Benchmarking Non-Parametric Statistical Tests

Mikaela Keller * Samy Bengio Siew Yeung Wong
IDIAP Research Institute IDIAP Research Institute IDIAP Research Institute
1920 Martigny 1920 Martigny 1920 Martigny
Switzerland Switzerland Switzerland
kel | er @ di ap. ch bengi o@ di ap. ch sywong@ di ap. ch
Abstract

Although non-parametric tests have already been propasetidt pur-

pose, statistical significance tests for non-standard uneagdifferent
from the classification error) are less often used in theditee. This

paper is an attempt at empirically verifying how these testapare with

more classical tests, on various conditions. More pregisising a very
large dataset to estimate the whole “population”, we arealythe behav-
ior of several statistical test, varying the class unbatatitze compared
models, the performance measure, and the sample size. Tiheena
sult is that providing big enough evaluation sets non-patamtests are
relatively reliable in all conditions.

1 Introduction

Statistical tests are often used in machine learning inrdmassess the performance of
a new learning algorithm or model over a set of benchmarksatdéawith respect to the
state-of-the-art solutions. Several researchers (séadtamce [4] and [9]) have proposed
statistical tests suited for 2-class classification tagdkere/ the performance is measured in
terms of the classification error (ratio of the number of exand the number of examples),
which enables the use of assumptions based on the fact ehatrr can be seen as a sum
of random variables over the evaluation examples. On ther didind, various research do-
mains prefer to measure the performance of their modelg atfferent indicators, such as
the F; measure, used in information retrieval [11], describeddntt®n 2.1. Most classical
statistical tests cannot cope directly with such measuteeassual necessary assumptions
are no longer correct, and non-parametric bootstrap-baséidods are then used [5].

Since several papers already use these non-parametsid2e4f], we were interested in
verifying empirically how reliable they were. For this poge, we used a very large text
categorization database (the extended Reuters datapetidiposed of more than 800000
examples, and concerning more than 100 categories (eacm@nt was labelled with one
or more of these categories). We purposely set aside thesapart of the dataset and
considered it as the whole population, while a much smad#ergf it was used as a training
set for the models. Using the large set aside dataset patésted the statistical test in the
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same spirit as was done in [4], by sampling evaluation sed¢s which we observed the
performance of the models and the behavior of the significtest.

Following the taxonomy of questions of interest defined bgti@rich in [4], we can dif-
ferentiate between statistical tests that analyze legraigorithms and statistical tests that
analyze classifiers. In the first case, one intends to be robymssible variations of the
train and evaluation sets, while in the latter, one intendsnly be robust to variations of
the evaluation set. While the methods discussed in thisrgagrebe applied alternatively
to both approaches, we concentrate here on the second dhis, a®re tractable (for the
empirical section) while still corresponding to real lifdugtions where the training set is
fixed and one wants to compare two solutions (such as duriegpetition).

In order to conduct a thorough analysis, we tried to vary treuation set size, the class
unbalance, the error measure, the statistical test itedtf (ts associated assumptions),
and even theloseness of the compared learning algorithms. This paper, and maeigely
Section 3, is a detailed account of this analysis. As it welsleen empirically, thel oseness

of the compared learning algorithms seems to have an effettteoresulting quality of the
statistical tests: comparing an MLP and an SVM yields lefabike statistical tests than
comparing two SVMs with a different kernel. To the best of kmowledge, this has never
been considered in the literature of statistical tests facimme learning.

2 A Statistical Significance Test for the Difference off}

Let us first remind the basic classification framework in varstatistical significance tests
are used in machine learning. We consider comparing two lmetend B on a two-class

classification task where the goal is to classify input exiasyp; into the corresponding
classy; € {—1,1}, using already trained modefs (x;) or fz(z;). One can estimate their
respective performance on some test data by counting théeai utterances of each
possible outcome: either the obtained class correspontti®tdesired class, or not. Let
Ne, 4 (resp. N g) be the number of errors of moddl (resp. B) and N the total number

of test examples; The difference between modend B can then be written as

NeA_Ne.B
= )

The usual starting point of most statistical tests is to @efire so-calledhull hypothesis
H, which considers that the two models are equivalent, andwbgfies how probable this
hypothesis is. Hence, assuming thiais an instance of some random variablewhich
follows some distribution, we are interested in

p(ID[ <[D]) <« )

wherea represents the risk of selecting thkernate hypothesis (the two models are dif-
ferent) while thenull hypothesisis in fact true. This can in general be estimated easily
when the distribution oD is known. In the simplest case, known as fneportion test,

one assumes (reasonably) that the decision taken by eackl sroéach example can be
modeled by a Bernoulli, and further assumes that the erfaheanodels are independent.
This is in general wrong in machine learning since the evalnaets are the same for both
models. Wher\V is large, this leads to estimak®as a Normal distribution with zero mean
and standard deviatiamnp

D =

20(1-C
op = 2D ®
whereC = is the average classification error. In order to get rid ofwtiheng
independence assumption between the errors of the madeBldNemar test [6] concen-
trates on examples which were differently classified by Wedcompared models. Follow-
ing the notation of [4], lefVy; be the number of examples misclassified by motibut not

Ne a+Ne B



by modelB and N,y the number of examples misclassified by maoBdbut not by model
A. It can be shown that the following statistics is approxiwedy distributed as a?2 with
1 degree of freedom:

(INo1 — Nig| = 1)?

Z = . 4
No1 + Nig “

More recently, several other statistical tests have beepgsed, such as the 5x2cv
method [4] or the variance estimate proposed in [9], whicthtotaim to better estimate
the distribution of the errors (and hence the confidence erstétistical significance of
the results). Note however that these solutions assumehthatrror of one model is the
average of some random variable (the error) estimated dnesanple. Intuitively, it will
thus tend to be Normally distributed Asgrows, following the central limit theorem.

2.1 TheF; Measure

Text categorization is the task of assigning one or sevatabories, among a predefined set
of K categories, to textual documents. As explained in [11], ¢ategorization is usually
solved asK 2-class classification problems, in a one-against-thersthpproach. In this
field two measures are considered of importance:

Precision= L, and Recal= L,
Nip + Ngp Nip + Nin

where for each categoty, is the number of true positives (documents belonging to the
category that were classified as sucN),, the number of false positives (documents out
of this category but classified as being part of it) avg, the number of false negatives
(documents from the category classified as out of it). Piatiand Recall are effective-
ness measuresg. inside [0, 1] interval, the closer to 1 the better. For each category
Precision measures the proportion of documents of the class amonggseannsidered
as such by the classifier and Regahe proportion of documents of the class correctly
classified.

To summarize these two values, itis common to consider toaledF; measure [12], of-
ten used in domains such as information retrieval, texigeateation, or vision processing.
F; can be described as the inverse of the harmonic mean of reaisd Recall:

P 1 1 n 1 -1 2. Precision Recall 2Ny
'~ \ 2 |Recall " Precisio ~ Precisiot- Recall 2Ny, + Ny, + Npp
®)

Let us consider two model$ and B, which achieve a performance measuredhy, and
Fy p respectively. The differencéF; = F; 4 — Fy p does not fit the assumptions of the
tests presented earlier. Indeed, it cannot be decompotsed sum over the documents of
independent random variables, since the numerator andethentinator ofdZ; are non
constant sums over documents of independent random vesialbbr the same reasén,
while being a proportion, cannot be considered as a randeiabla following a Normal
distribution for which we could easily estimate the varianc

An alternative solution to measure the statistical sigaifee ofdF; is based on the Boot-
strap Percentile Test proposed in [5]. The idea of this tett approximate the unknown
distribution ofd F; by an estimate based on bootstrap replicates of the data.

2.2 Bootstrap Percentile Test

Given an evaluation set of siZ€, one drawswith replacement, N samples from it. This
gives the first bootstrap replicaf®y , over which one can compute the statistics of interest,



dFy ,. Similarly, one can create as many bootstrap replicadigsas needed, and for
each, computeF; g, . The highern is, the more precise should be the statistical test.
Literature [3] suggests to create at Ieéa%treplicates where is the level of the test; for
the smallesty we considered (0.01), this amounts to 5000 replicates.&I'5@80 estimates
dF g, represent the non-parametric distribution of the randorakéedF;. From it, one
can for instance consider an interyal b] such thaip(a < dF; < b) = 1 — « centered
around the mean gf(dF; ). If 0 lies outside this interval, one can say th&t = 0 is not
among the most probable results, and thus reject the nudithggis.

3 Analysis of Statistical Tests

We report in this section an analysis of the bootstrap peitedast, as well as other more
classical statistical tests, based on a real large dataW¥skrst describe the database itself
and the protocol we used for this analysis, and then proédelts and comments.

3.1 Database, Models and Protocol

All the experiments detailed in this paper are based on thg lege RCV1 Reuters
dataset [10], which contains up to 806,791 documents. Wedetiit as follows: 798,809
documents were kept aside and any statistics computedrosesetD,..,.. was considered
as being theruth (ie a very good estimate of the actual value); the remaining 1Rg2-
ments were used as a training $&t. (to train models4 and B). There was a total of 101
categories and each document was labeled with one or monesd tategories.

We first extracted the dictionary from the training set, rgatbstop-words and applied
stemming to it, as normally done in text categorization. HEdecument was then repre-
sented as a bag-of-words using the usyadlf coding. We trained three different models:
a linear Support Vector Machine (SVM), a Gaussian kernel Sl a multi-layer percep-
tron (MLP). There was one model for each category for the SVaisl a single MLP for
the 101 categories. All models were properly tuned usingsskalidation on the training
set.

Using the notation introduced earlier, we define the follogywtompeting hypotheses:

Hy : |dFi| = 0 and H; : |dFi| > 0. We further define the level of the test

a = p(RejectHy|Hy), wherea takes on values 0.01, 0.05 and 0.1. Table 1 summarizes
the possible outcomes of a statistical test. With that retspejectingH, means that one is
confident with(1 — «) - 100% that H is really false.

Table 1: Various outcomes of a statistical test, with- p(Type | erroj.
Decision
Truth || RejectH, | AcceptHy

Hy Type | error OK
H, OK Type Il error

In order to assess the performance of the statistical testseir Type | error, also called
Size of the test, and on their Powerl — Type Il error, we used the following protocol.

For each category;, we sampled oveb;,.,.., S (500) evaluation set®;, of N documents,
ran the significance test over eabkj, and computed the proportion of sets for whillp
was rejected given thdf, was true oveD,,.,. (resp. Hy was false oveDy,.,..), which we
noteay, .. (resp. ).

We usedv;,,.. as an estimate of the significance test’s probability of mgla Type | error



andr as an estimate of the significance test’'s Power. Whep is higher than the: fixed
by the statistical test, the test underestimates Type hemtch means we should not rely
on its decision regarding the superiority of one model okierdther. Thus, we consider
that the significance test fails. On the contrary,,. < « yields a pessimistic statistical
test that decides correctly, more often than predicted.

Furthermore we would like to favor significance tests withighhr, since the Power of the
test reflects its ability to rejediy whenHj is false.

3.2 Summary of Conditions

In order to verify the sensitivity of the analyzed statiatitests to several conditions, we
varied the following parameters:

o the value ofx: it took on values in{0.1,0.05,0.01};

¢ the two compared models: there were three models, two of thema of the same
family (SVMs), hence optimizing the same criterion, white tthird one was an
MLP. Most of the times the two SVMs gave very similar resupspbably because
the optimal capacity for this problem was near linear), w/ktile MLP gave poorer
results on average. The point here was to verify whethereftentas sensitive to
thecloseness of the tested models (although a more formal definitiool o$eness
should certainly be devised);

o the evaluation sample size: we varied it from small size®)1p to larger sizes
(6000) to see the robustness of the statistical test to it;

¢ the class unbalance: out of the 101 categories of the prqobtesst of them re-
sulted in highly unbalanced tasks, often with a ratio of 1A.8® between the
two classes. In order to experiment with more balanced tasksrtificially cre-
atedmeta-categories, which were random aggregations of normal categories that
tended to be more balanced;

¢ the tested measure: our initial interest was to directly dé3, the difference of
Fy, but given poor initial results, we also decided to ass&ssrr, the differ-
ence of classification errors, in order to see whether ths vesre sensitive to the
measure itself;

o the statistical test: on top of the bootstrap percentilg tge also analyzed the
more classicaproportion test and McNemar test, both of them only oniCerr
(since they were not adapteddd? ).

3.3 Results

Figure 1 summarizes the results for the Size of the test estsn All graphs showty,..,
the number of times the test rejectéd while Hy was true, for a fixedv = 0.05, with
respect to the sample size, for various statistical testdesied measures.

Figure 2 shows the obtained results for the Power of the sdshates. The proportion of
evaluation sets over which the significance test (wits- 0.05) rejectedH, when indeed
H, was false, is plotted against the evaluation set size.

Figures 1(a) and 2(a) show the results for balanced datarénhe positive and negative
examples were approximatively equally present in the exalo set) when comparing two
different models (an SVM and an MLP).

Figures 1(b) and 2(b) show the results for unbalanced dagnwbhmparing two different
models.

Figures 1(c) and 2(c) show the results for balanced data wheparing two similar mod-
els (alinear SVM and a Gaussian SVM) for balanced data, aatififigures 1(d) and 2(d)



show the results for unbalanced data and two similar models.

Note that each point in the graphs was computed over a diffetember of samples, since
eg over the (500 evaluation sets 101 categories) experiments only those for whigh
was true inDy,... were taken into account in the computatiorogf,,..

When the proportion off, true in Dy,.,.. equals 0esp. the proportion ofd false inDy,. ..
equals O)¢qvc (resp. ) is setto -1. Hence, for instance the first poiftsdQ, . . ., 1000})

of Figures 2(c) and 2(d) were computed over only 500 evalnatets on which respectively
the same categorization task was performed. This makes fiasts unreliable. See [8]
for more details.

For each of the Size’s graphs, when the curves are ovér.@bdine, we can state that the
statistical test is optimistic, while when it is below thedi the statistical test is pessimistic.
As already explained, a pessimistic test should be favorezhever possible.

Several interesting conclusions can be drawn from the aizabyf these graphs. First of
all, as expected, most of the statistical tests are pobitimluenced by the size of the
evaluation set, in the sense that their,. value converges ta for large sample size's

On the available results, the McNemar test and the bootsstpver!Cerr have a similar
performance. They are always pessimistic even for smalliatian set sizes, and tend to
the expectedv values when the models compared on balanced tasks are ithssifiney
have also a similar performance in Power over all the diffecenditions, higher in general
when comparing very different models.

When the compared models are similar, the bootstrap testddehas a pessimistic be-
havior even on quite small evaluation sets. However, whemtbdels are really different
the bootstrap test ovetF; is on average always optimistic. Note nevertheless that mos
of the points in Figures 1(a) and 1(b) have a standard dewiatil, over the categories,
such thatw,.. — std < « (see [8] for more details). Another interesting point isttima
the available results for the Power, #E, 's bootstrap test have relatively high values with
respect to the other tests.

The proportion test have in general, on the available resalinore conservative behavior
than the McNemar test and thi€'err bootstrap test. It has more pessimistic results and
less Power. It is too often prone to “Acceflty”, ieto conclude that the compared models
have an equivalent performance, whether it is true or nak fEsults seem to be consistent
with those of [4] and [9]. However, when comparidgse models in a small unbalanced
evaluation set (Figure 1(d)), this conservative behag@ait present.

To summarize the findings, the bootstrap-based statiséstbverdCerr obtained a good
performance in Size comparable to the one of the McNemaintaditconditions. However
both significance test performances in Power are low evebifpevaluation sets in par-
ticular when the compared models are close. The bootsaapestatistical test over
has higher Power than the other compared tests, howeversitimuemphasized that it is
slightly over-optimistic in particular for small evaluati sets. Finally, when applying the
proportion test over unbalanced data éwse models we obtained an optimistic behavior,
untypical of this usually conservative test.

4 Conclusion

In this paper, we have analyzed several parametric and acametric statistical tests for
various conditions often present in machine learning tasicluding the class balancing,
the performance measure, the size of the test sets, amtbdeness of the compared mod-

INote that the same is true for the variancewaf...(— 0), and this for any of ther values tested.
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Figure 1: Several statistical tests comparing Linear SVMWS$ or vs RBF SVM. The
proportion of Type | error equals -1, in Figure 1(b), wherréwas no data to compute the
proportion {e Hy was always false).

els. More particularly, we were concerned by the quality afi{parametric tests since in
some cases (when using more complex performance measutesasH, ), they are the
only available statistical tests.

Fortunately, most statistical tests performed reasonably (in the sense that they were
more often pessimistic than optimistic in their decisioasyl larger test sets always im-
proved their performance. Note however thatdd} the only available statistical test was
too optimistic although consistant for different levelsn Anexpected result was that the
rather conservative proportion test used over unbalanatfdrclose models yielded an
optimistic behavior.

It has to be noted that recently, a probabilistic intergretaof F; was suggested in [7],
and a comparison with bootstrap-based tests should bewiatéh
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