our kernel banks are 4-
dimensional tensors of shape,, k., m, m], i.e., they contairk,, - kj, - m? parameters, where,
andk;, are kernel width and height. A kernel batikcan be convolved with a 3-dimensional tensor
s of shapdw, h, m] which results in the tensdr x s of the same shape aslefined by:

[Kw /2] kn/2] m
Ussleyil = S0 S Ssletuy+vd- Ui
u=|—kuw /2] v=|—kp /2] c=1

In the equation above the indext+ « might sometimes be negative or larger than the sizg ahd

in such cases we assume the valu@ i$his corresponds to the standard convolution operatat use
in many deep learning toolkits, with zero padding on bottesidnd stridd. Using the standard
operator has the advantage that it is heavily optimized anddirectly benefit from any new work
(e.g., [18]) on optimizing convolutions.

Given a memory tensos, an active memory model will produce the next memehby using
a number of convolutions on and combining them. In the most basic settingeadual active
memory model will be defined as:

s’ =5+Uxs,
i.e., it will only add to an already existing state.

While residual models have been successful in image asdli4j and generation [16], they might
suffer from the vanishing gradient problem in the same wagasrrent neural networks do. There-
fore, in the same spirit as LSTM gatés [3] and GRU gétes [1@rave over pure RNNs, one can
introduce convolutional LSTM and GRU operators. Let us foon the convolutional GRU, which
we define in the same way as in[12], namely:

CGRU(s) = u® s+ (1 —u) © tanh(U = (r ©® s) + B), where

1
u=oc(U s+ B') and r=o0(U"*s+ B"). @

As a baseline for our investigation of active memory modeiks,will use the Neural GPU model
from [12], depicted in Figurel3, and defined as follows. Theegisequenceé = (i1, ...,i,) of n

i1 01

CGRU CGRU; CGRU CGRU; T

in =— On

So S1 Sn—1 Sn
Figure 3: Neural GPU witR layers and widthv = 3 unfolded in time.

discrete symbols fronf0, . .., I'} is first embedded into the tensay by concatenating the vectors
obtained from an embedding lookup of the input symbols it#diist column. More precisely, we
create the starting tenseg of shape[w, n, m] by using an embedding matriX of shape[l, m|
and settingso[0, k&, :] = E[éx] (in python notation) for alk = 1...n (hereiy,...,i, is the input).
All other elements 0§, are set td). Then, we apply different CGRU gates in turn fot steps to
produce the final tensek;,,:

st+1 = CGRU;(CGRU;_1...CGRU(s¢)...) and san = Sn.

The result of a Neural GPU is produced by multiplying eachita the first column okg,, by an
output matrixO to obtain the logitd;, = Ossy,|[0, k,:] and then selecting the largest ong;: =
argmax(lx). During training we use the standard loss function, i.e.cempute a Softmax over the
logits [}, and use the negative log probability of the target as the loss

2.1 The Markovian Neural GPU

The baseline Neural GPU model yields very poor results onaiewachine translation: its per-word
perplexity on WMT] does not go belov80 (good models on this task go belaly, and its BLEU
scores are also very bad (beléwwhile good models are higher thaf). Which part of the model
is responsible for such bad results?

It turns out that the main culprit is the output generator.ofg can see in Figuté 3 above, every
output symbol is generated independently of all other aigpunbols, conditionally only on the state

sgn- This is fine for learning purely deterministic functionggl the toy tasks the Neural GPU was

designed for. But it does not work for harder real-world peofts, where there could be multiple

possible outputs for each input.

The most basic way to mitigate this problem is to make evetgutisymbol depend on the previous
output. This only changes the output generation, not the,sta the definition of the model is the
same as above unti,. The result is then obtained by multiplying by an output xadr each item
from the first column okg, concatenated with the embedding of the previous outputrgéeettby
another embedding matri¥’:

Ir = O concatsg, [0, k,:], F'og_1).
Fork = 0 we use a special symbo}_; = GO and, to get the output, we selegt = argmax(l).
During training we use the standard loss function, i.e., a@pute a Softmax over the logits and
use the negative log probability of the target as the losso Ads is standard in recurrent networKs [4],
we use teacher forcing, i.e., during training we providettbe output label as;,_; instead of using
the previous output generated by the model. This meanshhdbss incurred from generating
does not directly influence the value®f_;. We depict this model in Figuté 4.

2.2 The Extended Neural GPU

The Markovian Neural GPU yields much better results on Henezhine translation than the base-
line model: its per-word perplexity reaches abbiand its BLEU scores improve a bit. But these
results are still far from those achieved by models withrditx.

1See Sectioh]3 for more details on the experimental setting.

i1 H— 014
1 02+
1 03+
ECGRQ%CGR% ce CGRU; CGRU |11
: 0 .
in i On
S0

S1 Sn—1 Sn

Figure 4: Markovian Neural GPU. Each outmyt is conditionally dependent on the final tensor
sgn = Sp, and the previous output symbg]_; .

Po—o01 P1—o02 p2— -+« —Pn—1 Op
11
: CGRU CGRU --- CGRU CGRUY[JCGRU[JCGRU? --- CGRU*
in
So S1 Sn =do dy d2 dn,

Figure 5: Extended Neural GPU with active memory decodes.tBe text below for definition.

Could it be that the Markovian dependence of the outputsasmeak for this problem, that a full
recurrent dependence of the state is needed for good penficef? We test this by extending the
baseline model with aactive memory decoder, as depicted in Figufd 5.

The definition of the Extended Neural GPU follows the basefitodel untilsg,, = s,,. We consider
sn as the starting point for the active memory decoder, i.e.s@td, = s,. In the active memory
decoder we will also use a separatéput tape tensor p of the same shape &, i.e.,p is of shape
[w, n, m]. We start withp, set to all0 and define the decoder states by

diy1 = CGRUY(CGRUY | (...CGRU%(s¢,pt) - .-, pe), Pe)s

whereCGRUs defined just like CGRU in Equatiofil(1) but with additionaput as highlighted
below in bold:

CGRU%(s,p) = u®s+ (1 —u)®tanh(U *(r ©s) + W = p+ B), where

2

u=cU xs+W'xp+B') and r=0U"*xs+W"” xp+ B"). @
We generate thé-th output by multiplying thek-th vector in the first column ofy, by the output
matrixO, i.e.,ly = O di[0, k, :]. We then seleci;, = argmax(l;). The symboby, is then embedded
back into a dense representation using another embeddinig fRaand we put it into thé-th place
on the output tape, i.e., we define

pri1 =pr With pg[0,k,:] < E'og.

In this way, we accumulate (embedded) outputs step-byestepe output tapg. Each step, has
access to all outputs produced in all steps before

Again, it is important to note that during training we usectear forcing, i.e., we provide the true
output labels fop,, instead of using the outputs generated by the model.

2.3 Related Models

A convolutional architecture has already been used to oigiadd results in word-level neural ma-
chine translation in[[20] and more recently in [21]. Thesedelause a standard RNN on top of
the convolution to generate the output and avoid the outppéddence problem in this way. But
the state of this RNN has a fixed size, and in the first one thiesee representation generated by
the convolutional network is also a fixed-size vector. Tfane while superficially similar to active
memory, these models are more similar to fixed-size memoetsoThe first one suffers from all
the limitations of sequence-to-sequence models witheemtbdn [4] 6] that we discussed before.

Another recently introduced model, the Grid LSTM[22], midgdok less related to active memory,
as it does not use convolutions at all. Butin fact it is to géeextend an active memory model — the
memory is on thaliagonal of the grid of the running LSTM cells. The Reencoder architexfor
neural machine translation introduced in that paper isfloee related to the Extended Neural GPU.
But it differs in a number of ways. For one, the input is preddstep-wise, so the network cannot
start processing the whole input in parallel, as in our modke diagonal memory changes in size
and the model is a 3-dimensional grid, which might not be sea®y for language processing. The
Reencoder also does not use convolutions and this is cfociaérformance. The experiments from
[22] are only performed on a very small dataset of 44K sharteseces. This is almost 1000 times
smaller than the dataset we are experimenting with and makeslear whether Grid LSTMs can
be applied to large-scale real-world tasks.

In image processing, in addition to the captioning [8] andegative models [16, 17] that we men-
tioned before, there are several other active memory moddisy useconvolutional LSTMs, an
architecture similar to CGRU, and have recently been used/éather predictior [23] and image
compression [24], in both cases surpassing the stateeeduth

3 Experiments

Since all components of our models (defined above) are diffeable, we can train them using any
stochastic gradient descent optimizer. For the resultsgmted in this paper we used the Adam
optimizer [25] withe = 10~* and gradients norm clipped to The number of layers was set to
[= 2, the width of the state tensors was constant at 4, the number of maps was = 512, and
the convolution kernels width and height was always= k;, = 34

As our main test, we train the models discussed above and @irmsttention model on the
WMT’14 English-French translation task. This is the sansk tdat was used to introduce atten-
tion [5], but — to avoid the problem with theNkK token — we spell-out each word that is not in
the vocabulary. More precisely, we use a 32K vocabularyitt@itides all characters and the most
common words, and every word that is not in the vocabulanpaled-out letter-by-letter. We
also include a specia@PACE symbol, which is used to mark spaces between charactersseuena
spaces between words). We train without any data filterinthenWVMT’14 corpus and test on the
WMT'14 test set (newstest’14).

As a baseline, we use a GRU model with attention that is alidestical to the original one from
[5], except that it has 2 layers of GRU cells, each with 102dsuTokens from the vocabulary are
embedded into vectors of size 512, and attention is put otothiayer. This model is identical as the
onein [7], exceptthatis uses GRU cells instead of LSTM céllsas about 20M parameters, while
our Extended Neural GPU model has abbliM parameters. Better results have been reported on
this task with attention models with more parameters, buaiweat a baseline similar in size to the
active memory model we are using.

When decoding from the Extendend Neural GPU model, one hpsotade the expected size of
the output, as it determines the size of the memory. We tesizals between input size and dou-
ble the input size using a greedy decoder and pick the resthitsmallest log-perplexity (highest
likelihood). This is expensive, so we only use a very basenbaearch with beam of sizzand
no length normalization. It is possible to reduce the cogtiaglicting the output length: we tried a
basic estimator based just on input sentence length andriéased the BLEU score loy3. Better

20ur model was implemented using TensorFlow] [26]. Its codi be available as open-source at
https://github.com/tensorflow/models/tree/master/neural_gpu/extended.

https://github.com/tensorflow/models/tree/master/neural_gpu/extended

Model Perplexity (log) | BLEU
Neural GPU 30.1(3.5) <5
Markovian Neural GPU 11.8(2.5) <5
Extended Neural GPU 3.3(1.19) 29.6
GRU+Attention 3.4(1.22) 26.4

Table 1: Results on the WMT English->French translatiok.tA&e provide the average per-word
perplexity (and its logarithm in parenthesis) and the BLEbDrs. Perplexity is computed on the test
set with the ground truth provided, so it do not depend on #uader.

training and decoding could remove the need to predict au¢mgth, but we leave this for future
work.

For the baseline model, we use a full beam-search decodebaim of sizd 2, length normaliza-
tion and an attention coverage penalty in the decoder. $lkidbasic penalty that pushes the decoder
to attend to all words in the source sentence. We experirdavit more elaborate methods follow-
ing [27] but it did not improve our results. The parameterslémgth normalization and coverage
penalty are tuned on the development set (newstest'13) fimakeBLEU scores and per-word per-
plexities for these different models are presented in TabMorse models have higher variance of
their BLEU scores, so we only write 5 for these models.

One can see from Taklé 1 that an active memory model can indatmh an attention model on the

machine translation task, even with slightly fewer parareetlt is interesting to note that the active
memory model does not need the length normalization thae@essary for the attention model

(esp. when rare words are spelled). We conjecture thataetamory inherently generalizes better
from shorter examples and makes decoding easier, a welcewm gsince tuning decoders is a large
problem in sequence-to-sequence models.

In addition to the summary results from Table 1, we analybedgerformance of the models on
sentences of different lengths. This was the key problenesidby the attention mechanism, so it is
worth asking if active memory solves it as well. In Figlie 6 plet the BLEU scores on the test set
for sentences in each length bucket, bucketingy.e., for lengthg0, 10], (10, 20] and so on. We
plot the curves for the Extended Neural GPU model, the lorsgliyee GRU model with attention,
and — for comparison — we add the numbers for a non-attentadehfrom Figure 2 of([5]. (Note
that these numbers are for a model that uses different to&tom, so they are not fully comparable,
but still provide a context.)

As can be seen, our active memory model is less sensitiventersee length than the attention
baseline. It indeed solves the problem that the attentiochar@ism was designed to solve.

Parsing. In addition to the main large-scale translation task, weetbthe Extended Neural GPU
on English constituency parsing, the same task &s in [7]. Miewsed the standard WSJ dataset for
training. It is small by neural network standards, as it aorg only 40K sentences. We trained the
Extended Neural GPU with the same settings as above, onltyrwit= 256 (instead ofm = 512)
and dropout 0o80% in each step. During decoding, we selected well-bracketgputs with the
right number of POS-tags from all lengths considered. Eatalth with the standard EVALB tool on
the standard WSJ 23 test set, we gotl F1 score. This is lower tha#B.3 reported in[[7], but we
didn’t use any of their optimizations (no early stopping R0S-tag substitution, no special tuning).
Since a pure sequence-to-sequence model has F1 score l@allie this shows that the Extended
Neural GPU is versatile and can learn and generalize wefi emesmall data-sets.

4 Discussion

To better understand the main shortcoming of previous @acetiemory models, let us look at the
average log-perplexities of different attention model3able[1. A pure Neural GPU model yields
3.5, a Markovian one yield.5, and only a model with full dependence, trained with teabbi®ing,
achieved .3. The recurrent dependence in generating the output disisibturns out to be the key
to achieving good performance.

30

27

24

21

18

Bl Extended Neural GPU

BLEU score

B GRU+Attention

15 No Attention
0 10 20 30 40 50

Sentence length

Figure 6: BLEU score (the higher the better) vs source seetlmgth.

We find it illuminating that the issue of dependencies in thgoat distribution can be disentangled
from the particularities of the model or model class. Inieaworks, such dependence (and training
with teacher forcing) was always used in LSTM and GRU modais,very rarely in other kinds
models. We show that it can be beneficial to consider thisisgparately from the model archi-
tecture. It allows us to create the Extended Neural GPU aisdMaty of thinking might also prove
fruitful for other classes of models.

When the issue of recurrent output dependencies is addressee do in the Extended Neural GPU,
an active memory model can indeed match or exceed attentimielsion a large-scale real-world
task. Does this mean we can always replace attention byeao&mory?

The answer could bgesfor the case of soft attention. Its cost is approximatelyshme as active
memory, it performs much worse on some tasks like learniggrithms, and — with the introduction
of the Extended Neural GPU —we do not know of a task where fop@is clearly better.

Still, an attention mask is a very natural concept, and itidbpble that some tasks can benefit from
a selector that focuses on single items by definition. Thesfgecially obvious for hard attention:

it can be used over large memories with potentially much éessputational cost than an active

memory, so it might be indispensable for devising long-teramory mechanisms. Luckily, active

memory and attention are not exclusive, and we look forwaidwestigating models that combine

these mechanisms.

References

[1] Alex Krizhevsky, llya Sutskever, and Geoffrey Hintormagenet classification with deep convolutional
neural network. IrAdvances in Neural Information Processing Systems, 2012.

[2] George E. Dahl, Dong Yu, Li Deng, and Alex Acero. Contdefpendent pre-trained deep neural networks
for large-vocabulary speech recognitiofiEEE Transactions on Audio, Speech & Language Processing,
20(1):30-42, 2012.

[3] Sepp Hochreiter and Jirgen Schmidhuber. Long shom-teemory. Neural computation, 9(8):1735—
1780, 1997.

[4] llya Sutskever, Oriol Vinyals, and Quoc VV Le. Sequensséquence learning with neural networks. In
Advances in Neural |nformation Processing Systems, pages 3104-3112, 2014.

(5]
(6]

(7]
(8]

(9]

[10]
[11]

[12]
[13]
[14]
[15]
[16]
[17)
[18]
[19]
[20]
[21]
[22]

(23]

[24]

[25]

[26]

[27]

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. ndlemachine translation by jointly learning
to align and translateCoRR, abs/1409.0473, 2014.

Kyunghyun Cho, Bart van Merrienboer, Caglar GulcehrethiF-Bougares, Holger Schwenk, and Yoshua
Bengio. Learning phrase representations using rnn enamterder for statistical machine translation.
CoRR, abs/1406.1078, 2014.

Vinyals & Kaiser, Koo, Petrov, Sutskever, and Hinton.a@mar as a foreign language. Advances in
Neural Information Processing Systems, 2015.

Kelvin Xu, Jimmy Lei Ba, Ryan Kiros, Kyunghyun Cho, Aardbourville, Ruslan Salakhutdinov,
Richard S. Zemel, and Yoshua Bengio. Show, attend and tedurd image caption generation with
visual attention. IHCML, 2015.

Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimeneezende, and Daan Wierstra. Draw: A
recurrent neural network for image generati@oRR, abs/1502.04623, 2015.

Alex Graves, Greg Wayne, and Ivo Danihelka. NeurangrinachinesCoRR, abs/1410.5401, 2014.

Ronald J. Williams. Simple statistical gradient-fniling algorithms for connectionist reinforcement
learning.Machine Learning, 8:229—256, 1992.

tukasz Kaiser and llya Sutskever. Neural GPUs learpritlyms. InInternational Conference on Learn-
ing Representations (ICLR), 2016.

A. Joulin and T. Mikolov. Inferring algorithmic pattes with stack-augmented recurrent netsAdivances
in Neural Information Processing Systems, (NIPS), 2015.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sweresidual learning for image recognition.
In CVPR, 2016.

Qianli Liao and Tomaso Poggio. Bridging the gaps betwessidual learning, recurrent neural networks
and visual cortexCoRR, abs/1604.03640, 2016.

Danilo Jimenez Rezende, Shakir Mohamed, Ivo Danihdflaol Gregor, and Daan Wierstra. One-shot
generalization in deep generative modé&sRR, abs/1603.05106, 2016.

Karol Gregor, Frederic Besse, Danilo Jimenez RezehaePanihelka, and Daan Wierstra. Towards
conceptual compressiooRR, abs/1604.08772, 2016.

Andrew Lavin and Scott Gray. Fast algorithms for comtimnal neural networksCoRR, abs/1509.09308,
2015.

K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio tli properties of neural machine translation:
Encoder-decoder approach€@oRR, abs/1409.1259, 2014.

Nal Kalchbrenner and Phil Blunsom. Recurrent contimitranslation models. IRroceedings EMNLP
2013, pages 1700-1709, 2013.

Fandong Meng, Zhengdong Lu, Mingxuan Wang, Hang Li, Bediang, and Qun Liu. Encoding source
language with convolutional neural network for machinestation. InACL, pages 20-30, 2015.

Nal Kalchbrenner, Ivo Danihelka, and Alex Graves. Godg short-term memory. lhnternational
Conference on Learning Representations, 2016.

Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan YeungaiWin Wong, and Wang chun Woo. Convolu-
tional LSTM network: A machine learning approach for préeifion nowcasting. Iidvancesin Neural
Information Processing Systems, 2015.

George Toderici, Sean M. O’Malley, Sung Jin Hwang, Damincent, David Minnen, Shumeet Baluja,
Michele Covell, and Rahul Sukthankar. Variable rate imagmpmression with recurrent neural networks.
In International Conference on Learning Representations, 2016.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stastic optimization CoRR, abs/1412.6980,
2014.

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene BievZhifeng Chen, Craig Citro, Greg Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Gheat, lan Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozeiftz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Mughris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, llya Sutskever, Kunal Talwar, Hawgker, Vincent Vanhoucke, Vijay Vasudevan,
Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wétteg, Martin Wicke, Yuan Yu, and Xiaogiang
Zheng. Tensorflow: Large-scale machine learning on hetgreaus distributed systems, 2015.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu, anchgldi. Modeling coverage for neural
machine translationCoRR, abs/1601.04811, 2016.

	1 Introduction
	2 Active Memory Models
	2.1 The Markovian Neural GPU
	2.2 The Extended Neural GPU
	2.3 Related Models

	3 Experiments
	4 Discussion

