
Towards Computer Understanding of Human

Interactions

Iain McCowan, Daniel Gatica-Perez, Samy Bengio, Darren Moore,
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Abstract. People meet in order to interact - disseminating information,
making decisions, and creating new ideas. Automatic analysis of meetings
is therefore important from two points of view: extracting the informa-
tion they contain, and understanding human interaction processes. Based
on this view, this article presents an approach in which relevant informa-
tion content of a meeting is identified from a variety of audio and visual
sensor inputs and statistical models of interacting people. We present
a framework for computer observation and understanding of interact-
ing people, and discuss particular tasks within this framework, issues in
the meeting context, and particular algorithms that we have adopted.
We also comment on current developments and the future challenges in
automatic meeting analysis.1

1 Introduction

The domain of human-computer interaction aims to help humans interact more
naturally with computers. A related emerging domain of research instead views
the computer as a tool to assist or understand human interactions : putting
computers in the human interaction loop [1]. Humans naturally interact with
other humans, communicating and generating valuable information. The most
natural interface for entering this information into a computing system would
therefore be for the computer to extract it directly from observing the human
interactions.

The automatic analysis of human interaction is a rich research area. There is
growing interest in the automatic understanding of group behaviour, where the
interactions are defined by individuals playing and exchanging both similar and
complementary roles (e.g. a handshake, a dancing couple, or a children’s game)
[2–6]. Most of the previous work has relied on visual information and statistical
models, and studied three specific scenarios: surveillance in outdoor scenes [5, 6],

1 This article is an updated version of one that originally appeared in Proceedings of the
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workplaces [3, 4], and indoor group entertainment [2]. Beyond the use of visual
information, dialogue modelling [7, 8] analyses the structure of interactions in
conversations.

While it has only recently become an application domain for computing re-
search, observation of human interactions is not a new field of study - it has
been actively researched for over fifty years by a branch of social psycholo-
gists [9–11]. For example, research has analysed turn-taking patterns in group
discussions [12–14], giving insight into issues such as interpersonal trust, cogni-
tive load in interactions, and patterns of dominance and influence [11]. Research
has also shown that interactions are fundamentally multimodal, with partici-
pants coordinating speaking turns using a variety of cues, such as gaze, speech
back-channels, changes in posture, etc. [12, 13, 15]. In general, visual informa-
tion can help disambiguate audio information [16], and when the modalities are
discrepant, participants appear to be more influenced by visual than by audio
cues [11, 17].

Motivated therefore by a desire to move towards more natural human-machine
interfaces, and building upon findings of social psychologists regarding the mech-
anisms and significance of human interactions, this article presents an observa-
tional framework for computer understanding of human interactions, focussing
on small group meetings as a particular instance.

Meetings contain many complex interactions between people, and so auto-
matic meeting analysis presents a challenging case study. Speech is the predomi-
nant modality for communication in meetings, and speech-based processing tech-
niques, including speech recognition, speaker identification, topic detection, and
dialogue modelling, are being actively researched in the meeting context [18, 8,
19, 20]. Visual processing, such as tracking people and their focus of attention,
has also been examined in [1, 21]. Beyond this work, a place for analysis of text,
gestures, and facial expressions, as well as many other audio, visual and mul-
timodal processing tasks can be identified within the meeting scenario. While
important advances have been made, to date most approaches to automatic
meeting analysis have been limited to the application of known technologies
to extract information from individual participants (e.g. speech, gaze, identity,
etc). Intuitively, the true information of meetings is created from interactions
between participants, and true understanding of meetings can only emerge from
considering their group nature.

The remainder of this article is organised as follows. Section 2 describes a
multi-sensor meeting room that we have installed to enable our research. A
framework for computer understanding of human interactions is outlined in Sec-
tion 3, along with some specific issues and algorithms related to the meeting
context. Finally, some perspective on future directions in automatic meeting
analysis is given in Section 4, followed by concluding remarks in Section 5.



2 A Multi-Sensor Meeting Room

As mentioned above, interactions between people in meetings are generally mul-
timodal in nature. While the audio modality is the most obvious source of in-
formation in discussions, studies have shown that significant information is con-
veyed in the visual modality, through expressions, gaze, gestures and posture [12,
13, 15]. In meetings, the textual modality is also important, with presentation
slides, whiteboard activity, and shared paper documents providing detailed in-
formation.
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Fig. 1. Meeting recording configuration

To facilitate research into automatic meeting analysis, a meeting room at
IDIAP has been equipped with multi-media acquisition facilities for recording
meetings with up to 4 participants. Audio information is captured from both
headset and lapel microphones on each participant, a tabletop microphone ar-
ray, and a binaural manikin. Video information is collected using seven cameras.
Four cameras are positioned in the centre of the meeting table, providing close-
up facial views of each participant with sufficient resolution for tasks such as face
identification and audio-visual speech recognition. The three remaining cameras
acquire wider angle frontal views of the participants and a view of the entire
meeting room scene. Unique presentation slides are captured at native VGA res-
olutions from the monitoring output of a data projector, whiteboard activity is
recorded using transmitting pens and a receiver attached to a standard white-
board, and participants’ notes are acquired using a digital pen capture system.
The acquisition of all modalities is completely synchronised and all data streams
are accurately time-stamped.

Meeting recording efforts at IDIAP have occurred at various stages in the
evolution of the meeting room acquisition capabilities. An initial audio-visual



corpus of approximately sixty, five-minute, four-person scripted meetings was
acquired using three wide-angle cameras, per-participant lapel microphones and
a microphone array. Subsequent recordings focussed on the recording of less
constrained and more naturally occurring meeting scenarios and used the same
A/V sensor configuration together with slide and whiteboard capture capabil-
ities. The meeting room configuration used for these recordings is illustrated
in Figure 1. The resulting meeting recordings have been annotated to differing
degrees, and all raw and meta- data is available for online public distribution
through a MultiModal Media file server at mmm.idiap.ch. A new round of meet-
ing recordings has been recently launched using the full multimodal acquisition
capabilities. This round of recordings (in conjunction with recordings from two
partner sites) aims to collect 100 hours of annotated meeting data to satisfy the
multimodal meeting data needs of the AMI research consortium2.

3 Multimodal Processing

We propose a framework for computer understanding of human interactions that
involves the following basic steps in a processing loop :

1. locate and track participants

2. for each located participant

(a) enhance their audio and visual streams

(b) identify them

(c) recognise their individual actions

3. recognise group actions

The first step is necessary to determine the number and location of partici-
pants. For each person present, we then extract a dedicated enhanced audio and
visual stream by focussing on their tracked location. Audio-visual (speech and
face) speaker identification techniques can then be applied to determine who
the participant is. Individual actions, such as speech activity, gestures or speech
words may also be measured or recognised from the audio and visual streams.
The ultimate goal of this analysis is then to be able to recognise actions belonging
to the group as a whole, by modelling the interactions of the individuals.

Specific issues and algorithms for implementing a number of these steps for
the case of meeting analysis are presented in the following sub-sections. A pri-
mary focus of our research is the multimodal nature of human interactions in
meetings, and this is reflected in the choice of tasks we have included. Naturally,
there are many other processing tasks involved in understanding meetings, such
as speech recognition and dialogue modelling, that are not covered here.

2 http://www.amiproject.org/



3.1 Audio-Visual Speaker Tracking

The problem in the global view Locating and tracking speakers represents
an important first step towards automatic understanding of human interactions.
As mentioned previously, speaker turn patterns convey a rich amount of in-
formation about the behaviour of a group and its individual members [10, 13].
Furthermore, experimental evidence has highlighted the role that non-verbal be-
haviour (gaze, facial expressions, and body postures) plays in interactions [13].
Recognising such rich multimodal behaviour first requires reliable localisation
and tracking of people.

Challenges in the meeting context The separate use of audio and video as
cues for tracking are classic problems in signal processing and computer vision.
However, sound and visual information are jointly generated when people speak,
and provide complementary advantages. While initialisation and recovery from
failures can be addressed with audio, precise object localisation is better suited
to visual processing.

Long-term, reliable tracking of multiple people in meetings is challenging.
Meeting rooms pose a number of issues for audio processing, such as reverber-
ation and multiple concurrent speakers, as well as for visual processing, includ-
ing clutter and variations of illumination. However, the main challenge arises
from the behaviour of multiple participants resulting in changes of appearance
and pose for each person, and considerable (self)-occlusion. At the same time,
meetings in a multi-sensor room present some advantages that ease the loca-
tion and tracking tasks. Actions usually unfold in specific areas (meeting table,
whiteboard, and projector screen), which constrains the group dynamics in the
physical space. In addition, the availability of multiple cameras with overlapping
fields of view can be exploited to build more reliable person models, and deal
with the occlusion problems.

Our approach We are developing principled methods for speaker tracking,
fusing information coming from multiple microphones and uncalibrated cameras
[22], based on Sequential Monte Carlo (SMC) methods, also known as particle

filters (PFs) [23]. For a state-space model, a PF recursively approximates the
conditional distribution of states given observations using a dynamical model and
random sampling by (i) generating candidate configurations from the dynamics
(prediction), and (ii) measuring their likelihood (updating), in a process that
amounts to random search in a configuration space.

The state-space formulation is general. As an option, it can be defined over
only one person, implying that the tracker should lock onto the current speaker
at each instant. More generally, the state-space could be defined over all the
people present in the scene. In this joint representation, both the location and
the speaking status of each participant should be tracked all the time.

Our work is guided by inherent features of AV data, taking advantage of
the fact that data fusion can be introduced in both stages of the PF algo-
rithm. First, audio is a strong cue to model discontinuities that clearly violate



usual assumptions in dynamics (including speaker turns across cameras), and
(re)initialisation. Its use for prediction thus brings benefits to modelling real
situations. Second, audio can be inaccurate at times, but provides a good initial
localisation guess that can be enhanced by visual information. Third, although
audio might be imprecise, and visual calibration can be erroneous due to dis-
tortion in wide-angle cameras, the joint occurrence of AV information in the
constrained physical space in meetings tends to be more consistent, and can be
learned from data.

Our methodology exploits the complementary features of the AV modalities.
In the first place, we use a 2-D approach in which human heads are visually
represented by their silhouette in the image plane, and modelled as elements of
a shape-space, allowing for the description of a head template and a set of valid
geometric transformations (motion). In the second place, we employ mixed-state

space representations, where in addition to the continuous subspace that rep-
resents head motion, we also include discrete components. In a multi-camera
setup, a discrete variable can indicate the specific camera plane in which a
speaker is present, thus helping define a generative model for camera switch-
ing. For a multi-object state space, discrete variables are additionally used to
indicate the speaking/non-speaking status of each participant. In the third place,
we asymmetrically handle audio and video in the PF formulation. Audio locali-
sation information in 3-D space is first estimated by an algorithm that reliably
detects speaker changes with low latency, while maintaining good estimation ac-
curacy. Audio and skin-color blob information are then used for prediction, and
introduced in the PF via importance sampling, a technique which guides the
search process of the PF towards regions of the state space likely to contain the
true configurations. Additionally, audio, color, and shape information are jointly
used to compute the likelihood of candidate configurations. Finally, we use an
AV calibration procedure to relate audio estimates in 3-D and visual information
in 2-D. The procedure uses easily generated training data, and does not require
precise geometric calibration of cameras and microphones [22].

When applied to the single-object state-space, the particle filtering frame-
work results in a method that can initialise and track a moving speaker, and
switch between multiple people across cameras with low delay, while tolerating
visual clutter. An example for the setup of Figure 1 is shown in Figure 2, for a
two-minute sequence, using 500 particles. Given a ground-truth of speaker seg-
ments, which consists of the camera index and the approximate speaker’s head
centroid in the corresponding image plane for each speaker segment, Table 1
shows that the percentage of error on the estimated camera indices εk is quite
small for the close-view cameras, but larger for the wide-view case. Addition-
ally, the median localisation error in the image plane ε(T x,T y) (in pixels) remains
within a few pixels, and is smaller than the error obtained using only the audio
modality, thus justifying a multimodal approach. Other AV tracking examples
for single- and multi-camera set-ups can be found at www.idiap.ch/~gatica.

An example of the joint multi-object tracking system is shown in Fig. 3 for
the case of non-overlapped views, using 1000 particles. The four participants
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Fig. 2. Single-object speaker tracker in the meeting room. The tracker locks onto one
speaker.

error type modality cam1 cam2 cam3 global

εk(×10−2) AV 1.91 0.31 25.00 11.27
ε(T x,T y) AV 1.88 1.69 0.40 1.00

A 11.39 11.86 10.60 11.20

Table 1. Single-object AV speaker tracking results. For full details of techniques and
experimental conditions, see [22].

are simultaneously tracked, and their speaking status is inferred at each time.
In practice, the multi-object tracker significantly requires more computational
resources given the joint object representation. Refinements of the approach, and
the evaluation of the algorithms are part of current work.

Open problems Although the current approaches are useful in their current
form, there is much room for improvement. In the following we identify three spe-
cific lines of research. We will extend the multi-object tracker to a multi-camera
scenario with overlapping fields of view, which involves the consistent labelling
of tracked objects across cameras. In the second place, a joint state-space repre-
sentation for multi-object tracking significantly increases the dimensionality of
the state space, which calls for efficient inference mechanisms in the resulting
statistical model. We have made some progress in this direction [24]. The third
line of research is the joint formulation of tracking and recognition. We are con-
ducting research on head trackers that simultaneously estimate head orientation
(a simple form of recognition), which is in turn a strong cue for detection of
focus of attention, and useful for higher-level recognisers [25].
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Fig. 3. Multi-object speaker tracker in the meeting room. The speaking status is in-
ferred for each participant, a speaker is shown with a double ellipse.

3.2 Speech Segmentation and Enhancement using Microphone

Arrays

The problem in the global view Having located and tracked each person, it
is next necessary to acquire an enhanced dedicated audio channel of their speech.
Speech is the predominant communication modality, and thus a rich source of
information, in many human interactions.

Most state-of-the-art speech and speaker recognition systems rely on close-
talking head-set microphones for speech acquisition, as they naturally provide a
higher signal-to-noise ratio (SNR) than single distant microphones. This mode
of acquisition may be acceptable for applications such as dictation, however as
technology heads towards more pervasive applications, less constraining solutions
are required. Microphone arrays present a promising alternative to close-talking
microphones, as they allow for signal-independent enhancement, localisation and
tracking of speakers, and non-intrusive hands-free operation. For these reasons,
microphone arrays are being increasingly used for speech acquisition in such
applications [26, 27].

Challenges in the meeting context Meetings present a number of interesting
challenges for microphone array research. A primary issue is the design of the
array geometry : how many microphones should be used, and where should
they be placed in the room? Naturally a geometry giving high spatial resolution
uniformly across a room is desirable for best performance and lowest constraint
on the users, however this requires prohibitively large numbers of microphones,
and complex installation [28]. For these reasons, more practical solutions with



smaller numbers of microphones need to be researched to address computational
and economical considerations.

A second challenge in the meeting context is the natural occurrence of over-
lapping speech. In [29] it was identified that around 10-15% of words, or 50%
of speech segments, in a meeting contain a degree of overlapping speech. These
overlapped segments are problematic for speaker segmentation, and speech and
speaker recognition. For instance, an absolute increase in word error rate of be-
tween 15-30% has been observed on overlap speech segments using close-talking
microphones [29, 8].

Our approach While it is clear that a large microphone array with many
elements would give the best spatial selectivity for localisation and enhancement,
for microphone arrays to be employed in practical applications, hardware cost
(microphones, processing and memory requirements) must be reduced. For this
reason, we focus on the use of small microphone arrays, which can be a viable
solution when assumptions can be made about the absolute and relative locations
of participants.
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Fig. 4. Microphone array directivity patterns at 1000 Hz (speaker 1 direction in bold)

As shown in Figure 1, the particular array geometry we have chosen is an
8-element circular array (of radius 10cm) placed at the centre of the meeting
table. This geometry and placement was selected based on the assumption that
a meeting generally consists of small groups of people seated and talking face
to face in well-defined regions. Each array is designed to cater for a small group
of up to 4 people. In larger meetings, multiple (potentially interacting) small
array modules are positioned along the table, where each module is responsible
for the people in its local region. The circular geometry was selected as it gives
uniform spatial selectivity between people sitting around it, leading to good
general performance in separating overlapping speech. This is important for



meetings where background noise is generally low, and so overlapping speech is
the primary noise source. To illustrate, Figure 4 shows the theoretical directivity

pattern (array gain as a function of direction) for the array at 1000 Hz for 4
speakers separated by 90 degrees. Having the array on the table also means it is
placed in close proximity to participants, leading to naturally high signal levels
compared to background noise caused by distant sources.

Given accurate tracking of the speaker locations in the room, the next task
is to determine segments of continuous speech from a given speaker location.
Speaker segmentation in meetings is problematic for traditional techniques based
on simple energy or spectral features, as a significant amount of cross-talk from
other speakers exists even on close-talking microphones [30, 31]. In [32, 33] we
presented a location-based segmentation technique that is capable of providing
a smooth speech/silence segmentation for a specified location in a room. As it
is based on speech location features from the microphone array, rather than
standard spectral features, this location-based segmentation has the important
benefit of being able to accurately handle multiple concurrent speakers (identi-
fying which locations are active at any given time). In [34], this segmentation
algorithm was integrated with automatic speaker tracking and tested on a set
of 17 short (5 minute) meetings recorded in the room described in Section 2.
Results of these experiments are summarised in Table 2. Results are in terms of
the common precision (PRC), recall (RCL) and F measures (F = 2×PRC×RCL

PRC+RCL
).

The location-based technique is compared to a baseline energy-based approach
using lapel microphones. The results show that, while the location-based ap-
proach yields comparable overall segmentation accuracy, it achieves a significant
improvement during periods of overlapping speech (recall increasing from 66%
to 85%, precision from 47% to 55%). Full experimental details and discussion
can be found in [34].

Metric Location-based Lapel baseline

PRC 79.7 (55.4) 84.3 (46.6)
RCL 94.6 (84.8) 93.3 (66.4)
F 86.5 (67.0) 88.6 (54.7)

Table 2. Segmentation results on 17 meetings. The location-based approach uses dis-
tant microphones only. Values are percentages, results on overlaps only are indicated
in brackets. Table reproduced from [34].

Once the location of the speakers is known along with their speech activ-
ity segmentation, we can then apply microphone array beamforming techniques
to enhance their speech, attenuating background noise and conflicting speech
sources. Beamforming consists of filtering and combining the individual micro-
phone signals in such a way as to enhance signals coming from a particular loca-
tion. For beamforming filters, we adopt standard superdirective filters, which are
calculated to maximise the array gain for the desired direction [35]. In addition,



we apply a Wiener post-filter to the beamformer output to further reduce the
broadband noise energy. The post-filter is estimated from the auto- and cross-
spectral densities of the microphone array inputs, and is formulated assuming a
diffuse background noise field [36]. This post-filter leads to significant improve-
ments in terms of SNR and speech recognition performance in office background
noise [36].

To assess the effectiveness of the beamformer in improving eventual speech
recognition performance, a multi-microphone corpus was recorded for experi-
mentation and public distribution. The database was collected by outputting
utterances from the Numbers corpus (telephone quality speech, 30-word vocab-
ulary) on one or more loudspeakers, and recording the resulting sound field using
a microphone array and various lapel and table-top microphones. The goal of
this work was to compare relative speech recognition performance using different
microphone configurations in various noise situations, and thus a small vocab-
ulary corpus was considered appropriate. Initial results on this corpus (MONC:
Multi-channel Overlapping Numbers Corpus, available from the Center for Spo-
ken Language Understanding at OGI) were presented in [37], and are reproduced
in Table 3. These results show that the array processing significantly improves
over a single distant microphone (centre), and also over a close-talking lapel
microphone in situations where there is significant overlapping speech between
speakers.

Simultaneous Speakers Lapel Centre Array

1 7.01 10.06 7.00
2 24.43 57.56 19.31
3 35.25 73.55 26.64

Table 3. Word error rate results for speech recorded on a close-talking lapel micro-
phone, a microphone placed in the centre of the meeting table, and the output of a
microphone array beamformer. For full details of techniques and experimental condi-
tions, see [37]

Open problems While microphone array speech processing techniques are al-
ready relatively mature, a number of open issues remain in this context. One
of these is the need to focus on algorithms that handle multiple concurrent,
moving, speakers. While work cited in this paper indicates progress in this di-
rection, there remains a need for testing of multi-speaker localisation, tracking
and beamforming in real applications, such as large vocabulary speech recogni-
tion in meetings. Another interesting research direction is the use of multiple
interacting small microphone array modules to cover arbitrary areas, instead of
using a single larger array.



3.3 Audio-Visual Person Identification

The Problem in the Global View Identifying participants is important for
understanding human interactions. When prior knowledge about the participants
is available (such as their preferred way of communicating, topics of interests,
levels of language, relative hierarchical levels in a given context, etc), knowing
the participants’ identities would imply knowing this prior information, which
could in turn be used to better tune the algorithms used to analyse the interac-
tion. Fortunately, biometric authentication [38], which is the general problem of
authenticating or identifying a person using his or her behavioural and physio-
logical characteristics such as the face or the voice, is a growing research domain
which has already shown useful results, especially when using more than one of
these characteristics, as we propose to do here.

Challenges in the Meeting Context In order to perform AV identification
during a meeting, we need to extract reliably the basic modalities. For the face,
we require a face localisation algorithm that is robust to the kind of images
available from a video stream (relatively low-quality and low-resolution), robust
to the participants’ varying head poses, and able to cope with more than one
face per image. This could be done using our AV tracking system described in
Section 3.1. For the voice, taking into account that several microphones are avail-
able in the meeting room, the first challenge is to separate all audio sources and
attribute each speech segment to its corresponding participant. Again, this could
be done using our speaker segmentation and enhancement techniques, described
in Section 3.2. Afterward, classical face and speaker verification algorithms could
be applied, followed by a fusion step, which provides robustness to the failure of
one or the other modality. Finally, an identification procedure could be applied.

Our Approach Our identification system is based on an AV biometric verifica-
tion system. Assuming that we are able to obtain reliable speech segments and
localised faces from the meeting raw data, we can then apply our state-of-the-
art verification system, which is based on a speaker verification system, a face

verification system, and a fusion module.
Our speaker verification system first starts by extracting useful features from

the raw speech data: we extract 16 Mel scale Frequency Cepstral Coefficient
(MFCC) features every 10 ms, as well as their first temporal derivative, plus the
first derivative of the log energy of the signal. Then, a silence detector based on
an unsupervised 2-Gaussian system is used to remove all silence frames. Finally,
the verification system itself is based on the modelling of one Gaussian Mix-
ture Model (GMM) for each individual, adapted using Maximum A Posteriori

(MAP) techniques from a World Model trained by Expectation-Maximisation on
a large set of prior data. The score for a given access is obtained as the loga-
rithm of the ratio between the likelihood of the data given the individual model
and the likelihood given the world model. This system obtains state-of-the-art
performance on several benchmark verification databases [39].



Our face verification system is comprised of two main parts: an automatic
face locator and a local feature probabilistic classifier. To locate faces, a fast
cascade of boosted Haar-like features is applied to the integral image to de-
tect potential faces [40], followed by post-processing using a Multi-Layer Per-
ceptron [41] to provide the final localized face. The probabilistic classifier uses
DCTmod2 features [42] and models faces using pseudo-2D Hidden Markov Mod-
els (HMMs) [43]. In DCTmod2 feature extraction, each given face is analyzed on
a block by block basis; from each block a subset of Discrete Cosine Transform
(DCT) coefficients is obtained; coefficients which are most affected by illumina-
tion direction changes are replaced with their respective horizontal and vertical
deltas, computed as differences between coefficients from neighbouring blocks.
For the pseudo-2D HMM topology, we use a top-to-bottom main HMM with
each state being modeled by a left-to-right HMM. Parameters for each client
model are obtained via Maximum a Posteriori (MAP) adaptation of a generic
face HMM; the generic face HMM is in turn trained using the Expectation Max-
imization algorithm, on a large generic dataset. As for the speech system, a
score for a given face is found by taking the logarithm of the ratio between the
likelihood of the face belonging to the true client and the likelihood of the face
belonging to the impostor model.

Our fusion algorithm is based on Multi-layer Perceptrons (experiments with
Support Vector Machines give similar performances). The fusion model takes as
input the log likelihood scores coming from both the face and the speaker verifi-
cation systems, and combines them non-linearly in order to obtain a unified and
more robust overall score. Optionally, confidence values could also be computed
on both the voice and face scores, which then enhance the quality of the fusion
model [44].

Finally, in order to identify the correct individual, the whole verification
system is run over all previously stored individual models, and the model corre-
sponding to the highest obtained score over a pre-defined threshold (in order to
account for unknown individuals) identifies the target individual.

While we currently do not have results in the context of meetings, we did
apply them on several benchmark databases and always obtained state-of-the-
art performance. For instance, Table 4 shows the performance of our models on
the difficult but realistic audio-visual BANCA database [45], using protocol P
of the English subset, and measured in terms of half total error rate (HTER),
which is the average of the rates of false acceptances and false rejections.

Voice Face Fusion

4.7% 20.9% 2.8%

Table 4. Verification performance on the English subset of the BANCA database,
protocol P, in terms of HTER (the lower, the better).



We can see from this Table that speaker verification is in general more robust
than face verification, and that fusing both of them still increases the overall
performance. We note that this face verification system ranked first in a recent
international competition on this corpus [46].

Open Problems Assuming that speaker segmentation and face tracking have
given perfect segmentation, for a given meeting, we will have potentially several
minutes of speech and face data per individual. In general, a classical verification
system only requires a few face images and less than one minute of speech data
to attain acceptable performance. However, the environment is unconstrained,
the meeting data may be noisy for different reasons - the individual may not
always look at the camera and speak loudly and intelligibly. In this case, rather
than using all available data to identify a person, a better solution could be to
be more strict on the selection of faces and speaker segments in order to keep
only the best candidates for identification. Hence, we should try to remove highly
noisy or overlapping speech segments, badly tracked face images and faces that
are not in a good frontal pose and good lighting condition.

3.4 Group Action Recognition

The problem in the global view The ultimate goal of automatic analysis of
human interactions is to recognise the group actions. As discussed previously,
the true information of meetings is created from interactions between partici-
pants playing and exchanging roles. In this view, an important goal of automatic
meeting analysis is the segmentation of meetings into high-level agenda items
which reflect the action of the group as a whole, rather than just the behaviour
of individuals (e.g. discussions and presentations, or even higher level notions,
like planning, negotiating, and making decisions).

Challenges in the meeting context Recognition of group actions in meetings
entails several important problems for which no satisfactory solutions currently
exist. These include (1) devising tractable multi-stream sequence models, where
each stream could arise from either a modality (AV) or a participant; (2) mod-
elling asynchronicity between participants’ behaviour; (3) extracting features for
recognition that are robust to variations in human characteristics and behaviour;
(4) designing sequence models that can integrate language features (e.g. key-
words or dialog acts) with non-verbal features (e.g. emotion as captured from
audio and video); and (5) developing models for recognition of actions that are
part of a hierarchy.

One potentially simplifying advantage to recognise group actions in meetings
is that participants usually have some influence on each other’s behaviour. For
example, a dominant speaker grabbing the floor often makes the other partici-
pants go silent, and a presentation will draw most participants’ attention in the
same direction. The recognition of some group actions can be therefore benefit
from the occurrence of these multiple similar individual behaviours.



Our approach We have addressed meeting group action recognition as the
recognition of a continuous, non-overlapping, sequence of lexical entries, analo-
gous to observational approaches in social psychology for analysis of group inter-
action [10], and to speech or continuous gesture recognition [47, 48]. Continuous
recognition generates action-based meeting segmentations that can be directly
used for browsing. Furthermore, the definition of multiple lexica would provide
alternative semantic views of a meeting. Note that in reality, most group actions
are characterised by soft (natural) transitions, and specifying their boundaries
beyond a certain level of precision has little meaning.

In particular, we have modelled meeting actions based on a set of multimodal
turn-taking events. Speaking turns are mainly characterised by audio informa-
tion, but significant information is also present in non-verbal cues like gaze and
posture changes [13], which can also help disambiguate audio information [16].
The specific actions include monologues (one participant speaks continuously
without interruption), discussions (all participants engage in a discussion), pre-
sentations (one participant at front of room makes a presentation using the
projector screen), white-boards (one participant at front of room talks and uses
the white-board), and group note-taking (all participants write notes).

In a first approach [49], we used a number of Hidden Markov Model (HMM)
variants to recognise the group actions by direct modelling of low-level features.
The models investigated included early integration HMMs [47], multi-stream
HMMs [50], asynchronous HMMs [51], and coupled HMMs [52]. Features were
extracted from both audio and visual modalities, and included speech activity,
pitch, energy, speaking rate, and head and hand location and motion features.
For experiments, we used the meeting corpus described in Section 2. Meetings
followed a loose script to ensure an adequate amount of examples of all actions,
and to facilitate annotation for training and testing, but otherwise the individual
and group behaviour is natural.

A detailed account of the experiments and results can be found in [49], but
we repeat the summarised findings here:

1. The best system achieves an action error rate (equivalent to word error rate
in ASR) of 8.9%.

2. There is benefit in a multi-modal approach to modelling group actions in
meetings.

3. It is important to model the correlation between the behaviour of different
participants.

4. There is no significant asynchrony between audio and visual modalities for
these actions (at least within the resolution of the investigated frame rate).

5. There is evidence of asynchrony between participants acting within the group
actions.

These findings appeal to the intuition that individuals act in a group through
both audio and visual cues which can have a causal effect on the behaviour of
other group members.

More recently, a two-layer HMM framework was proposed in [53]. The first
layer HMM (individual-level) recognises a small set of individual actions for each



Fig. 5. Simple meeting browser interface, showing recognised meeting actions.

participant (speaking, writing, idle) using the same set of low-level audio-visual
features described above. The results of these first layer HMMs are concatenated
and modelled by a second layer HMM (group-level), which then attempts to
recognise the group actions. For an augmented set of group actions (discussion,
monologue, monologue + note-taking, note-taking, presentation, presentation +
note-taking, white-board and white-board + note-taking), the two-layer system
achieved an action error rate of only 15.1%, compared with a 23.7% error rate
on the same task using the best single-layer HMM system (equivalent to those
proposed in [49]: the higher error rate is due to the increased lexicon size). Full
experimental details can be found in [53].

An example of the application of the action recognition results for meeting
browsing is shown in Figure 5.

Open problems The experience gained from our results confirms the impor-
tance of modelling the interactions between individuals, as well as the advan-
tage of a multimodal approach for recognition. We believe there is much scope
for work towards the recognition of different sets of high-level meeting actions,
including other multimodal turn-taking events, actions based on participants’
mood or level of interest, and multimodal actions motivated by traditional dia-
logue acts. To achieve this goal, ongoing and future work will investigate richer
feature sets, and appropriate models for the interactions of participants. Another
task will be to incorporate prior information in the recognition system, based on



the participant identities and models of their personal behaviour. We also plan
to collect a larger meeting corpus, and work on the development of more flexible
assessment methodologies.

4 Future Directions

From the framework outlined in the beginning of Section 3, while much room
clearly remains for new techniques and improvements on existing ones, we can
see that steps 1-2(c) are reasonably well understood by the state-of-the-art. In
contrast, we are far from making similar claims regarding step 3, recognition of
group actions.

The first major goal in computer understanding of group actions, is to clearly
identify lexica of such actions that may be recognised. A simple lexicon based on
multimodal turn-taking events was discussed in Section 3.4, however there is a
need to progress towards recognition of higher level concepts, such as decisions,
planning, and disagreements. In this regard, the social psychology literature rep-
resents an important source of information for studies on the tasks and processes
that arise from human interactions, as was discussed in [49].

Having identified relevant group actions, a further research task is then to
select appropriate features for these actions to be recognised. At this moment,
features are intuitively selected by hand, which has obvious limitations. Ap-
proaches for feature selection could arise from two areas. The first one is human.
We require a deeper understanding of human behaviour. Existing work in psy-
chology could provide cues for feature selection towards, for example, multimodal
recognition of emotion [54]. The second one is computational. Developments in
machine learning applied to problems in vision and signal processing point to
various directions [40].

Finally, to recognise the group actions, there is a need to propose models
capable of representing the interactions between individuals in a group (see e.g.
[55, 5, 49]). Some particular issues are the need to model multiple data streams,
asynchronicity between streams, hierarchies of data and events (e.g. building on
[53]), as well as features of different nature (e.g. discrete or continuous).

5 Conclusion

This article has discussed a framework for computer understanding of human
interactions. A variety of multimodal sensors are used to observe a group and
extract useful information from their interactions. By processing the sensor in-
puts, participants are located, tracked, and identified, and their individual ac-
tions recognised. Finally, the actions of the group as a whole may be recognised
by modelling the interactions of the individuals.

While initial work in this direction has already shown promising progress and
yielded useful results, it is clear that many research challenges remain if we are
to advance towards true computer understanding of human interactions.
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