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Abstract. In this paper, we present initial results towards boosting pos-
terior based speech recognition systems by estimating more informative
posteriors using multiple streams of features and taking into account
acoustic context (e.g., as available in the whole utterance), as well as pos-
sible prior information (such as topological constraints). These posteri-
ors are estimated based on “state gamma posterior” definition (typically
used in standard HMMs training) extended to the case of multi-stream
HMMs.This approach provides a new, principled, theoretical framework
for hierarchical estimation/use of posteriors, multi-stream feature com-
bination, and integrating appropriate context and prior knowledge in
posterior estimates. In the present work, we used the resulting gamma
posteriors as features for a standard HMM/GMM layer. On the OGI
Digits database and on a reduced vocabulary version (1000 words) of
the DARPA Conversational Telephone Speech-to-text (CTS) task, this
resulted in significant performance improvement, compared to the state-
of-the-art Tandem systems.

1 Introduction

Using posterior probabilities for Automatic Speech Recognition (ASR) has be-
come popular and frequently investigated in the past decade. Posterior proba-
bilities have been mainly used either as features or as local scores (measures)
in speech recognition systems. Hybrid Hidden Markov Model / Artificial Neural
Network (HMM/ANN) approaches [1] were among the first ones to make use
of posterior probabilities as local scores. In these approaches, ANNs and more
specifically Multi-Layer Perceptrons (MLPs) are used to estimate the emission
probabilities required in HMM. Hybrid HMM/ANN method allows for discrim-
inant training, as well as for the possibility of using short acoustic context by
presenting several frames at MLP input. Posterior probabilities have also been
used as local scores for word lattice rescoring [2], beam search pruning [3] and
confidence measures estimation [4]. Regarding the use of posterior probabilities
as features, one successful approach is Tandem [5]. In Tandem, a trained MLP is
used for estimating local phone posteriors. These posteriors, after some transfor-
mations, can be used alone or appended to standard features (such as MFCC or
PLP) as input features to HMMs. Tandem technique takes the advantage of dis-
criminative acoustic model training, as well as being able to use the techniques



developed for standard HMM systems. In both hybrid HMM/ANN and Tandem
approaches, local posteriors (i.e., posteriors estimated using only local frame or
limited number of local frames as context) are used.

In [6], a method was presented to estimate more informative posterior prob-
abilities based on “state gamma posterior” definition (as usually referred to in
HMM formalism) to generate posteriors taking into account all acoustic informa-
tion available in each utterance, as well as prior knowledge, possibly formulated
in terms of HMM topological constraints. In their approach, posterior probabili-
ties are estimated based on state gamma posterior definition in a HMM configu-
ration, which, after some transformations, are fed as features into a second layer
consisting of standard HMM/Gaussian Mixture Models (HMM/GMM). Such an
approach was shown to yield significant performance improvement over Tandem
approach. In [7], these posteriors are used as local scores for a Viterbi decoder.
It also showed improvement over hybrid HMM/ANN approach which uses local
posteriors as local scores.

Building upon the idea of multi-stream HMMs [8, 9], in this paper we present
initial investigations towards extending the mentioned posterior estimation method
to multi-stream case. We show that the posterior probabilities can be estimated
through a multi-stream HMM configuration based on multi-stream state gamma
definition, thus giving the estimate of posteriors by combining multiple streams
of input features and also taking into account whole context in each stream
as well as prior knowledge encoded in the model. Our hierarchical approach is
as follows: The input feature streams are PLP cepstral [10] and TRAP tem-
poral [11] features which are known to have some complementary information.
We estimate the posteriors based on state gamma posterior definition through
a multi-stream HMM configuration. These posteriors are used after some trans-
formations as features for a standard HMM/GMM layer. This hierarchical ap-
proach provides a new, principled, theoretical framework for combining differ-
ent streams of features taking into account context and model knowledge. We
show that this method gives significant performance improvement over baseline
PLP-TANDEM [5] and TRAP-TANDEM [11] techniques and also entropy based
combination method [12] on OGI digits [13] and a reduced vocabulary version
(1000 words) of CTS [6] databases.

In the present paper, Section 2 reviews single stream gamma posterior esti-
mation method. The extension of this method to multi-stream case is explained
in Section 3. Section 4 explains the configuration of our hierarchical multi-stream
posterior based ASR system. Experiments and results are presented in Section
5. Conclusions and future work plans are discussed in Section 6.

2 Single stream “gamma posterior” estimation

In this section, we show how posterior probabilities can be estimated taking
into account whole context in a stream and prior knowledge (e.g. topological
constraints) encoded in the model. These posteriors are estimated based on
“state gamma posterior” definition (as it is referred to in HMM formalism)
through an HMM configuration.



In phone based speech recognition systems, phones are usually modeled by
a few number of states. The posteriors are first estimated for each state (called
“state gamma posteriors” as referred to in HMM formalism and used in HMM
training), which then can be integrated to phone or higher level posteriors.

According to standard HMM formalism, the state gamma posterior γ(i, t|M)
is defined as the probability of being in state i at time t, given the whole obser-
vation sequence x1:T and model M encoding specific prior knowledge (topologi-
cal/temporal constraints):

γ(i, t|M) , p(qt = i|x1:T , M) (1)

where xt is a feature vector at time t, x1:T = {x1, . . . , xT } is an acoustic obser-
vation sequence of size T and qt is HMM state at time t, which value can range
from 1 to Nq (total number of possible HMM states). In the following, we will
drop all the dependencies on M , always keeping in mind that all recursions are
processed through some prior (Markov) model M .

In standard likelihood-based HMMs, the state gammas γ(i, t) can be esti-
mated by using forward α and backward β recursions (as referred to in HMM
formalism) [14] using local emission likelihoods p(xt|qi = t) (e.g., modeled by
GMMs):

α(i, t) , p(x1:t, qt = i)

= p(xt|qt = i)
∑

j

p(qt = i|qt−1 = j)p(x1:t−1, qt−1 = j)

= p(xt|qt = i)
∑

j

p(qt = i|qt−1 = j)α(j, t− 1) (2)

β(i, t) , p(xt+1:T |qt = i)

=
∑

j

p(xt+1|qt+1 = j)p(qt+1 = j|qt = i)p(xt+2:T |qt+1 = j)

=
∑

j

p(xt+1|qt+1 = j)p(qt+1 = j|qt = i)β(j, t + 1) (3)

thus yielding the estimate of p(qt = i|x1:T ):

γ(i, t) , p(qt = i|x1:T ) =
α(i, t)β(i, t)∑
j α(j, t)β(j, t)

(4)

As mentioned above, we recall that the α and β recursions are processed through
a specific HMM, which is used to represent prior knowledge.

Similar recursions, also yielding “state gamma posteriors” and using the same
assumptions as the case of likelihood based recursions, can be developed for lo-
cal posterior based systems such as hybrid HMM/ANN systems using MLPs
to estimate HMM emission probabilities [6]. In standard HMM/ANN systems,
these local posteriors are usually turned into “scaled likelihoods” by dividing
MLP outputs p(qt = i|xt) by their respective prior probabilities p(qt = i),



i.e.:p(xt|qt=i)
p(xt)

= p(qt=i|xt)
p(qt=i) . These scaled likelihoods can be used in “scaled al-

pha” αs and “scaled beta” βs recursions to yield gamma posterior estimates [6].
These recursions are similar to the previous recursions except that the likelihood
term is replaced by the scaled likelihood:

αs(i, t) , p(x1:t, qt = i)∏t
τ=1 p(xτ )

=
p(xt|qt = i)

p(xt)

∑

j

p(qt = i|qt−1 = j)αs(j, t− 1)

=
p(qt = i|xt)
p(qt = i)

∑

j

p(qt = i|qt−1 = j)αs(j, t− 1) (5)

βs(i, t) , p(xt+1:T |qt = i)∏T
τ=t+1 p(xτ )

=
∑

j

p(xt+1 = j|qt+1 = j)
p(xt+1 = j)

p(qt+1 = j|qt = i)βs(j, t + 1)

=
∑

j

p(qt+1 = j|xt+1)
p(qt+1 = j)

p(qt+1 = j|qt = i)βs(j, t + 1) (6)

γ(i, t) , p(qt = i|x1:T ) =
αs(i, t)βs(i, t)∑
j αs(j, t)βs(j, t)

(7)

subscript s indicates that the recursion is based on scaled likelihood. In the above
equations, exactly the same independence assumptions as standard HMMs are
used, beside the fact that the local correlation may be better captured if the
ANN is presented with acoustic context.

3 Multi-stream “gamma posterior” estimation

In multi-stream HMM configuration, the definition of the state gamma posterior
is extended to the probability of being in specific state i at specific time t, given
the whole observation sequences for all streams, and model M encoding specific
prior knowledge:

γ(i, t) , p(qt = i|x1
1:T , x2

1:T , ..., xN
1:T ,M) (8)

where superscript n indicates the stream number. We call the state gamma poste-
rior estimated using multiple streams of features as “multi-stream state gamma”.
As we show in this section, multi-stream state gammas can be estimated using
multi-stream forward α and backward β recursions. The multi-stream α and β
recursions can also be written based on individual stream αn and βn recursions.
In this work, we focus on the posterior based systems, therefore all the recursions
are written using scaled likelihoods. The same multi-stream recursions but for
likelihood based systems has been explained in [15].



We start with individual stream forward αn and backward βn recursions:

αn
s (i, t) , p(xn

1:t, qt = i)∏t
τ=1 p(xn

τ )

=
p(qt = i|xn

t )
p(qt = i)

∑

j

p(qt = i|qt−1 = j)αn
s (j, t− 1) (9)

βn
s (i, t) ,

p(xn
t+1:T |qt = i)

∏T
τ=t+1 p(xn

τ )

=
∑

j

p(qt+1 = j|xn
t+1)

p(qt+1 = j)
p(qt+1 = j|qt = i)βn

s (j, t + 1) (10)

where αn
s (i, t) and βn

s (i, t) show the forward and backward recursions for stream
n. Subscript s indicates that the recursion is written using scaled likelihoods.

We note here that we need to estimate p(qt = i), which can be done recur-
sively as follows:

p(qt = i) =
∑

j

p(qt = i|qt−1 = j)p(qt−1 = j) (11)

Using individual stream forward recursions αn
s and applying the usual HMM

assumptions, we can write multi-stream forward αs recursion as follows:

αs(i, t) , p(x1
1:t, x

2
1:t, ..., x

N
1:t, qt = i)∏t

τ=1 p(x1
τ )

∏t
τ=1 p(x2

τ )...
∏t

τ=1 p(xN
τ )

(12)

=
p(x1

1:t, x
2
1:t, ..., x

N
1:t|qt = i)p(qt = i)∏t

τ=1 p(x1
τ )

∏t
τ=1 p(x2

τ )...
∏t

τ=1 p(xN
τ )

(13)

=
p(x1

1:t|qt = i)p(x2
1:t|qt = i)...p(xN

1:t|qt = i)p(qt = i)∏t
τ=1 p(x1

τ )
∏t

τ=1 p(x2
τ )...

∏t
τ=1 p(xN

τ )
(14)

=
p(x1

1:t,qt=i)Qt
τ=1 p(x1

τ )

p(qt = i)

p(x2
1:t,qt=i)Qt

τ=1 p(x2
τ )

p(qt = i)
...

p(xN
1:t,qt=i)Qt

τ=1 p(xN
τ )

p(qt = i)
p(qt = i) (15)

=
α1

s(i, t)
p(qt = i)

α2
s(i, t)

p(qt = i)
...

αN
s (i, t)

p(qt = i)
p(qt = i) (16)

=
∏N

n=1 αn
s (i, t)

p(qt = i)N−1
(17)

when going form (13) to (14), we add the following reasonable assumption:

p(x1
1:t, x

2
1:t, ..., x

N
1:t|qt = i) = (18)

p(x1
1:t|qt = i)p(x2

1:t|qt = i)...p(xN
1:t|qt = i)

while (14) is rewritten as (15) simply by applying Bayes rule.



The multi-stream βs recursion can also be written using individual stream
βn

s recursions:

βs(i, t) ,
p(x1

t+1:T , x2
t+1:T , ..., xN

t+1:T |qt = i)
∏T

τ=t+1 p(x1
τ )

∏T
τ=t+1 p(x2

τ )...
∏T

τ=t+1 p(xN
τ )

(19)

=
p(x1

t+1:T |qt = i)p(x2
t+1:T |qt = i)...p(xN

t+1:T |qt = i)
∏T

τ=t+1 p(x1
τ )

∏T
τ=t+1 p(x2

τ )...
∏T

τ=t+1 p(xN
τ )

(20)

=
p(x1

t+1:T |qt = i)
∏T

τ=t+1 p(x1
τ )

p(x2
t+1:T |qt = i)

∏T
τ=t+1 p(x2

τ )
...

p(xN
t+1:T |qt = i)

∏T
τ=t+1 p(xN

τ )
(21)

= β1
s (i, t)β2

s (i, t)...βN
s (i, t) (22)

=
N∏

n=1

βn
s (i, t) (23)

Note that (19) is rewritten as (20) assuming

p(x1
t+1:T , x2

t+1:T , ..., xN
t+1:T | qt = i) = (24)

p(x1
t+1:T |qt = i)p(x2

t+1:T |qt = i)...p(xN
t+1:T |qt = i)

The multi-stream state gamma γ(i, t) can then be obtained using multi-
stream αs and βs recursions:

γ(i, t) , p(qt = i|x1
1:T , x2

1:T , ..., xN
1:T )

=
p(x1

1:T , x2
1:T , ..., xN

1:T , qt = i)
p(x1

1:T , x2
1:T , ..., xN

1:T )

=
p(x1

1:t, x
1
t+1:T , x2

1:t, x
2
t+1:T , ..., xN

1:t, x
N
t+1:T , qt = i)∑

j p(x1
1:t, x

1
t+1:T , x2

1:t, x
2
t+1:T , ..., xN

1:t, x
N
t+1:T , qt = j)

=
p(x1

1:t, x
2
1:t, ..., x

N
1:t, qt = i)p(x1

t+1:T , x2
t+1:T , ..., xN

t+1:T |qt = i)∑
j p(x1

1:t, x
2
1:t, ..., x

N
1:t, qt = j)p(x1

t+1:T , x2
t+1:T , ..., xN

t+1:T |qt = j)

=

p(x1
1:t,x

2
1:t,...,x

N
1:t,qt=i)p(x1

t+1:T ,x2
t+1:T ,...,xN

t+1:T |qt=i)QN
n=1

Qt
τ=1 p(xn

τ )
QN

n=1
QT

τ=t+1 p(xn
τ )

P
j p(x1

1:t,x
2
1:t,...,x

N
1:t,qt=j)p(x1

t+1:T ,x2
t+1:T ,...,xN

t+1:T |qt=j)QN
n=1

Qt
τ=1 p(xn

τ )
QN

n=1
QT

τ=t+1 p(xn
τ )

=
αs(i, t)βs(i, t)∑
j αs(j, t)βs(j, t)

(25)

We remind that all multi-stream recursions are processed through a (Markov)
model M encoding some prior knowledge (e.g. topological constraints).

3.1 Ergodic HMM with uniform transition probabilities

As already mentioned above, all single stream, as well as multi-stream α and β
recursions are applied through a given HMM topology representing some prior



knowledge. When no specific prior knowledge is available, the simplest solution
consists in using ergodic HMM with uniform transition probabilities, i.e. p(qt =
i|qt−1 = j) = K. In this case, the multi-stream gamma estimation equation (25)
can be rewritten as follows:

γ(i, t) = p(qt = i|x1
1:T , x2

1:T , ..., xN
1:T )

=
αs(i, t)βs(i, t)∑
j αs(j, t)βs(j, t)

=

QN
n=1 αn

s (i,t)

p(qt=i)N−1 βs(i, t)
∑

j

QN
n=1 αn

s (j,t)

p(qt=j)N−1 βs(j, t)

=

QN
n=1

p(qt=i|xn
t )

p(qt=i)

P
k p(qt=i|qt−1=k)αn

s (k,t−1)

p(qt=i)N−1 βs(i, t)

∑
j

QN
n=1

p(qt=j|xn
t )

p(qt=j)

P
k p(qt=j|qt−1=k)αn

s (k,t−1)

p(qt=j)N−1 βs(j, t)
(26)

Assuming ergodic uniform transition probabilities, the sum over k factors in
above numerator and denominator and also βs factors are identical and can thus
be droped. Moreover, the state prior p(qt = i) is constant, thus yielding:

γ(i, t) =
∏N

n=1 p(qt = i|xn
t )∑

j

∏N
n=1 p(qt = j|xn

t )
(27)

Therefore, the multi-stream state gamma is the normalized product of posteriors
(MLP outputs) and gammas do not capture context and specific prior knowledge.
In this case, the multi-stream gamma estimation method can be interpreted as
a principled way to combine two streams of features.

3.2 Higher level posterior estimation

In case of having phone-based ASR system and modeling each phone with more
than one state, state gamma posteriors should be integrated to phone level poste-
riors. In the following, we call these phone posteriors as “phone gammas” γp(i, t),
which can be expressed in terms of state gammas γ(i, t) as follows:

γp(i, t) , p(pt = i|x1
1:T , x2

1:T , ..., xN
1:T ) =

Nq∑

j=1

p(pt = i, qt = j|x1
1:T , x2

1:T , ..., xN
1:T )

=
Nq∑

j=1

p(pt = i|qt = j, x1
1:T , x2

1:T , ..., xN
1:T )p(qt = j|x1

1:T , x2
1:T , ..., xN

1:T )

=
Nq∑

j=1

p(pt = i|qt = j, x1
1:T , x2

1:T , ..., xN
1:T )γ(j, t) (28)



where pt is a phone at time t. Probability p(pt = i|qt = j, x1
1:T , x2

1:T , ..., xN
1:T )

represents the probability of being in a given phone i at time t knowing to be
in the state j at time t. If there is no parameter sharing between phones, this
is deterministic and equal to 1 or 0. Otherwise, this can be estimated from the
training data. In this work, we model each phone with one state in the multi-
stream HMM, therefore in this particular case, state gammas are equal to phone
gammas and we do not need to integrate state gammas to phone gammas.

4 Hierarchical multi-stream posterior-based ASR

In this section, the configuration of our hierarchical multi-stream speech recogni-
tion system is explained. The main idea is to combine N (two in our case) streams
of features which have complementary information by estimating gamma poste-
riors through a multi-stream HMM configuration. These posteriors capture the
whole context in all streams as well as prior knowledge (e.g. topological con-
straints) encoded in the model, thus they are expected to be more informative
than individual streams of features before the combination. Figure 1 shows our
hierarchical multi-stream posterior based ASR system. This hierarchical system
consists of three layers: The first layer gets two streams of raw features (PLPs
and TRAPs) extracted from speech signal, and estimates two streams of pos-
teriors using MLPs. This is called “single stream posterior estimation”. These
streams of posteriors are used after turning to scaled likelihoods in the second
layer of hierarchy, which is a multi-stream posterior based HMM to obtain the
estimates of multi stream state gammas. The state gammas are then used as fea-
tures after some transformations (KLT) for the third layer of hierarchy which is
a standard HMM/GMM train/inference back-end. In the following, some issues
related to the system is explained in more details:

Divide 
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Divide 
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Scaled Likelihoods
Phone

Scaled Likelihoods
Phone

Multi−stream gamma

        estimation

Multi−stream HMM

KLT

Log 
&
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Standard HMM/GMM
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gammas

Hierarchy
of

MLPs

Posteriors

Phone

Posteriors

Phone

Multi−stream 

t

t

MLP

Single stream posterior
estimators

Fig. 1. Hierarchical multi-stream posterior based ASR: Two streams of posteriors are
estimated form PLP and TRAP features using MLPs, then these posteriors are turned
into scaled likelihoods by dividing by the priors. The resulting two streams of scaled
likelihoods are fed to the multi-stream HMM. The multi-stream gammas are estimated
using multi-stream forward αs and backward βs recursions as explained in Section 3.
These multi-stream gamma posteriors are used after some transformations (KLT) as
features for a standard HMM/GMM back-end system.



4.1 Input streams of features

The first step in developing the system is to choose two sets of features hav-
ing complementary information. Spectral (cepstral) features and features having
long temporal information are suitable candidates. We used PLP cepstral fea-
tures3 [10] and TRAPs temporal features [11] as input feature streams for the
system. TRAP features represent temporal energy pattern for different bands
over a long context, while PLPs represent full short-term spectrum (possibility
with very short time context).

4.2 Single stream posterior estimation

In the first layer of hierarchy, the two input feature streams (PLPs and TRAPs)
are processed by MLPs to estimate posterior probabilities of context-independent
phones. For PLP cepstral features, usually 9 frames of PLP coefficients and their
first and second order derivatives are concatenated as the input for a trained
MLP to estimate the posterior probabilities of context-independent phones [5].
The phonetic class is defined with respect to the center of 9 frames. For the case
of TRAPs, different bands temporal energy pattern over 0.5 to 1 second TRAP
temporal vector are first processed by band classifier MLPs, then the outputs of
these band classifiers are fed as inputs for a merger MLP [11]. The Merger MLP
outputs gives the posterior estimate for context-independent phones. Again, pho-
netic class is defined with respect to the center of 0.5-1 second temporal vector.
In the reminder of the paper, we call these single stream posterior estimates as
PLP and TRAP posteriors.

4.3 Multi-stream posterior estimation

Having two stream of posteriors estimated from PLP and TRAP features using
MLPs, the next step in the hierarchy is to estimate state gammas through the
multi-stream HMM configuration. Posteriors are first divided by priors to obtain
scaled likelihoods, i.e.: p(xn

t |qt=i)
p(xn

t ) = p(qt=i|xn
t )

p(qt=i) , and then these scaled likelihoods
are used in multi-stream forward αs and backward βs recursions according to (17,
23) to obtain estimates of state gammas. In this work, we model each phone with
one state, thus state gammas are equal to phone gammas. Moreover, we assume
ergodic uniform transition probabilities between phones, therefore as explained
in Section 3.1, the multi-stream state gamma estimation can be interpreted as a
probabilistic principled way to combine different streams of features which have
complementary information.

5 Experiments and results

Results are presented on OGI digits [13] and a reduced vocabulary version of
the DARPA Conversational Telephone Speech-to-text (CTS) task (1’000 words)
databases [6]. We used PLP and TRAP features as input streams to our system.
3 In the reminder of the paper, “PLP cepstral features” stands for PLP cepstral coef-

ficients and their first and second order derivatives



The PLP cepstral coefficients [10] are extracted using 25-ms window with 10-
ms shifts. At each frame, 13 PLP coefficients, their first-order and second-order
derivatives are extracted and concatenated to make one feature vector.

For extracting TRAP features, the short-term critical band spectrum is com-
puted in 25-ms windows with 10-ms shifts and the logarithm of the estimated
critical band spectral densities are taken. There are 15 bands. For each band,
50 frames before and after the center of analysis is taken resulting in 101 points
long temporal TRAP vector [11].

In this work, each phone is modeled by one state in the multi-stream HMM
and we assume ergodic uniform transition probabilities between phones.

5.1 OGI Digits
The task is recognition of eleven words (American English Digits). The test set
was derived from the subset of CSLU Speech Corpus [13], containing utterances
of connected digits. There are 2169 utterances (12437 words, about 1.7 hours) in
the test set. Training set contains 2547 utterances (about 1.2 hours). This set is
also derived from CSLU Speech Corpus and utterances containing only connected
digits are used. Standard HMM/GMM train/inference back-end system is based
on HTK. There are 29 context-independent phonetic classes. The subset of OGI
stories [16] plus a subset of OGI numbers [13] was used for training MLPs for
single stream posterior estimation. This set has in total 3798 utterances with
total length about 4.5 hours.

Two streams of posteriors (one from PLP features and the other one from
TRAP features) are estimated as explained in Section 4.2 for the test and train-
ing set. They are then turned into scaled likelihoods and used in the multi-stream
HMM layer to get the estimates of state (phone) gammas. These gamma poste-
riors are fed as features (after gaussianization and decorrelation through log and
KL transform) to the standard HMM/GMM layer. For comparison purposes,
we also run the standard HMM/GMM system using single stream posterior esti-
mates as features (after log and KLT) in order to obtain the baseline performance
of single stream PLP and TRAP posteriors before the combination (This corre-
sponds to PLP-TANDEM and TRAP-TANDEM methods). Moreover, we used
an inverse entropy based combination method [12] to combine PLP and TRAP
posteriors, and compare the combination performance with our method. Table 1
shows the result of recognition studies.The first column shows the features (after
log and KLT) which are fed to standard HMM/GMM layer. The second column
shows word error rate (WER). The first row shows the baseline performance
of posteriors estimated using PLP features (the first stream). The second row
shows the baseline performance of posteriors estimated using TRAP features
(the second stream). The third row shows the performance of features obtained
by inverse entropy combination of PLP and TRAP posteriors and the fourth row
shows the performance of our system which uses multi-stream gamma posteri-
ors obtained by combining the mentioned streams of PLP and TRAP posteriors
through the multi-stream HMM. The system using multi-stream gamma poste-
riors performs significantly better than the systems using baseline single stream
posteriors before the combination and also inverse entropy based combination.



Features WER

PLP posteriors 3.6%
TRAP posteriors 4.8%

Inverse entropy combination 3.5%
Multi-stream gammas 2.9%

Table 1. Word error rates (WER) on OGI Digits task

5.2 DARPA CTS task

The use of multi-stream gamma estimation method was further evaluated on a
conversational telephone speech (CTS) recognition task. The training set for this
task contained 15011 utterances (about 15.9 hours) and the test set contained
951 utterances (about 0.6 hour) of male speakers CTS speech randomly selected
from the Fisher Corpus and the Switchboard Corpus. There were 46 context-
independent phonetic classes in this task. The layer estimating single stream
posteriors were trained on the same training set using PLP and TRAP features.
The standard HMM/GMM system is based on HTK. A 1000 word dictionary
with multi-words and multi-pronunciations was used for decoding, using a bi-
gram language model.

Similar experiments as the case of OGI Digits database was repeated. Table
2 shows the recognition results. Again, multi-stream gamma combination gives
significant improvement over PLP and TRAP posteriors before the combination
and also inverse entropy combination.

Features WER

PLP posteriors 48.7%
TRAP posteriors 55.1%

Inverse entropy combination 48.7%
Multi-stream gammas 46.8%

Table 2. Word error rates (WER) on CTS task

6 Conclusions and future work

In this paper, we proposed a new, principled, theoretical framework for hierar-
chical estimation/use of posteriors and multi-stream feature combination, and
we presented initial results for this theory. We explained how the posterior esti-
mation can be enhanced by combining different streams of features and taking
into account all possible information present in the data (whole acoustic con-
text), as well as possible prior information (e.g. topological constraints). We used
these posteriors as features for a standard HMM/GMM system. We showed our
system performs significantly better as compared to the PLP-TANDEM and
TRAP-TANDEM baseline systems and inverse entropy combination method on
two different ASR tasks. This theoretical framework allows designing optimal hi-
erarchical multi-stream systems since it proposes a principled way for combining
different streams of features by hierarchical posterior estimation and introducing
context and prior knowledge to get better evidences in the form of posteriors.

In this work, we investigated the particular case of assuming ergodic uniform
transition probabilities. We will further investigate this method by introducing



prior knowledge encoded in appropriate model to get better estimates of pos-
teriors. The state gammas can be also used for reestimating MLP parameters
in the single stream posterior estimation layer. In this case, the MLPs used for
estimating single stream phone posteriors from acoustic features are retrained
with multi-stream phone gamma posteriors as new labels.
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