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Abstract

This paper proposes a new approach for keyword spotting, which is based on large
margin and kernel methods rather than on HMMs. Unlike previous approaches, the
proposed method employs a discriminative learning procedure, in which the learn-
ing phase aims at achieving a high area under the ROC curve, as this quantity
is the most common measure to evaluate keyword spotters. The keyword spot-
ter we devise is based on mapping the input acoustic representation of the speech
utterance along with the target keyword into a vector space. Building on tech-
niques used for large margin and kernel methods for predicting whole sequences,
our keyword spotter distills to a classifier in this vector-space, which separates
speech utterances in which the keyword is uttered from speech utterances in which
the keyword is not uttered. We describe a simple iterative algorithm for training
the keyword spotter and discuss its formal properties, showing theoretically that
it attains high area under the ROC curve. Experiments on read speech with the
TIMIT corpus show that the resulted discriminative system outperforms the con-
ventional context-independent HMM-based system. Further experiments using the
TIMIT trained model, but tested on both read (HTIMIT, WSJ) and spontaneous
speech (OGI-Stories), show that without further training or adaptation to the new
corpus our discriminative system outperforms the conventional context-independent
HMM-based system.
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1 Introduction

Keyword spotting refers to the detection of all occurrences of any given word
in a speech signal. Most previous work on keyword spotting has been based
on hidden Markov models (HMMs). See for example (Benayed et al., 2004;
Ketabdar et al., 2006; Silaghi and Bourlard, 1999; Szoke et al., 2005) and
the references therein. Despite their popularity, HMM-based approaches have
several known drawbacks such as convergence of the training algorithm (EM)
to a local maxima, conditional independence of observations given the state
sequence and the fact that the likelihood is dominated by the observation
probabilities, often leaving the transition probabilities unused. However, the
most acute weakness of HMMs for keyword spotting is that they do not aim
at maximizing the detection rate of the keywords directly.

In this paper we propose an alternative approach for keyword spotting that
builds upon recent work on discriminative large margin and kernel methods,
trying to overcome some of the inherent problems of the HMM approaches.
Our approach solves directly the keyword spotting problem rather than using
a large vocabulary speech recognizer (as in Szoke et al., 2005), and does not es-
timate a garbage or background model (as in Silaghi and Bourlard, 1999). The
advantage of margin-based discriminative approaches stems from the fact that
the objective function used during the learning phase is tightly coupled with
the decision task one needs to perform. In addition, there is both theoretical
and empirical evidence that large margin strategies are likely to outperform
generative models for the same task (see for instance Cristianini and Shawe-
Taylor, 2000; Vapnik, 1998). One of the main goals of this work is to extend
the notion of discriminative large margin and kernel methods to the task of
keyword spotting.

Our proposed method is based on recent advances in kernel machines and large
margin classifiers for sequences (Shalev-Shwartz et al., 2004; Taskar et al.,
2003), which in turn build on the pioneering work of Vapnik and colleagues
(Cristianini and Shawe-Taylor, 2000; Vapnik, 1998). The keyword spotter we
devise is based on mapping the speech signal along with the target keyword
into a vector-space endowed with an inner-product. Our learning procedure
distills to a classifier in this vector-space which is aimed at separating the
utterances that contain the keyword from those that do not contain it. On
this aspect, our approach is hence related to support vector machine (SVM),
which has already been successfully applied in speech applications (Keshet
et al., 2001; Salomon et al., 2002). However, the model proposed in this paper
differs significantly from a classical SVM due to the sequential nature of the
keyword spotting problem.

This paper is organized as follows. In Section 2, we formally introduce the

2



keyword spotting problem. We then present the large margin approach for
keyword spotting in Section 3. Next, the proposed iterative learning method
is described in Section 4. In Section 5, we describe the efficient evaluation of
our keyword spotter and its complexity. Our method is based on non-linear
phoneme recognition and segmentation functions. The specific feature func-
tions we use for are presented in Section 6. In Section 7, we present experi-
mental results. We conclude the paper in Section 8.

Related Work. Most work on keyword spotting has been based on HMMs. In
these approaches, the detection of the keyword is based on an HMM composed
of two sub-models, the keyword model and the background or garbage model,
such as the HMM depicted in Figure 6. Given a speech sequence, such a model
detects the keyword through Viterbi decoding: the keyword is considered as
uttered in the sequence if the best path goes through the keyword model. This
generic framework encompasses the three main classes of HMM-based keyword
spotters, that is whole-word modeling, phonetic-based approaches and large-
vocabulary-based approaches.

Whole-word modeling is one of the earliest approaches using HMM for key-
word spotting (Rahim et al., 1997; Rohlicek et al., 1989). In this context, the
keyword model is itself an HMM, trained from recorded utterances of the key-
word. The garbage model is also an HMM, trained from non-keyword speech
data. The training of such a model hence requires several recorded occurrences
of the keyword, in order to estimate reliably the keyword model parameters.
Unfortunately, in most applications, such data are rarely provided for training,
which yields the introduction of phonetic-based word spotters.

In phonetic-based approaches, both the keyword model and the garbage model
are built from phonemes (or triphones) sub-models (Bourlard et al., 1994;
Manos and Zue, 1997; Rohlicek et al., 1993). Basically, the keyword model is
a left-right HMM, resulting from the concatenation of the sub-models corre-
sponding to the keyword phoneme sequence. The garbage model is an ergodic
HMM, which fully connects all phonetic sub-models. In this case, sub-model
training is performed through embedded training from a large set of acous-
tic sequences labeled phonetically, like for speech recognition HMMs (Rabiner
and Juang, 1993). This approach hence does not require training utterances
of the keyword, solving the main limitation of the whole word modeling ap-
proach. However, the phonetic-based HMM has another drawback, due to the
use of the same sub-models in the keyword model and in the garbage model.
In fact, the garbage model can intrinsically model any phoneme sequence,
including the keyword itself. This issue is typically addressed by tuning the
prior probability of the keyword, or by using a more refined garbage model,
e.g. Bourlard et al. (1994); Manos and Zue (1997). Another solution can also
be to avoid the need for garbage modeling through the computation of the
likelihood of the keyword model for any subsequence of the test signal, as
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proposed in Junkawitsch et al. (1997).

A further extension of HMM spotter approaches consists of using Large Vo-
cabulary Continuous Speech Recognition (LVCSR) HMMs. This approach can
actually be seen as a phonetic-based approach in which the garbage model
only allows valid words from the lexicon, except the targeted keyword. This
use of additional linguistic constraints is shown to improve the spotting per-
formance (Cardillo et al., 2002; Rose and Paul, 1990; Szoke et al., 2005; Wein-
traub, 1995). Such an approach however raises practical concerns: one can
wonder whether the design of a keyword spotter should require the expensive
collection a large amount of labeled data typically needed to train LVCSR
systems, as well as the computational cost implied by large vocabulary decod-
ing (Manos and Zue, 1997).

Over the last years, significant effort toward discriminative training of HMMs
has been proposed as an alternative to likelihood maximization (Bahl et al.,
1986; Juang et al., 1997; Fu and Juang, 2007). These training approaches
aim at both maximizing the probability of the correct transcription given an
acoustic sequence, and minimizing the probability of the incorrect transcrip-
tions given an acoustic sequence. When applied to keyword spotting, none of
these approaches closely tie the training objective with a final spotting ob-
jective, such as maximizing the area under the Receiver Operating Curve. In
our approach, we reach this goal by proposing a discriminative model focus-
ing on an adequate criterion. In this sense, our work significantly differs from
discriminative HMM training for speech recognition, as our learning proce-
dure directly focuses on the spotting performance. Furthermore, we do not
constrain the underlying model to be probabilistic, which allows a greater
freedom in selecting the set of features.

2 Problem Setting

In the keyword spotting task, we are provided with a speech utterance and
a keyword and the goal is to identify whether the keyword is uttered in the
speech utterance and where. Any keyword (or word) is naturally composed
of a sequence of phonemes. Hence we can state the goal as to detect whether
the corresponding phoneme sequence is articulated in the given utterance and
where. We assume that the goal of the keyword spotting refers to the detection
of any keyword, and not only to the keywords already seen in the training
phase. In what follows, we also assume that the utterance is small enough for
the keyword to be articulated only once. If the utterance is longer than that,
we apply the keyword spotter on a sliding window of an appropriate length.

In this section we formally describe the keyword spotting problem. Throughout
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Fig. 1. Example of our notation. The waveform of the spoken utterance “a lone
star shone...” taken from the TIMIT corpus. The keyword k is the word star. The
phonetic transcription p̄ along with its time span s̄ are schematically depicted in
the figure.

the paper we denote scalars using lower case Latin letters (e.g. x), and vectors
using bold face letters (e.g. x). A sequence of elements is designated by a bar
(x̄) and its length is denoted as |x̄|.

Formally, we represent a speech signal as a sequence of acoustic feature vectors
x̄ = (x1, . . . ,xT ), where xt ∈ X ⊂ Rd for all 1 ≤ t ≤ T . We denote a keyword
by k ∈ K, where K is a lexicon of words. Each keyword k is composed of
a sequence of phonemes p̄k = (p1, . . . , pL), where pl ∈ P for all 1 ≤ l ≤ L
and P is the domain of the phoneme symbols. We denote by P∗ the set of all
finite length sequences over P . Let us further define the alignment between a
phoneme sequence and a speech signal. We denote by sl ∈ N the start time
of phoneme pl (in frame units), and by el ∈ N the end time of phoneme pl.
We assume that the start time of phoneme pl+1 is equal to the end time of
phoneme pl, that is, el = sl+1 for all 1 ≤ l ≤ L − 1. The timing sequence
(time span) s̄k corresponding to the phoneme sequence p̄k is a sequence of
start-times and an end-time, s̄k = (s1, . . . , sL, eL), where sl is the start-time of
phoneme pl and eL is the end-time of the last phoneme pL. An example of our
notation is given in Figure 1. Our goal is to learn a keyword spotter, denoted
f , which takes as input the pair (x̄, p̄k) and returns a real value expressing the
confidence that the targeted keyword k is uttered in x̄. That is, f is a function
from X ∗ × P∗ to the set R. The confidence score outputted by f for a given
pair (x̄, p̄k) can then be compared to a threshold b ∈ R to actually determine
whether p̄k is uttered in x̄.

The performance of a keyword spotting system is often measured by the Re-
ceiver Operating Characteristics (ROC) curve, that is, a plot of the true pos-
itive (spotting a keyword correctly) rate as a function of the false positive
(mis-spotting a keyword) rate (see for example Benayed et al., 2004; Ketab-
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dar et al., 2006; Silaghi and Bourlard, 1999). The points on the curve are
obtained by sweeping the decision threshold b from the most positive confi-
dence value outputted by the system to the most negative one. Hence, the
choice of b represents a trade-off between different operational settings, cor-
responding to cost functions weighting false positive and false negative errors
differently. Assuming a flat prior over all cost functions, it is appropriate to
select the keyword spotting system maximizing the averaged performance over
all settings, which corresponds to the model maximizing the area under the
ROC curve (AUC). In the following we describe a large margin approach which
aims at learning a keyword spotter which achieves high AUC.

3 A Large Margin Approach for Keyword Spotting

In this section we describe a discriminative algorithm for learning a spotting
function f from a training set of examples. Our construction is based on a
set of predefined feature functions {φj}n

j=1. Each feature function is of the
form φj : X ∗×P∗×N∗ → R . That is, each feature function takes as input an
acoustic representation of a speech utterance x̄ ∈ X ∗, together with a phoneme
sequence p̄k ∈ P∗ of the keyword k, and a candidate time span s̄ ∈ N∗, and
returns a scalar in R which, intuitively, represents the confidence that the
given keyword phoneme sequence is uttered in the suggested time span. For
example, one feature function can sum the number of times phoneme p comes
after phoneme p′, while other feature function may extract properties of each
acoustic feature vector xt provided that phoneme p is pronounced at time t.
The description of the concrete form of the feature functions is differed to
Section 6.

Our goal is to learn a keyword spotter f , which takes as input a sequence of
acoustic features x̄, a keyword p̄k, and returns a confidence value in R. The
form of the function f we use is

f(x̄, p̄k) = max
s̄

w · φ(x̄, p̄k, s̄) , (1)

where w ∈ Rn is a vector of importance weights (“model parameters”) that
should be learned and φ ∈ Rn is a vector function composed out of the
feature functions φj. In other words, f returns a confidence prediction about
the existence of the keyword in the utterance by maximizing a weighted sum of
the scores returned by the feature functions over all possible time spans. The
maximization defined by Eq. (1) is over an exponentially large number of time
spans. Nevertheless, as in HMMs, if the feature functions φ are decomposable,
the maximization in Eq. (1) can be efficiently calculated through dynamic
programming as described in Section 5
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Recall that we would like to obtain a system that attains high AUC on unseen
data. In order to do so, we use two sets of training examples. Denote by X+

k

a set of speech utterances in which the keyword k ∈ Ktrain is uttered, where
Ktrain is the set of all training keywords. Similarly, denote by X−

k a set of speech
utterances in which the keyword k is not uttered. The AUC for a keyword k
can be written in the form of the Wilcoxon-Mann-Whitney statistic (Cortes
and Mohri, 2004) as

Ak =
1

|X+
k ||X−

k |
∑

x̄+∈X+
k

∑
x̄−∈X−

k

1{f(x̄+,p̄k)>f(x̄−,p̄k)}, (2)

where | · | refers to the cardinality of a set, and 1{·} refers to the indicator
function, that is, 1{π} is 1 whenever the predicate π is true and 0 otherwise.
Thus, Ak estimates the probability that the score assigned to an utterance
that contains the keyword k is greater than the score assigned to an utterance
which does not contain it.

As one is often interested in the expected performance over any keyword, it
is common to plot the ROC averaged over a set of evaluation keywords, Ktest,
and to compute the corresponding averaged AUC,

Atest =
1

|Ktest|
∑

k∈Ktest

Ak . (3)

In order to achieve the goal of high AUC, the proposed method picks a function
f from the set of linear functions defined in Eq. (1), for which the following
inequality holds: f(x̄+, p̄k) > f(x̄−, p̄k), for every keyword k ∈ Ktrain and for
as much utterance pairs x+ ∈ X+

k and x− ∈ X−
k as possible. Finding such

a function is realized by learning the value of the weight vector w given a
training set of examples.

We now describe a new approach based on large margin techniques for learning
the weight vector w from a training set S of examples. Each example in
the training set S is composed of a phoneme sequence p̄ki

i representing the
keyword ki, an utterance x̄+

i ∈ X+
ki

in which the keyword ki is uttered, an
utterance x̄−i ∈ X−

ki
in which the keyword ki is not uttered, and the time span

s̄+
i of the phoneme sequence p̄ki

i in x̄+
i . Overall we have m examples, that

is, S = {(p̄k1
1 , x̄+

1 , x̄−1 , s̄+
1 ), . . . , (p̄km

m , x̄+
m, x̄−m, s̄+

m)}. Hence, we assume that we
have access to the correct start times s̄+

i of the phoneme sequence p̄ki
i in the

positive training utterances x̄+
i ∈ X+

ki
for all i. This assumption is actually

not restrictive since such a timing sequence can be inferred by any forced-
alignment algorithm, see (Keshet et al., 2007) and the reference therein. We
evaluate the influence of forced-alignment compared to manual-alignment in
Section 7.
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For each keyword in the training set there is only one positive utterance and
one negative utterance, hence |X+

k | = 1 and |X−
k | = 1 and |Ktrain| = m, and

the AUC of the training set becomes

Atrain =
1

m

m∑
i=1

1{f(x̄+
i ,p̄

ki
i )>f(x̄−i ,p̄

ki
i )} . (4)

Similarly to the SVM algorithm for binary classification (Cortes and Vap-
nik, 1995; Vapnik, 1998), our approach for choosing the weight vector w is
based on the idea of large-margin separation. Theoretically, our approach
can be described as a two-step procedure: first, we construct the vectors
φ(x̄+

i , p̄ki
i , s̄+

i ) and φ(x̄−i , p̄ki
i , s̄) in the vector space Rn based on each instance

(p̄ki
i , x̄+

i , x̄−i , s̄+
i ), and each possible time span s̄ for the negative sequence x̄−i .

Second, we find a vector w ∈ Rn, such that the projection of vectors onto
w ranks the constructed vectors according to their quality. Ideally, for any
keyword ki ∈ Ktrain, for every instance pair (x̄+

i , x̄−i ) ∈ X+
ki
× X−

ki
, we would

like the following constraint to hold

w · φ(x̄+
i , p̄ki

i , s̄+
i )−max

s̄
w · φ(x̄−i , p̄ki

i , s̄) ≥ 1 ∀i . (5)

That is, w should rank the utterance that contains the keyword above any
utterance that does not contain it by at least 1. Moreover, we consider the
best possible time span of the keyword within the utterance that does not
contain it. We refer to the difference w ·φ(x̄+

i , p̄ki
i , s̄+

i )−maxs̄ w ·φ(x̄−i , p̄ki
i , s̄)

as the margin of w with respect to the best time span of the keyword ki in
the utterance that does not contain it. Note that if the prediction of w is
incorrect then the margin is negative. Naturally, if there exists a w satisfying
all the constraints in Eq. (5), the margin requirements are also satisfied by
multiplying w by a large scalar. The SVM algorithm solves this problem by
selecting the weights w minimizing 1

2
‖w‖2 subject to the constraints given in

Eq. (5), as it can be shown that the solution with the smallest norm is likely
to achieve better generalization (Vapnik, 1998).

In practice, it might be the case that the constraints given in Eq. (5) cannot be
satisfied. To overcome this obstacle, we follow the soft SVM approach (Cortes
and Vapnik, 1995; Vapnik, 1998) and define the following hinge-loss function,

`(w; (p̄k, x̄+, x̄−, s̄+)) =
[
1−w · φ(x̄+, p̄k, s̄+) + max

s̄
w · φ(x̄−, p̄k, s̄)

]
+

,

(6)
where [a]+ = max{0, a}. The hinge loss measures the maximal violation for
any of the constraints given in Eq. (5). The soft SVM approach for our problem
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is to choose the vector w? which minimizes the following optimization problem

w? = arg min
w

1

2
‖w‖2 + C

m∑
i=1

`(w; (p̄ki
i , x̄+

i , x̄−i , s̄+
i )) , (7)

where the parameter C serves as a complexity-accuracy trade-off parameter:
a low value of C favors a simple model, while a large value of C favors a
model which solves all training constraints (see Cristianini and Shawe-Taylor,
2000). Solving the optimization problem given in Eq. (7) is expensive since
it involves a maximization for each training example. Most of the solvers for
this problem, like SMO (Platt, 1998), iterate over the whole dataset several
times until convergence. In the next section, we propose a slightly different
method, which visits each example only once, and is based on our previous
work (Crammer et al., 2006). Our method is shown to be competitive with the
large margin approach and it is shown to attain high AUC over the training
examples and over unseen examples (see Appendix A).

4 An Iterative Algorithm

We now describe a simple iterative algorithm for learning the weight vec-
tor w. The algorithm receives as input a set of training examples S =
{(p̄ki

i , x̄+
i , x̄−i , s̄+

i )}m
i=1 and examines each of them sequentially. Initially, we set

w = 0. At each iteration i, the algorithm updates w according to the current
example (p̄ki

i , x̄+
i , x̄−i , s̄+

i ) as we now describe. Denote by wi−1 the value of the
weight vector before the i-th iteration. Let s̄−i be the predicted time span for
the negative utterance, x̄−i , according to wi−1,

s̄−i = arg max
s̄

wi−1 · φ(x̄−i , p̄ki
i , s̄) . (8)

Let us define the difference between the feature functions of the acoustic se-
quence in which the keyword is uttered and the feature functions of the acous-
tic sequence in which the keyword is not uttered as ∆φi, that is,

∆φi = φ(x̄+
i , p̄ki

i , s̄+
i )− φ(x̄−i , p̄ki

i , s̄−i ) . (9)

We set the next weight vector wi to be the minimizer of the following opti-
mization problem,

min
w∈Rn,ξ≥0

1

2
‖w −wi−1‖2 + C ξ (10)

s.t. w ·∆φi ≥ 1−ξ ,

where C serves as a complexity-accuracy trade-off parameter (see Crammer
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Input: training set S = {(p̄ki
i , x̄+

i , x̄−i , s̄+
i )}m

i=1; validation set Sval; parameter C

Initialize: w0 = 0

For i = 1, . . . ,m

Predict: s̄−i = arg maxs̄ wi−1 · φ(x̄−i , p̄ki
i , s̄)

Set: ∆φi = φ(x̄+
i , p̄ki

i , s̄+
i )− φ(x̄−i , p̄ki

i , s̄−i )

If wi−1 ·∆φi < 1

Set: αi = min
{

C ,
1−wi−1 ·∆φi

‖∆φi‖2

}
Update: wi = wi−1 + αi ·∆φi

Output: The weight vector w∗ which achieves best AUC performance on the
validation set Sval of size mval:

w = arg min
w∈{w1,...,wm}

1
mval

mval∑
j=1

1
{maxs̄+ w·φ(x̄+

j ,p̄
kj
j ,s̄+) > maxs̄− w·φ(x̄−j ,p̄

kj
j ,s̄−)}

Fig. 2. An iterative algorithm.

et al., 2006) and ξ is a non-negative slack variable, which indicates the loss
of the ith example. Intuitively, we would like to minimize the loss of the
current example, i.e., the slack variable ξ, while keeping the weight vector w
as close as possible to the previous weight vector wi−1. The constraint makes
the projection of the sequence that contains the keyword onto w higher than
the projection of the sequence that does not contain it onto w by at least 1.
It can be shown (see Crammer et al., 2006) that the solution to the above
optimization problem is

wi = wi−1 + αi∆φi . (11)

The value of the scalar αi is based on the difference ∆φi, the previous weight
vector wi−1, and a parameter C. Formally,

αi = min

{
C,

[1−wi−1 ·∆φi]+
‖∆φi‖2

}
. (12)

The optimization problem given in Eq. (10) is based on recent work on online
learning algorithms (Crammer et al., 2006). Based on this work, it is shown
in Appendix A that, under some mild technical conditions, the cumulative
AUC of the iterative procedure, i.e., 1

m

∑m
i=1 1{wi·∆φi>0} is likely to be high.

Moreover, the appendix further shows that given the high cumulative AUC,
there exists at least one weight vector among the vectors {w1, . . . ,wm} which
attains high averaged AUC on unseen examples as well. To find such a weight
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vector, we simply calculate the averaged loss attained by each of the weight
vectors on a validation set. A pseudo-code of our algorithm is given in Figure 2.

In the case the user would like to select a threshold b that would ensure a
specific requirement in terms of true positive rate or false negative rate, a
simple cross-validation procedure (see Bengio et al., 2005) would consist in
selecting the confidence value given by our model at the point of interest over
the ROC curve plotted for some validation utterances of the targeted keyword.

5 Efficiency and Complexity

We now describe the problem of efficient evaluation of the function f given
in Eq. (1). the evaluation of f requires solving the following optimization
problem,

f(x̄, p̄k) = max
s̄

w · φ(x̄, p̄k, s̄) .

Similarly, we need to find an efficient way for solving the maximization problem
given in Eq. (8). A direct search for the maximizer is not feasible since the
number of possible time spans, s̄, is exponential in the number of phonemes.
Fortunately, as we show below, by imposing a few mild conditions on the
structure of the feature functions both problems can be solved in polynomial
time.

For simplicity, we assume that each feature function, φj, can be decomposed

as follows. Let φ̂j be any function from X ∗×P∗×N3 into the reals, which can

be computed in a constant time. That is, φ̂j receives as input the signal, x̄,
the sequence of phonemes, p̄k, and three time points. Additionally, we use the
convention s0 = 0 and s|p̄k|+1 = T + 1. Using the above notation, we assume
that each φj can be decomposed to be

φj(x̄, p̄k, s̄) =
|s̄|−1∑
l=2

φ̂j(x̄, p̄k, sl−1, sl, sl+1) . (13)

The feature functions we describe in the next section can be decomposed as
in Eq. (13).

We now describe an efficient algorithm for calculating the best time span
assuming that φj can be decomposed as in Eq. (13). Given phoneme index
l ∈ {1, . . . , |p̄k|} and two time indices t, t′ ∈ {1, . . . , T}, denote by D(l, t, t′)
the score for the prefix of the phoneme index sequence 1, . . . , l, assuming
that their actual start times are s1, . . . , sl, where sl = t′ and assuming that
sl+1 = t. This variable can be computed efficiently in a similar fashion to
the forward variables calculated by the Viterbi procedure in HMMs (see for
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Input: speech signal x̄; sequence of phonemes p̄k ; weight vector w ; maximum
phoneme duration Lmax; minimum phoneme duration Lmin

Initialize: ∀(1 ≤ t ≤ Lmax), D(0, t, 0) = 0
Recursion:

For s = 1, . . . , T

For l = 1, . . . , |p̄k|

For t = s + lLmin, . . . , s + lLmax

For t′ = t− Lmax, . . . , t− Lmin

D(l, t, t′) = max
t′−Lmax≤t′′<t′−Lmin

D(l−1, t′, t′′) + w · φ̂(x̄, p̄k, t′′, t′, t)

D?
s = max

s+|p̄k|Lmin≤t≤s+|p̄k|Lmax

max
t−Lmax≤t′≤t−Lmin

D(|p̄k|, t, t′)

Termination: D? = max
s

D?
s , s̄? = arg max

s
D?

s

Fig. 3. An efficient procedure for evaluating the keyword spotting function.

instance Rabiner and Juang, 1993). The pseudo code for computing D(l, t, t′)
recursively is shown in Figure 3. The best time span, s̄?, is obtained from the
algorithm by saving the intermediate values that maximize each expression in
the recursion step. The complexity of the decoding is O(|p̄k| |x̄|4). However,
in practice, we can use the assumption that the maximal length of a phoneme
is bounded, t − t′ ≤ Lmax. This assumption reduces the complexity of the
decoding down to O(|p̄k| |x̄| L3

max). For comparison, the complexity of the
decoding in standard Viterbi-based HMM is O(|P + p̄k| |x̄|).

To conclude this section we discuss the global complexity of our proposed
method. In the training phase, our algorithm performs m iterations, one it-
eration per training example. At each iteration the algorithm evaluates the
keyword spotting function once, updates the keyword spotting function, if
needed, and evaluates the new function on a validation set of size mval. Each
evaluation of the function takes an order of O(|p̄k| |x̄| L3

max) operations. There-
fore the total complexity of our method becomes O(m mval |p̄k| |x̄| L3

max). In
practice, however, we can evaluate the updated keyword spotting function
only for the last 20 iterations or so, which reduces the global complexity of
the algorithm to O(m |p̄k| |x̄| L3

max). In all of our experiments, evaluating the
keyword spotting function only for the last 20 iterations was found empirically
to give sufficient results.
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6 Feature Functions

In this section we present the implementation details of our learning approach
for the task of keyword spotting. Recall that our construction is based on a set
of feature functions, {φj}n

j=1, which maps an acoustic-phonetic representation
of a speech utterance as well as a suggested time span of the keyword into a
vector-space. In order to make this section more readable we omit the keyword
index k.

We introduce a specific set of base functions, which is highly adequate for the
keyword spotting problem. We utilize seven different feature functions (n = 7).
These feature functions are used for defining our keyword spotting function
f(x̄, p̄) as in Eq. (1). Note that the same set of feature functions is also useful
in the task of large-margin forced-alignment (Keshet et al., 2007), and they
are given here only for completeness. A detailed analysis of this feature set is
given in (Keshet et al., 2007).

Our first four feature functions aim at capturing transitions between
phonemes. These feature functions are the distance between frames of the
acoustic signal at both sides of phoneme boundaries as suggested by a timing
sequence s̄. The distance measure we employ, denoted by d, is the Euclidean
distance between feature vectors. Our underlying assumption is that if two
frames, xt and xt′ , are derived from the same phoneme then the distance
d(xt,xt′) should be smaller than if the two frames are derived from different
phonemes. Formally, our first four feature functions are defined as

φj(x̄, p̄, s̄) =
1

|p̄|

|p̄|−1∑
l=2

d(x−j+sl
,xj+sl

), j ∈ {1, 2, 3, 4} . (14)

If s̄ is the correct time span then distances between frames across the phoneme
change points are likely to be large. In contrast, an incorrect phoneme start
time sequence is likely to compare frames from the same phoneme, often re-
sulting in small distances.

The fifth feature function we use is built from kernel-based frame-wise
phoneme classifier described in Dekel et al. (2004). Formally, for each phoneme
event p ∈ P and frame x ∈ X , there is a confidence, denoted gp(x), that
the phoneme p is pronounced in the frame x. The resulting feature function
measures the cumulative confidence of the complete speech signal given the
phoneme sequence and their start-times,

φ5(x̄, p̄, s̄) =
1

|p̄|

|p̄|∑
l=1

1

sl+1 − sl

sl+1−1∑
t=sl

gpl
(xt) . (15)
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Our next feature function scores timing sequences based on phoneme dura-
tions. Unlike the previous feature functions, the sixth feature function is obliv-
ious to the speech signal itself. It merely examines the length of each phoneme,
as suggested by s̄, compared to the typical length required to pronounce this
phoneme. Formally,

φ6(x̄, p̄, s̄) =
1

|p̄|

|p̄|∑
l=1

log N (sl+1 − sl; µ̂pl
, σ̂pl

) , (16)

where N is a Normal probability density function with mean µ̂p and standard
deviation σ̂p. In our experiments, we estimated µ̂p and σ̂p from the training
set (see Section 7).

Our last feature function exploits assumptions on the speaking rate of a
speaker. Intuitively, people usually speak in an almost steady rate and there-
fore a timing sequence in which speech rate is changed abruptly is probably
incorrect. Formally, let µ̂p be the average length required to pronounce the pth
phoneme. We denote by rl the relative speech rate, rl = (sl+1 − sl)/µ̂pl

. That
is, rl is the ratio between the actual length of phoneme pl as suggested by s̄
to its average length. The relative speech rate presumably changes slowly over
time. In practice the speaking rate ratios often differ from speaker to speaker
and within a given utterance. We measure the local change in the speaking
rate as (rl − rl−1)

2 and we define the feature function φ7 as the local change
in the speaking rate,

φ7(x̄, p̄, s̄) =
1

|p̄|

|p̄|∑
l=2

(rl − rl−1)
2 . (17)

7 Experimental Results

In this section we present experimental results that demonstrate the robust-
ness of our proposed discriminative system compared to context-independent
HMM-based system. We performed experiments on read speech using the
TIMIT, HTIMIT and WSJ corpora and on spontaneous speech using the
OGI Stories corpus. In all the experiments, the baseline discriminative system
and HMM system were trained on the clean read-speech TIMIT corpus. We
divided the training portion of TIMIT (excluding the SA1 and SA2 utter-
ances) into two disjoint parts containing 500, and 3196 utterances. The first
part of the training set was used for learning the functions gp, which define
the feature function φ5, according to Eq. (15). These functions were learned
by the kernel-based phoneme classification algorithm described in Dekel et al.
(2004) using the MFCC+∆+∆∆ acoustic features and a Gaussian kernel with
parameter σ = 6.24 (selected on the validation set). Using the functions gp
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Fig. 4. ROC curves of the models generated from the discriminative system and the
context-independent HMM-based system, both trained on the TIMIT training set
and evaluated on 80 keywords from TIMIT test set. The AUC are 0.995 and 0.941
for the discriminative system and the HMM-based system, respectively.

as a frame-based phoneme classifier resulted in classification accuracy of 55%
per frame on the TIMIT core test set.

The second set of 3196 utterances formed the training set for the keyword
spotter. From this set we picked 200 random keywords for training and 200
different keywords for validation. The keywords were chosen to have a mini-
mum length of at least 6 phonemes. For each of the keywords we chose one
positive utterance in which the keyword was uttered and one negative utter-
ance in which the keyword was not uttered. The same utterance could be
a positive utterance for one keyword and a negative utterance for a different
keyword, but in any case the utterances used for the training were not used for
validation. The iterative discriminative algorithm was very robust to the set
of training and validation keyword set and picking a different set led to similar
performance results. We ran the iterative discriminative algorithm with value
of the parameter C = 1. Overall the algorithm has to estimate a total of 7
parameters, along with the phoneme classification described above.

Since the proposed discriminative system is implemented with context-
independent feature functions, we compared it to a context-independent
HMM-based system. We trained a context-independent HMM phoneme recog-
nizer from the entire TIMIT training portion, where 3600 utterances were used
as a training set and 96 utterances were used as a validation set. In our setting
each phoneme was represented by a simple left-to-right HMM of 5 emitting
states with 40 diagonal Gaussians. These models were enrolled as follows: first
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Fig. 5. ROC curves of the models generated from the discriminative system and the
context-independent HMM-based system, both trained on the TIMIT training set
and evaluated on 80 keywords from WSJ test set. The AUC are 0.942 and 0.88 for
the discriminative system and the HMM-based system, respectively.

the HMMs were initialized using K-means, and then enrolled independently
using EM and the segmentation provided by TIMIT. The second step, often
called embedded training, re-enrolls all the models by relaxing the segmenta-
tion constraints using a forced-alignment. Minimum values of the variances for
each Gaussian were set to 20% of the global variance of the data. All HMM
experiments were done using the Torch package (Collobert et al., 2002). All
hyper-parameters including the number of states, the number of Gaussians
per state, and the variance flooring factor, were tuned using the validation
set. The number of parameters in the HMM model can be calculated as fol-
lows. There are 5 states per phone, 40 Gaussians per states, 39 phones, and
the data is 39 dimensional; hence there are (40 + 2 × 40 × 39) × 5 × 39 pa-
rameters for the emission distributions and (8 × 39) + (39 × 39) parameters
for the transition distributions. Overall there are 618, 033 parameters in the
HMM system. The resulting HMM was a context-independent state-of-the-art
phoneme recognizer with accuracy of 64% on the TIMIT test set.

Keyword detection using the HMM-based system was performed with a HMM
composed of two context-independent sub-HMMs, the keyword model and
the garbage model, as depicted in Figure 6. The keyword model was a
context-independent HMM which estimated the likelihood of an acoustic se-
quence given that the sequence represented the keyword phoneme sequence.
The garbage model was an HMM composed of context-independent phoneme
HMMs fully connected to each others, which estimated the likelihood of any
acoustic sequence. The overall HMM fully connected the keyword model and
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Fig. 6. HMM topology for keyword spotting.

the garbage model. The detection of a keyword given a test utterance was
performed through a best path search, where an external parameter of the
prior keyword probability was added to the keyword sub-HMM. The best
path found by Viterbi decoding on the overall HMM either passed through
the keyword model (in which case the keyword was said to be uttered) or not
(in which case the keyword was assumed not to be in the acoustic sequence).
Swiping the prior keyword probability parameters set the trade-off between
the true positive rate and the false positive rate.

The test set was composed of 80 randomly chosen keywords, distinct from
the keywords of the training and validation sets (the list of keyword for this
experiment as well as for all other experiments is given in Appendix B). The
keywords were selected from the TIMIT dictionary to have a minimal length
of 4 phonemes. For each keyword, we randomly picked at most 20 utterances
in which the keyword was uttered and at most 20 utterances in which it was
not uttered. Note that the number of test utterances in which the keyword
was uttered was not always 20, since some keywords were uttered less than 20
times in the whole TIMIT test set. Both the discriminative system and the
HMM-based system were evaluated against the test data. The results are re-
ported as averaged ROC curves in Figure 4. The AUC are 0.995 and 0.941 for
the discriminative system and the context-independent HMM-based system,
respectively. In order to check whether the advantage over the averaged AUC
could be due to a few keyword, we ran the Wilcoxon test. At the 95% confi-
dence level, the test rejected this hypothesis, showing that the discriminative
system indeed brings a consistent improvement on the keyword set.

In order to make sure that the our learning procedure of the proposed dis-
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Table 1
Comparison of training the discriminative system with the TIMIT manual phoneme
alignment and with automatic forced-alignment. The AUC of the discriminative
system on the TIMIT test set for both cases is compared to the context-independent
HMM-based system.

Discriminative HMM

Training alignment test set AUC test set AUC

TIMIT manual alignment 0.995 0.941

TIMIT forced alignment 0.996 0.941

criminative algorithm can be applied in absence of manual alignment data, we
trained a model on phoneme time spans extracted from forced aligned data.
We used the algorithm presented in (Keshet et al., 2007) for forced alignment,
where it was trained on 50 utterances of TIMIT training portion which was
not used for training or validation the keyword spotting algorithm. The AUC
of the resulted discriminative system trained with forced aligned data and
evaluated on the TIMIT test data described above was 0.996, almost identical
to the AUC of the discriminative system trained on manual aligned data. The
results are given in Table 1.

In the next experiments we examine the robustness of the proposed discrim-
inative system to different environments. We used the discriminative system
and the HMM-based systems trained on TIMIT and evaluated them on differ-
ent corpora without any further training or adaptation. For the discriminative
system, we used the manually aligned trained model, since there was no signif-
icant difference between the manually aligned and the forced aligned models.
First we evaluated the systems on the HTIMIT corpus (Reynolds, 1997). The
HTIMIT corpus was generated by playing the TIMIT speech through a loud-
speaker into a different set of phone handsets. The TIMIT trained systems
were tested on a set of 80 keywords which were not used in the training set.
For each keyword, we randomly picked at most 20 utterances in which the
keyword was uttered and at most 20 utterances in which it was not uttered
from the CB1 portion of the HTIMIT corpus. The AUC are 0.949 and 0.922
for the discriminative system and the context-independent HMM-based sys-
tem, respectively. With more than 99% confidence, the Wilcoxon test rejected
the hypothesis that the difference between the two systems was due to only
a few keywords. Hence, these experiments on HTIMIT show that the intro-
duction of channel variations degrades the performance of both systems, but
does not change the relative advantage of the discriminative system over the
HMM-based system.

Next, we compared the performance of the systems on the Wall Street Jour-
nal (WSJ) corpus (Paul and Baker, 1992). This corpus corresponds to read
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Table 2
Summary of the empirical performance of the discriminative system and the context-
independent HMM-based system in all experiments.

Discriminative HMM

Corpus AUC AUC

TIMIT 0.996 0.941

HTIMIT 0.949 0.922

WSJ 0.942 0.87

OGI Stories 0.769 0.722

articles of the Wall Street Journal, and hence presents a different linguistic
context compared to TIMIT. Both the discriminative system and the context-
independent HMM-based system were trained on the TIMIT corpus as de-
scribed above and evaluated on a different set of 80 keywords from the WSJ
corpus. For each keyword, we randomly picked at most 20 utterances in which
the keyword was uttered and at most 20 utterances in which it was not ut-
tered from the si tr s portion of the WSJ corpus. The ROC curves are given
in Figure 5. The AUC are 0.942 and 0.88 for the discriminative model and
the context-independent HMM-based system, respectively. With more than
99% confidence, the Wilcoxon test rejected the hypothesis that the difference
between the two systems was due to only a few keywords.

Last, we compared the performance of the systems on OGI Stories corpus 1 .
In this corpus, spontaneous speech was recorded by asking American speakers
to talk freely about a topic of their choice. Again, both systems were trained
on the TIMIT corpus as described above and evaluated on a different set of
60 keywords. For each keyword, we randomly picked at most 20 utterances
in which the keyword was uttered and at most 20 utterances in which it
was not uttered. The results of these experiments on spontaneous speech are
consistent with the results obtained on read speech. Indeed, the discriminative
system outperforms the HMM-based system, with an AUC of 0.769 compared
to 0.722, respectively. As in previous cases, the Wilcoxon test rejected the
hypothesis that the difference between the two systems was due to only a few
keywords, at the 95% confidence level.

A summary of the results of all experiments is given in Table 2. A closer
look on them shows that the discriminative system systematically outperforms
the context-independent HMM-based system in terms of AUC. This indeed
validates our hypothesis that it is a good strategy to maximize the AUC.
Moreover, the discriminative system outperforms the HMM-based system for

1 http://cslu.cse.ogi.edu/corpora/stories/
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all points of the ROC curve, meaning that it has better true positive rate for
every given false negative rate.

Finally, we would like to note that a complete description of the experimental
setup, the keywords and the utterances used for evaluating and a source code in
C++ of the keyword spotter can be found in http://www.idiap.ch/keyword

spotting benchmark/.

8 Summary

Keyword spotting is a speech related task with more and more practical inter-
est from an application point of view. Current state-of-the-art approaches are
based on classical generative HMM-based systems. In this work, we introduced
a discriminative approach to keyword spotting, aimed at attaining high area
under the ROC curve, i.e., the most common measure for keyword spotter
evaluation. Furthermore, the proposed approach is based on a large-margin
formulation of the problem (hence expecting a good generalization perfor-
mance) and an iterative training algorithm (hence expecting to scale reason-
ably well to large databases). Compared to conventional context-independent
HMM-based system, the proposed discriminative system has shown to yield a
statistically significant improvement on the TIMIT corpus. Furthermore, the
very same system trained on the TIMIT corpus was tested on different corpora
to assess its performance in various conditions. Namely, the system has been
assessed on HTIMIT, which introduces various channel variations, on WSJ,
which introduces different types of sentences from a linguistic perspective, and
on OGI Stories, which corresponds to the recording of spontaneous speech. In
all cases, the discriminative system was shown to yield a statistically better
performance than the context-independent HMM alternative.

We would like to note that this work is part of a general line of research on large
margin and kernel method for discriminative continuous speech recognition.
Dekel et al. (2004) described and analyzed an hierarchical approach for frame-
based phoneme classification. Building on that work, we proposed an large-
margin based discriminative algorithm for forced-alignment (Keshet et al.,
2007), and an algorithm for whole sequence phoneme recognition (Keshet
et al., 2006). The discriminative keyword spotting presented in this paper is
in turn based on those works and it is the first to address word-level recogni-
tion. We are currently investigating an extension of this work to large-margin
discriminative large vocabulary continuous speech recognition. We are also
looking for a method to encompass contextual information into our models.
Last but not least, we are working on reducing the heavy computational load
required by kernel-based algorithms, with the objective to reach the efficiency
of HMM-based solutions.
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Last, a complete description of the experiments along with a source code for
the discriminative keyword spotter can be found in http://www.idiap.ch/

keyword spotting benchmark/.
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A Theoretical Analysis

In this appendix, we show that the iterative algorithm given in Section 4
attains high cumulative AUC, defined as

Âtrain =
1

m

m∑
i=1

1{wi·φ(x̄+
i ,p̄

ki
i ,s̄+

i )≥wi·φ(x̄−i ,p̄
ki
i ,s̄−i )}, (A.1)

where s̄−i is predicted every iteration step according to Eq. (8). The examina-
tion of the cumulative AUC is of great interest as it provides an estimator for
the generalization performance. Note that at each iteration step the iterative
algorithm receives new example (pki

i , x̄+
i , x̄−i , s̄+

i ) and predicts the time span of
the keyword in the negative instance x̄−i using the previous weight vector wi−1.
Only after the prediction is made the algorithm suffers loss by comparing its
prediction to the true time span s̄+

i of the keyword on the positive utterance
x̄+

i . The cumulative AUC is a weighted sum of the performance of the algo-
rithm on the next unseen training example and hence it is a good estimation
to the performance of the algorithm on unseen data during training.

Our first theorem states a competitive bound. It compares the cumulative
AUC of the weight vectors series, {w1, . . . ,wm}, resulted from the iterative
algorithm to the best fixed weight vector, w?, chosen in hindsight, and es-
sentially proves that, for any sequence of examples, our algorithms cannot do
much worse than the best fixed weight vector. Formally, it shows that the cu-
mulative area above the curve, 1− Âtrain, is smaller than the weighted average
loss `(w?; (p̄ki

i , x̄+
i , x̄−i , s̄+

i )) of the best fixed weight vector w? and its weighted
complexity, ‖w?‖. That is, the cumulative AUC of the iterative training al-
gorithm is going to be high, given that the loss of the best solution is small,
the complexity of the best solution is small and that the number of training
examples, m, is sufficiently large.

Theorem 1 Let S = {(p̄ki
i , x̄+

i , x̄−i , s̄+
i )}m

i=1 be a set of training examples and
assume that for all k, x̄ and s̄ we have that ‖φ(x̄, p̄k, s̄)‖ ≤ 1/

√
2. Let w? be
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the best weight vector selected under some optimization criterion by observing
all instances in hindsight. Let w1, . . . ,wm be the sequence of weight vectors
obtained by the algorithm in Figure 2 given the training set S. Then,

1− Âtrain ≤
1

m
‖w?‖2 +

2C

m

m∑
i=1

`(w?; (p̄ki
i , x̄+

i , x̄−i , s̄+
i )). (A.2)

where C ≥ 1 and Âtrain is the cumulative AUC defined in Equation A.1.

Proof Denote by `i(w) the instantaneous loss the weight vector w suffers on
the i-th example, that is,

`i(w) = [1−w · φ(x̄+
i , p̄ki

i , s̄+
i ) + max

s̄
w · φ(x̄−i , p̄ki

i , s̄)]+

The proof of the theorem relies on Lemma 1 and Theorem 4 in Crammer et al.
(2006). Lemma 1 in Crammer et al. (2006) implies that,

m∑
i=1

αi

(
2`i(wi−1)− αi‖∆φi‖2 − 2`i(w

?)
)
≤ ‖w?‖2. (A.3)

Now if the algorithm makes a prediction mistake and the predicted confidence
of the best time span of the keyword in a negative utterance is higher than
the confidence of the true time span of the keyword in the positive example
then `i(wi−1) ≥ 1. Using the assumption that ‖φ(x̄, p̄k, s̄)‖ ≤ 1/

√
2, which

means that ‖∆φ(x̄, p̄k, s̄)‖2 ≤ 1, and the definition of αi given in Eq. (12),
when substituting [1−wi−1 ·∆φi]+ for `i(wi−1) in its numerator, we conclude
that if a prediction mistake occurs then it holds that

αi`i(wi−1) ≥ min

{
`i(wi−1)

‖∆φi‖2
, C

}
≥ min {1, C} = 1. (A.4)

Summing over all the prediction mistakes made on the entire training set S
and taking into account that αi`i(wi−1) is always non-negative, we have

m∑
i=1

αi`i(wi−1) ≥
m∑

i=1

1{wi−1·φ(x̄+
i ,p̄

ki
i ,s̄+

i )≤wi−1·φ(x̄−i ,p̄
ki
i ,s̄−i )}. (A.5)

Again using the definition of αi, we know that αi`i(w
?) ≤ C`i(w

?) and that
αi‖∆φi‖2 ≤ `i(wi−1). Plugging these two inequalities and Eq. (A.5) into
Eq. (A.3) we get

m∑
i=1

1{wi−1·φ(x̄+
i ,p̄

ki
i ,s̄+

i )≤wi−1·φ(x̄−i ,p̄
ki
i ,s̄−i )} ≤ ‖w?‖2 + 2C

m∑
i=1

`i(w
?). (A.6)

The theorem follows by replacing the sum over prediction mistakes to a sum
over prediction hits and plugging the definition of the cumulative AUC given
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in Eq. (A.1). 2

The next theorem states that the output of our algorithm is likely to have good
generalization, i.e., the expected value of the AUC resulted from decoding on
unseen test set is likely to be large.

Theorem 2 Under the same conditions of Theorem 1. Assume that the train-
ing set S and the validation set Sval are both sampled i.i.d. from a distribution
Q. Denote by mval the size of the validation set. With probability of at least
1− δ we have

1− Atest = EQ

[
1{f(x̄+

i ,p̄
ki
i )≤f(x̄−i ,p̄

ki
i )}

]
= PrQ

[
f(x̄+

i , p̄ki
i ) ≤ f(x̄−i , p̄ki

i )
]
≤

1

m

m∑
i=1

`(w?; (p̄ki
i , x̄+

i , x̄−i , s̄+
i )) +

‖w?‖2

m
+

√
2 ln(2/δ)
√

m
+

√
2 ln(2m/δ)
√

mval

, (A.7)

where Atest is the mean AUC defined as Atest = EQ

[
1{f(x̄+

i ,p̄
ki
i )>f(x̄−i ,p̄

ki
i )}

]
.

Proof Denote the risk of keyword spotter f by

risk(f) = E
[
1{f(x̄+

i ,p̄
ki
i )≤f(x̄−i ,p̄

ki
i )}

]
= Pr

[
f(x̄+

i , p̄ki
i ) ≤ f(x̄−i , p̄ki

i )
]

Proposition 1 in (Cesa-Bianchi et al., 2004) implies that with probability of
at least 1− δ1 the following bound holds,

1

m

m∑
i=1

risk(fi) ≤ 1

m

m∑
i=1

1{fi(x̄
+
i ,p̄

ki
i )≤fi(x̄

−
i ,p̄

ki
i )} +

√
2 ln(1/δ1)√

m
.

Combining this fact with Theorem 1 we obtain that,

1

m

m∑
i=1

risk(fi) ≤ 2C

m

m∑
i=1

`i(w
?) +

‖w?‖2

m
+

√
2 ln (1/δ1)√

m
. (A.8)

The left-hand side of the above inequality upper bounds risk(f ?), where
f ? = arg minfi

risk(fi). Therefore, among the finite set of keyword spotting
functions, F = {f1, . . . , fm}, there exists at least one keyword spotting func-
tion (for instance the function f ?) whose true risk is bounded above by the
right hand side of Eq. (A.8). Recall that the output of our algorithm is the
keyword spotter f ∈ F , which maximizes the average AUC over the validation
set Sval. Applying Hoeffding inequality together with the union bound over F
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we conclude that with probability of at least 1− δ2,

risk(f) ≤ risk(f ?) +

√
2 ln (m/δ2)

mval

,

where mval = |Sval|. We have therefore shown that with probability of at least
1− δ1 − δ2 the following inequality holds,

risk(f) ≤ 1

m

m∑
i=1

`i(w
?) +

‖w?‖2

m
+

√
2 ln(1/δ1)√

m
+

√
2 ln(m/δ2)
√

mval

.

Setting δ1 = δ2 = δ/2 concludes our proof. 2

B Lists of Keywords

We give here the list of keywords used in the experiments described in Sec-
tion 7.

The keywords used in the TIMIT experiments were: absolute, admitted,
aligning, anxiety, apartments, apparently, argued, bedrooms, brand, cam-
era, characters, cleaning, climates, controlled, creeping, crossings, crushed,
decaying, demands, depicts, dominant, dressy, drunk, efficient, episode, ev-
erything, excellent, experience, family, firing, followed, forgiveness, freedom,
fulfillment, functional, grazing, henceforth, ignored, illnesses, imitate, increas-
ing, inevitable, introduced, January, materials, millionaires, mutineer, needed,
obvious, package, paramagnetic, patiently, pleasant, possessed, pressure, ra-
diation, recriminations, redecorating, rejected, secularist, shampooed, solid,
spilled, spreader, story, strained, streamlined, street, stripped, stupid, superb,
surface, swimming, sympathetically, unenthusiastic, unlined, urethane, usual,
walking, weekday.

The keywords used in the HTIMIT experiments were: ambitious, appetite,
avoided, bricks, building, causes, chroniclers, clinches, coeducational, colossal,
concern, controlled, convincing, coyote, derived, desires, determination, disre-
garding, dwarf, effective, enrich, example, examples, excluded, executive, ex-
periment, feverishly, firing, glossy, handle, happily, healthier, leaflet, lousiness,
manure, misery, Nathan, northeast, notoriety, nutrients, obviously, overcame,
penetrated, persuasively, petting, portion, precaution, prepare, prepared, pri-
vately, properties, propriety, reduced, referred, sandwich, sculptor, showering,
sitting, sixty, sketched, skills, spirits, storm, strength, strip, surely, synagogue,
technical, tomblike, traffic, tuna-fish, tycoons, university, vaguely, vanquished,
virtues, waking, wedded, working, wounds.
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The keywords used in WSJ experiment were: ability, administrative, analysis,
answer, answer, business, business, children, children, clothes, company, confir-
mation, design, different, economy, economy, environment, environment, envi-
ronment, equipment, evening, evening, experience, family, family, history, hos-
pitalization, hospitalization, important, information, ingredients, interior, lan-
guage, language, lesson, literature, literature, marketing, medicine, medicine,
murder, murder, natural, necessary, newspaper, organizations, people, phys-
ical, physical, popular, popular, predispositions, preparation, private, proce-
dure, process, progress, progress, psychological, public, public, questions, ques-
tions, reasons, regular, regular, research, research, responsibility, responsibil-
ity, scientists, sexual, simple, single, standards, strong, students, treatment,
vegetable, violence.

The keywords used in OGI Stories experiment were: army, articles, available,
baseball, boxing, bus, California, climbed, closed, competitive, contained, con-
tributions, cost, course, crazy, creating, cutting, developed, directions, double,
entertaining, experiencing, fee, fifty, forward, from, futures, Georgia, heading,
innovation, institutional, interior, kick, kindness, land, listen, luck, Maine,
main, much, never, nightly, nineteenth, operators, public, rancho, recession,
recommendations, Robert, room, such, teach, technology, Texas, though, turn-
ing, understood, ways, western, yesterday.
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Junkawitsch, J., Ruske, G., Höge, H., 1997. Efficient methods for detecting keywords
in continuous speech. In: Proc. of European Conference on Speech Communica-
tion and Technology. pp. 259–262.

Keshet, J., Chazan, D., Bobrovsky, B.-Z., 2001. Plosive spotting with margin clas-
sifiers. In: Proceedings of the Seventh European Conference on Speech Commu-
nication and Technology. pp. 1637–1640.

Keshet, J., Shalev-Shwartz, S., Bengio, S., Singer, Y., Chazan, D., 2006. Discrimi-
native kernel-based phoneme sequence recognition. In: Interspeech.

Keshet, J., Shalev-Shwartz, S., Singer, Y., Chazan, D., Nov. 2007. A large margin
algorithm for speech and audio segmentation. IEEE Trans. on Audio, Speech and
Language Processing.

Ketabdar, H., Vepa, J., Bengio, S., Bourlard, H., 2006. Posterior based keyword
spotting with a priori thresholds. In: Prof. of Interspeech.

Manos, A., Zue, V., 1997. A segment-based wordspotter using phonetic filler models.
In: Proc. of International Conference on Audio, Speech and Signal Processing.
pp. 899–902.

Paul, D., Baker, J., 1992. The design for the Wall Street Journal-based CSR corpus.
In: Proc. of the International Conference on Spoken Language Processing.

Platt, J. C., 1998. Fast training of Support Vector Machines using sequential min-
imal optimization. In: Schölkopf, B., Burges, C., Smola, A. (Eds.), Advances in
Kernel Methods - Support Vector Learning. MIT Press.

Rabiner, L., Juang, B., 1993. Fundamentals of Speech Recognition. Prentice Hall.
Rahim, M., Lee, C., Juang, B., 1997. Discriminative utterance verification for con-

nected digits recognition. IEEE Transactions on Speech and Audio Processing,
266–277.

Reynolds, D., 1997. HTIMIT and LLHDB: speech corpora for the study of handset
transducer effects. In: Proc. of International Conference on Audio, Speech and
Signal Processing. pp. 1535–1538.

Rohlicek, J. R., Jeanrenaud, P., Gish, K. N. H., Musicus, B., Siu, M., 1993. Pho-
netic training and language modeling for word spotting. In: Proc. of International
Conference on Audio, Speech and Signal Processing. pp. 459–462.

26



Rohlicek, J. R., Russell, W., Roukod, S., Gish, H., 1989. Continuous hidden markov
model for speaker independent word spotting. In: Proc. of International Confer-
ence on Audio, Speech and Signal Processing. pp. 627–430.

Rose, R., Paul, D., 1990. A hidden markow model based keyword recognition system.
In: Proc. of International Conference on Audio, Speech and Signal Processing.
pp. 129–132.

Salomon, J., King, S., Osborne, M., 2002. Framewise phone classification using
support vector machines. In: Proceedings of the Seventh International Conference
on Spoken Language Processing. pp. 2645–2648.

Shalev-Shwartz, S., Keshet, J., Singer, Y., 2004. Learning to align polyphonic mu-
sic. In: Proceedings of the 5th International Conference on Music Information
Retrieval.

Silaghi, M.-C., Bourlard, H., 1999. Iterative posterior-based keyword spotting with-
out filler models. In: Proc. of the IEEE Automatic Speech Recognition and Un-
derstanding Workshop. Keystone, USA, pp. 213–216.

Szoke, I., Schwarz, P., Matejka, P., Burget, L., Fapso, M., Karafiat, M., Cernocky, J.,
2005. Comparison of keyword spotting approaches for informal continuous speech.
In: Proc. of Joint Workshop on Multimodal Interaction and Related Machine
Learning Algorithms.

Taskar, B., Guestrin, C., Koller, D., 2003. Max-margin markov networks. In: Ad-
vances in Neural Information Processing Systems 17.

Vapnik, V. N., 1998. Statistical Learning Theory. Wiley.
Weintraub, M., 1995. LVCSR log-likelihood ratio scoring for keyword spotting. In:

Proc. of International Conference on Audio, Speech and Signal Processing. pp.
129–132.

27


