
PHONEME-GRAPHEME BASED SPEECH RECOGNITION SYSTEM

Mathew Magimai.-Doss, Todd A. Stephenson, Hervé Bourlard, and Samy Bengio
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ABSTRACT

State-of-the-art ASR systems typically use phoneme as the
subword units. In this paper, we investigate a system where
the word models are defined in-terms of two different sub-
word units, i.e., phonemes and graphemes. We train models
for both the subword units, and then perform decoding using
either both or just one subword unit. We have studied this
system for American English language where there is weak
correspondence between the grapheme and phoneme. The
results from our studies show that there is good potential in
using grapheme as auxiliary subword units.

1. INTRODUCTION

State-of-the-art HMM-based ASR systems modelp(Q,X),
the evolution of the hidden spaceQ = {q1, · · · , qn, · · · qN}
and the observed feature spaceX = {x1, · · · , xn, · · ·xN}
over time frame1, · · · , N [1]. The states represent the sub-
word units (typically, phonemes) which describe the word
model. The feature vectors are typically derived from the
smoothed spectral envelope of the speech signal. In recent
studies, it has been proposed that modelling the evolution of
auxiliary informationL = {l1, · · · , ln, · · · lN} along with
Q andX (i.e. p(Q,X, L) instead ofp(Q, X)) could im-
prove the performance of ASR [2]. The auxiliary informa-
tion that were mainly investigated in the past are the ad-
ditional features obtained from the speech signal such as
pitch frequency, short-time energy, rate-of-speech etc [3]. In
these studies, the auxiliary information has been observed
throughout the training similar toX; but during recognition
it has been either observed or hidden.

In this paper, we extend this strategy of modelling aux-
iliary information to model an information which is hidden
both during training and recognition similar toQ. Basi-
cally, this system could be seen as a system where word
models are described by two different subword units, the
phonemes and the graphemes1. During training, we train

1a written symbol that is used to represent speech. For e.g. alphabets
in English language.

models for both the subword units maximizing the likeli-
hood of the training data. During recognition, we perform
decoding using either one or both the subword units. This
system is similar to factorial HMMs [4], where there are
several chains of states as opposed to a single chain in stan-
dard HMMs. Each chain has its own states and dynamics;
but the observation at any time depends upon the current
state in all the chains. One of the first attempts in this direc-
tion has focussed upon dividing the states itself into chains
for task such as phoneme recognition, which did not yield
significant results [5]. In our case instead of dividing states
representing the same subword units into chains, there are
two chains corresponding to each of the subword units.

In literature, good results have been reported using graph-
emes as subword units [6]. The main advantage of using
graphemes is that the word models could be defined easily
(orthographic transcription) and it is relatively “noise free”
as compared to word models based upon phoneme units, for
e.g. the wordCOW can be pronounced as /k/ /o/ /v/ or /k/
/ae/ /v/; but the grapheme-based representation remains as
[C][O][W ]. At the same time, there are drawbacks in using
graphemes too, such as, there is a weak correspondence be-
tween the graphemes and the phonemes in languages such
as English, e.g., the grapheme[C] in the case of the word
CAT associates itself to phoneme /k/, where as, in the case
of the wordCHURCH it associates itself to phoneme /C/.
Furthermore, the acoustic feature vectors typically depict
the characteristics of phonemes. In [6], this problem was
handled by using a decision tree based, graphemic acous-
tic subword units with phonetic questions. This, however,
makes the acoustic modelling process complex. As we will
see in the later sections, the proposed system provides an
easy approach to model relationship between two different
subword units automatically from the data.

We study the proposed system in the framework of state-
of-the-art hybrid HMM/ANN system [7], which provides
some additional flexibility in modelling and estimation. In
Section 2, we briefly describe the system we are investigat-
ing. Section 3 presents the experimental studies. Finally in
Section 4, we summarize and conclude with future work.



2. MODELLING AUXILIARY INFORMATION

Standard ASR modelsp(Q,X)2 as

p(Q,X) ≈
∑

Q

N∏
n=1

p(xn|qn) · P (qn|qn−1) (1)

whereqn ∈ Q,Q = {1, · · · , k, · · · , K}.
Similarly for a system withL as the hidden space we

model

p(L,X) ≈
∑

L

N∏
n=1

p(xn|ln) · P (ln|ln−1) (2)

whereln ∈ L, L = {1, · · · , r, · · · , R}.
In this paper, we are interested in modelling the evolu-

tion of two hidden spacesQ andL (instead of just one) and
the observed spaceX over time i.e.p(Q,L, X). For such a
system, the forward recurrence can be written as:

α(n, k, r)= p(qn = k, ln = r, xn)

= p(xn|qn =k, ln =r)
K∑

i=1

P (qn =k|qn−1 = i)

R∑

j=1

P (ln = r|ln−1 = j) α(n− 1, i, j) (3)

assuming conditional independence betweenQ andL given
xn.

The likelihood of the data can then be estimated as

p(X) =
K∑

k=1

R∑
r=1

α(N, k, r) (4)

Finally, the Viterbi decoding algorithm that gives the best
sequence in theQ andL spaces, can be written as

V (n, k, r) = p(xn|qn = k, ln = r) max
i

P (qn =k|qn−1 = i)

max
j

P (ln = r|ln−1 = j) V (n− 1, i, j) (5)

In state-of-the-art ASR, the emission distribution could
be modelled by Gaussian Mixture Models (GMM) or Arti-
ficial Neural Network (ANN). In case of hybrid HMM/ANN
ASR, during training a Multilayer Perceptron (MLP) is trained
say, withK output units for system in (1). The likelihood
estimate is replaced by the scaled-likelihood estimate which
is computed from the output of the MLP (posterior esti-
mates) and priors of the output units (hand counting). For
instance,p(xn|qn) in (1) is replaced by its scaled-likelihood
estimatepsl(xn|qn), which is estimated as [7]:

psl(xn|qn) =
p(xn|qn)
p(xn)

=
P (qn|xn)

P (qn)
(6)

2for all pathsQ, if path unknown

We are investigating the proposed system in the frame-
work of hybrid HMM/ANN ASR, where the emission distri-
butionp(xn|qn = k, ln = r) could be estimated in different
ways, such as, we could train an MLP withK × R output
units and estimate the scaled-likelihood as

p(xn|qn = k, ln = r)
p(xn)

=
P (qn = k, ln = r|xn)

P (qn = k, ln = r)
(7)

Such a system, during training would automatically, model
the association between the subword units inQ andL. This
system has an added advantage that it could be reduced to a
single hidden variable system by marginalizing any one of
the hidden variables, yielding:

p(xn|qn = k)
p(xn)

=

∑R
j=1 P (qn = k, ln = j|xn)

P (qn = k)
(8)

p(xn|ln = r)
p(xn)

=
∑K

i=1 P (qn = i, ln = r|xn)
P (ln = r)

(9)

and using this scaled-likelihood estimate to decode accord-
ing to (1) or (2), respectively.

Yet another approach would be to assume independence
between the two hidden variables and estimating the scaled-
likelihood as following:

p(xn|qn = k, ln = r)
p(xn)

≈ P (qn = k|xn)P (ln = r|xn)
P (qn = k)P (ln = r)

≈ psl(xn|qn=k)psl(xn|ln=r)(10)

This would mean training two separate systems based upon
(1) and (2), estimating the scaled-likelihood as in (10) and
performing decoding according to (5).

3. EXPERIMENTAL SETUP AND STUDIES

The system proposed in Section 2 is applicable to any two
kinds of subword units, e.g., phonemes and graphemes or
phonemes and automatically derived subword units. Stan-
dard ASR, typically use phonemes as subword units. The
lexicon of an ASR contains the orthographic transcription
of the word and its phonetic transcription. During decoding,
standard ASR uses the phonetic transcription only, ignoring
the orthographic transcription. In this paper, we are partic-
ularly interested in investigating the use of the orthographic
information for automatic speech recognition.

We use PhoneBook database for task-independent speaker-
independent isolated word recognition [8]. The training set
consists of 5 hrs of isolated words spoken by different speak-
ers. The test set contains 8 different sets of 75 word vocab-
ulary. The words and speakers present in the training set, do
not appear in either validation set or test set [9].

The acoustic vectorxn is the MFCCs extracted from the
speech signal using a window of 25 ms with a shift of 8.3



ms. Cepstral mean subtraction and energy normalization
are performed. At each time frame, 10 Mel frequency cep-
stral coefficients (MFCCs)c1 · · · c10, the first-order deriva-
tives (delta) ofc0 · · · c10 (c0 is the energy coefficient) are
extracted, resulting in a 21 dimensional acoustic vector. All
the MLPs trained in our studies have the same 189 dimen-
sion (4 frames of left and right context, each) input layer.

There are 42 context-independent phonemes including
silence associated withQ, each modelled by a single emit-
ting state. We trained a phoneme baseline system via em-
bedded Viterbi training [7] and performed recognition using
single pronunciation of each word. The performance of the
phoneme baseline system is given in Table 1.

There are 28 context-independent grapheme subword
units associated withL representing the 26 characters in
English, silence and+ symbol present in the orthographic
transcription of certain words in the lexicon. Similar to
phonemes each of the grapheme units are modelled by a
single emitting state. We trained a grapheme baseline sys-
tem via embedded Viterbi training and performed recogni-
tion experiments using the orthographic transcription of the
words. The performance of the grapheme baseline system
is given in Table 1.

Table 1. Performance of phoneme and grapheme base-
line systems. The performance is expressed in terms of
Word Error Rate (WER).

Subword Unit # of output units WER
Phoneme 42 4.7%
Grapheme 28 43.0%

It could be observed from the results that the grapheme-
based system performs significantly poorer as compared to
the phoneme-based system. In [6], similar trend was ob-
served for the context-independent case of monophone and
monograph. In [6], they generated phonetic questions (both
manually and automatically) for each grapheme and mod-
elled it through decision tree, which resulted in improve-
ment. In our case, instead of generating such questions, we
could model the relation between the phoneme and grapheme
automatically from the data by training a single MLP with
42 × 28 = 1176 output units. However, training such a
large network is a difficult task (still training). Hence, we
take an alternate approach where we reduce the phoneme set
to broad-phonetic-class representation. By broad-phonetic-
class, we refer to the phonetic features, such as manner,
place, height. According to linguistic theory, each phoneme
can be decomposed into some independent and distinctive
features; the combination of these features serves to uniquely
identify each phoneme [10]. In our studies, we use the pho-

netic feature values similar to the one used in [10, Chap-
ter 7]. Table 2 presents the different broad-phonetic-classes
that we have used and their corresponding values. It could
be seen from the table that the number of values for manner,
place and height broad-phonetic-classes are 10, 12, and 7,
respectively. So, by collapsing the phonemes into a broad-
phonetic-class (many-to-one mapping) we could train a
grapheme-broad-phonetic-class system which models the re-
lation between the grapheme and the values of the broad-
phonetic-class. The mapping between the phonemes and the
values of the broad-phonetic-class could be obtained from a
International Phonetic Alphabet (IPA) chart.

Table 2. Different broad-phonetic-classes and their val-
ues.

Broad-phonetic-class Values
Manner vowel, approximant, nasal,

stop, voiced stop,
fricative, voiced fricative,
closure, silence

Place front, mid, back, retroflex,
lateral, labial, dental,
alveolar, dorsal, closure,
unknown, silence

Height maximum, very low height,
low height, high height,
very high height, closure,
silence

We studied three different grapheme-broad-phonetic-class
systems corresponding to the different broad-phonetic-classes,
1. manner (System 1), 2. place (System 2) and 3. height
(System 3). We train acoustic models for both grapheme
units and values of the broad-phonetic-class by training a
single MLP via embedded Viterbi training. During training,
at each iteration, we marginalize out the broad-phonetic-
class as per (9) and perform Viterbi decoding according to
(2) to get the segmentation in-terms of graphemes.

We performed recognition studies just using graphemes
as the subword units i.e. orthographic transcription of the
words like the grapheme baseline system. In order to do so,
we marginalize out the broad-phonetic-class as per (9) to
estimate the scaled-likelihoods of the grapheme units (i.e.
the broad-phonetic-class acts like an auxiliary information
which is used during the training; but hidden during recog-
nition.) and then perform decoding like any standard ASR.
Table 3 presents the experimental results of this study.

The experimental results show that performance of the
grapheme-based system which uses just the orthographic
transcription of the word can be significantly improved by



Table 3. Performance of grapheme-based ASR system
using broad-phonetic-class as auxiliary information. The
performance is expressed in terms of Word Error Rate
(WER).

System Broad-phonetic-class # of WER
o/p units

Baseline - 28 43.0%
System 1 Manner 280 29.2%
System 2 Place 336 27.2%
System 3 Height 196 27.9%

modelling the phonetic related information and the grapheme
information together.

Next, with the improved grapheme-based system we study
whether the grapheme information could help us to improve
the performance of ASR if used as an auxiliary information.
We investigate this in the lines of (10), where we assume in-
dependence between the phoneme units and grapheme units.
We model them by separate MLPs, and, during recogni-
tion multiply the scaled-likelihood estimates obtained from
the two systems in order to estimatep(xn|qn, ln). We con-
ducted recognition experiments by combining the scaled-
likelihood estimates of the phoneme units and the scaled-
likelihood estimates of the grapheme units estimated from
different MLPs, corresponding to the grapheme baseline sys-
tem and the different grapheme-broad-phonetic-class sys-
tems. This yielded results slightly poorer compared to the
phoneme baseline system.

It could be observed from (10) that the scaled-likelihood
estimates of phoneme units and grapheme units are two dif-
ferent kinds of probability streams that are combined with
equal weights. Hence, we performed experimental studies
by weighting thelog probability streams differently. The
weights could be estimated automatically during recogni-
tion or could be a fixed weight [11, 12].

In order to see how crucial the weights are in determin-
ing the performance of the system, we conducted an exper-
iment where we fixed the weights and performed recogni-
tion experiments on the test set. We then varied the weights
in steps of 0.05 and performed recognition experiments at
each step. The result of this study is shown in Figure 1. The
best performance obtained was 4.1% for the case where the
grapheme probabilities were estimated from the grapheme-
broad-phonetic-class system using the place broad-phonetic-
class as auxiliary information. The resulting model is sig-
nificantly3 better than the baseline system with 95% con-

3The significant tests are done with standard proportion test, assuming
a binomial distribution for the targets, and using a normal approximation.

fidence. It could be seen from the figure that the operat-
ing points of the different systems are different. It is also
closely related to how the grapheme-based systems perform
individually.
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Fig. 1. Plot illustrating the relationship between the weight
and the word error rate of the phoneme-grapheme system.

4. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach to model an auxil-
iary information which could be hidden during training as
well as recognition similar to the states of HMM. In this
framework, we studied the application of graphemes as sub-
word units in standard ASR.

An ASR system was trained using graphemes as the
subword units. This system yielded poor results. How-
ever, this system performs above the chance level suggest-
ing that it might be still useful if modelled well. So, we
trained a grapheme-broad-phonetic-class system in the pro-
posed framework, where the broad-phonetic-class acts as an
auxiliary information. Recognition experiments were con-
ducted just using the grapheme subword units (orthographic
transcription) by marginalizing out the broad-phonetic-class.
We obtained a significant improvement in the performance
of grapheme-based ASR but still is not comparable to the
phoneme-based system. This suggests that it is possible to
obtain a grapheme-based recognizer with considerable per-
formance, if we could train a system with phonemes as aux-
iliary information.

Finally, we investigated a phoneme-grapheme system
assuming independence between the two subword units. This
system yielded significant improvement over the phoneme-
baseline system for speaker-independent task-independent
isolated word recognition task in English language. Our
studies suggest that the graphemes do contain useful infor-
mation for speech recognition application which, if properly
modelled and utilized instead of ignoring it, could improve
the performance of the ASR.



In future, we would like to investigate other techniques
to dynamically estimate the weights for each probability
stream. We would also like to study a phoneme-grapheme
system where we could train models without making the in-
dependence assumption. One such direction would be to in-
vestigate the possibility of a system where we could model
the phonemes and graphemes through a single MLP. Fur-
thermore, it would be interesting to extend the phoneme-
grapheme system for a short vocabulary connected word
recognition task such as OGI Numbers.
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Hervé Bourlard, “Speech recognition with auxiliary
information,” To appear in IEEE Trans. Speech and
Audio Processing, 2003.

[4] Zoubin Ghahramani and Michael I. Jordan, “Factorial
hidden Markov models,”Machine Learning, vol. 29,
pp. 245–273, 1997.

[5] Beth Logan and Pedro J. Moreno, “Factorial hid-
den Markov models for speech recognition: Prelim-
inary experiments,” Technical Report Series CRL
97/7, Cambridge Research Laboratory, Massachusetts,
USA, September 1997.

[6] S. Kanthak and H. Ney, “Context-dependent acous-
tic modeling using graphemes for large vocabulary
speech recognition,” inICASSP, 2002, pp. 845–848.

[7] H. Bourlard and N. Morgan, Connectionist Speech
Recognition - A Hybrid Approach, Kluwer Academic
Publishers, 1994.

[8] J. F. Pitrelli, C. Fong, S. H. Wong, J. R. Spitz, and
H. C. Leung, “PhoneBook: A phonetically-rich
isolated-word telephone-speech database,” inICASSP,
1995, pp. 1767–1770.

[9] S. Dupont, H. Bourlard, O. Deroo, V. Fontaine, and J.-
M. Boite, “Hybrid HMM/ANN systems for training
independent tasks: Experiments on ’PhoneBook’ and
related improvements,” inICASSP, 1767-1770, 1997,
pp. 524–528.

[10] John-Paul Hosom, Automatic Time Alignment of
Phonemes Using Acoustic-Phonetic Information, PhD
dissertation, CSLU, Oregon Graduate Institute of Sci-
ence and Technology (OGI), USA, 2000.

[11] Astrid Hagen, Robust speech recognition based on
multi-stream processing, PhD dissertation, EPFL,
Lausanne, Switzerland, December 2001.

[12] Hemant Misra, Herv́e Bourlard, and Vivek Tyagi,
“New entropy based combination rules in HMM/ANN
multi-stream ASR,” inICASSP, HongKong, April
2003, pp. II–741–II–744.


