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Abstract

A key problem in structured output prediction is direct ag#iation of the task
reward function that matters for test evaluation. This pgpesents a simple and
computationally efficient approach to incorporate taskamiinto a maximum
likelihood framework. We establish a connection betweenldly-likelihood and
regularized expected reward objectives, showing that ara temperature, they
are approximately equivalent in the vicinity of the optinsallution. We show
that optimal regularized expected reward is achieved whertonditional distri-
bution of the outputs given the inputs is proportional tartegponentiated (tem-
perature adjusted) rewards. Based on this observation ptimiae conditional
log-probability of edited outputs that are sampled prapaoslly to their scaled
exponentiated reward. We apply this framework to optimidi¢ @istance in the
output label space. Experiments on speech recognition authime translation
for neural sequence to sequence models show notable immpents over a maxi-
mum likelihood baseline by using edit distance augmentedmam likelihood.

1 Introduction

Structured output prediction is ubiquitous in machinen@ay. Recent advances in natural language
processing, machine translation, and speech recognitigelon the development of better discrim-
inative models for structured outputs and sequences. Turedftions of learning structured output
models were established by seminal work on graph transfonetevorks[[211], conditional random
fields (CRFs)/[20], and structured large margin methods38Q,which demonstrate how generaliza-
tion performance can be significantly improved, when onesiars the joint effects of predictions
across multiple output components during training. Thesdets have evolved into their deep neu-
ral counterparts [35] 1] by the use of recurrent neural ndtgs/(RNN) with LSTM [16] and GRUL[8]
cells and attention mechanisms [3].

A key problem in structured output prediction has alwaysbemabling direct optimization of the
task reward (loss) that is used for test evaluation. For @@nin machine translation one seeks
better BLEU scores, and in speech recognition better wont esites. Not

surprisingly, almost all task reward metrics are not ddfeiable, and hence hard to optimize. Neu-
ral sequence modele.g.[35,3]) use a maximum likelihood (ML) framework to maximitee
conditional probability of the ground-truth outputs givemrresponding inputs. These models do
not explicitly consider the task reward during trainingphng that conditional log-likelihood would
serve as a good surrogate for the task reward. Such methdasnmoalistinction between alterna-
tive incorrect outputs: log-probability is only measuredtbe ground-truth input-output pairs, and
all alternative outputs are equally penalized, whether peéar from the ground-truth target. We
believe that one can improve upon maximum likelihood segeenodels, if the difference in the
rewards of alternative outputs is taken into account.

Standard ML training, despite its limitations, enablesiregy deep RNN models leading to revolu-
tionary advances in machine translation |35, 3, 25] anddpescognitionl[[7,.9, 10]. A key property
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of ML training for locally normalized RNN models is that thbjective function factorizes into indi-
vidual loss terms, which could kedficientlyoptimized using stochastic gradient descend (SGD). In
particular, ML training does not require any form of infeceror sampling from the model during
training, which leads to computationally efficient and easymplementations. By contrast, one
may consider large margin and search-based structureitfioed|11] formulations for training
RNNs (.9.[4€]). Such methods incorporate some task reward apprdiameuring training, but
the behavior of the approximation is not well understoofdeesally for deep neural nets. Moreover,
these methods require some form of inference at training, timich slows down training.

Alternatively, one can use reinforcement learning (RL)oallpms, such as policy gradient [44], to
optimize expected task reward during training |30, 2]. Etlmugh expected task reward seems like
a natural objective, direct policy optimization faces $figant challenges: unlike ML, the gradient
for a mini-batch of training examples is extremely noisy &ad a high variance; gradients need to
be estimated via sampling from the model, which is a noriestaty distribution; the reward is often
sparse in a high-dimensional output space, which makeSicdi to find any high value predictions,
preventing learning from getting off the ground; and, fipathaximizing reward does not explicitly
consider the supervised labels, which seems inefficieriadin all previous attempts at direct policy
optimization for structured output prediction has statigdootstrapping from a previously trained
ML solution [30,[2, 32] and they use several heuristics aintt$rto make learning stable.

This paper presents a new approach to task reward optimiztitat combines the computational
efficiency and simplicity of ML with the conceptual advantagf expected reward maximization.
Our algorithm calledeward augmented maximum likelihood (RMihply adds a sampling step on
top of the typical likelihood objective. Instead of optirimg conditional log-likelihood on training
input-output pairs, given each training input, we first semgn output proportional to its expo-
nentiated scaled reward. Then, we optimize log-likelihoadsuch auxiliary output samples given
corresponding inputs. When the reward for an output is deéfiséts similarity to a ground-truth out-
put, then the output sampling distribution is peaked at tiegd-truth output, and its concentration
is controlled by a temperature hyper-parameter.

Our theoretical analysis shows that the RML and regularezqubcted reward objectives optimize
a KL divergence between the exponentiated reward and magtabdtions in opposite directions.
Further, we show that at non-zero temperatures, the gapebatthie two criteria can be expressed by
a difference of variances measured on interpolating digtions. This observation reveals how en-
tropy regularized expected reward can be estimated by sagfpbm exponentiated scaled rewards,
rather than sampling from the model distribution.

Remarkably, we find that the RML approach achieves signifigamproved results over state of
the art maximum likelihood RNNs. We show consistent improgat on both speech recognition
(TIMIT dataset) and machine translation (WMT’14 datasef)ere output sequences are sampled
according to their edit distance to the ground-truth owgpusurprisingly, we find that the best
performance is achieved with output sampling distribugitimat put a lot of the weight away from
the ground-truth outputs. In fact, in our experiments, théntng algorithm rarely sees the original
unperturbed outputs. Our results give further evidencertiaels trained with imperfect outputs
and their reward values can improve upon models that are exggsed to a single ground-truth
output per input [15, 24, 42].

2 Reward augmented maximum likelihood

Given a dataset of input-output pair®, = {(x@,y*)}N | structured output models learn a
parametric score functiopy(y | x), which scores different output hypothesgss ). We assume
that the set of possible outpwy, is finite, e.g. English sentences up to a maximum length. In a
probabilistic model, the score function is normalized, levlm a large-margin model the score may
not be normalized. In either case, once the score functigaimed, given an input, the model
predicts an outpug achieving maximal score,

y(x) = arg;nax po(y | x) . (1)

If this optimization is intractable, approximate inferer{e.g.beam search) is used. We use a reward
functionr(y, y*) to evaluate different outputs against ground-truth owtp@iven a test dataser,

one compute$ .,  .\cp (¥ (x),y") as a measure of empirical reward, and models with larger
empirical reward are preferred. Ideally, one hopes to dpérampirical reward during training too.



However, since empirical reward is not amenable to numleoigimization, one often considers
optimizing alternative differentiable objectives. Maxim likelihood (ML) framework tries to min-
imize negative log-likelihood of the parameters given thtad

LuL(6;D) = Y —logpe(y” | x). )
(x,y*)€D
Minimizing this objective, increases the conditional pabbity of the target outputdog po(y* |

x), while decreasing the conditional probability of alteimatwrong outputs. According to this
objective, all of the negative outputs are equally wrongl, mone is preferred over the rest.

By contrast, reinforcement learning (RL) advocates oging expected reward (with a maximum
entropy regularizer [4%, 27]), which is formulated as miization of the following objective,

Lr1,(0;7,D) = Z {—THp9y|x Zp9y|x )}, (3)

(x,y*)€D yey

wherer(y,y*) denotes the reward functioe,g. negative edit distance or BLEU score,con-
trols the degree of regularization, afifl(p) is the entropy of a distributiop, i.e. H (p(y)) =
=2 yeyp(y)logp(y). Itis well-known that optimizingCry.(6; 7) using SGD is challenging be-
cause of the large variance of the gradients. Below we dest¢row ML and RL objectives are
related, and propose a hybrid between the two that comiieasitenefits for supervised learning.

Let's define a distribution in the output space, termreggonentiated payoff distributipthat is cen-
tral in linking ML and RL objectives:

iy |y"7) = ﬁ exp {r(y,y")/7}, (4)
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whereZ(y*,7) =3 .y exp {r(y,y*)/7}. One can verify that the global minimum 6%, (6; 7),
i.e. optimal regularized expected reward, is achieved when th@etrdistribution matches exactly
with the exponentiated payoff distributioirg. po(y | x) = ¢(y | y*; 7). To see this, we re-express
the objective function in(3) in terms of a KL divergence beempy (y | x) andq(y | y*; 7).

1
> Dt (oly | %) [ aly | ¥'57)) = —Law(637) + constant . (5)
(x,y*)eD

where theconstant on the RHS isy_, .\ .plog Z(y*, 7). Thus, the minimum oDxy, (po | ¢)
andLgy, is achieved whepy = ¢. At 7 = 0, when there is no entropy regularization, the optimal
pe is a delta distributionpy (y | x) = 6(y | y*), whered(y | y*) = 1 aty = y* and0 aty # y*.
Note thaty(y | y*) is equivalent to the exponentiated payoff distributionhia timit asr — 0.

Going back to the log-likelihood objective, one can vertigtt[2) is equivalent to a KL divergence
in the opposite direction between a delta distributioy | y*) and the model distributiopy (y | x),

5" Drr (5(y | ¥*) Il oy | %)) = Lare.(6) - ()
(x,y*)€D
There is no constant on the RHS, as the entropy of a deltéxdistn is zeroj.e.H (6(y | y*)) = 0.

We propose a method calleeward-augmented maximum likelihood (RMidich generalizes ML
by allowing a non-zero temperature parameter in the expated payoff distribution, while still
optimizing the KL divergence in the ML direction. The RML @lgjive function takes the form,

LrviL(0;7,D) = Y { —> aly ly*;7)logpe(y | X)} : (7

(x,y*)€D yey
which can be re-expressed in terms of a KL divergence asaie|lo
Z Dxr (q(y | ¥*;7) || po(y | X)) = Lrmw(0; 7) + constant | (8)
(x,y*)€D

where theconstant is — 3, o.)cp H(q(y | y*,7)). Note that the temperature parametet: 0,
serves as a hyper-parameter that controls the smoothn#ss abtimal distribution around correct



targets by taking into account the reward function in thepatispace. The objective functions
Lr1(0; 7) andLru1 (0; 7), have the same global optimumygf, but they optimize a KL divergence
in opposite directions. We characterize the differencerben these two objectives below, showing
that they are equivalent up to their first order Taylor appr@tions. For optimization convenience,
we focus on minimizingCgnmr (€; 7) to achieve a good solution fdgy, (0; 7).

2.1 Optimization

Optimizing the reward augmented maximum likelihood (RMbjextive, Lr1,(€; 7), is straight-
forward if one can draw unbiased samples frgfw | y*; 7). We can express the gradient®f i,
in terms of an expectation over samples frofy | y*; 7),

VoLrmL(0;7) = Egyly+r) | — Velogpely | x)] . ()]

Thus, to estimat® ¢ Lri1.(0; 7) for a mini-batch of examples for SGD, one drayvsamples given
mini-batchy*’s and then optimizes log-likelihood on such samples byofeihg the mean gradient.
At a temperature = 0, this reduces to always sampligg, hence ML training with no sampling.

By contrast, the gradient @1, (0; 7), based on likelihood ratio methods, takes the form,

VoLrL(0;7) = E,yyix [ — Velogpe(y | x) - r(y,y")] - (10)

There are several critical differences betwegh (9) dnd (h8) make SGD optimization of
Lrur(0; 7) more desirable. First, if}9), one has to sample from a statiodistribution, the
so called exponentiated payoff distribution, whereag B @ine has to sample from the model dis-
tribution as it is evolving. Not only sampling from the modelld slow down training, but also one
needs to employ several tricks to get a better estimate afriduient ofLry, [3C]. A body of liter-
ature in reinforcement learning focuses on reducing thiamae of [ID) by using smart techniques
such asactor-critiquemethodsl|[36, 12]. Further, the reward is often sparse in b-timensional
output space, which makes finding any reasonable predsctiballenging, wher (10) is used to
refine a randomly initialized model. Thus, smart model diitiation is needed. By contrast, we
initialize the models randomly and refine them usidg (9).

2.2 Sampling from the exponentiated payoff distribution

For computing the gradient of the model, using the RML apghoane needs to sample auxiliary
outputs from the exponentiated payoff distributigy | y*; 7). This sampling is the price that
we have to pay to learn with rewards. One should contraswitiis loss-augmented inference in
structured large margin methods, and sampling from the inimdRL. We believe sampling outputs
proportional to exponentiated rewards is more efficienteffettive in many cases.

Experiments in this paper use reward values defined by eithgative Hamming distance or neg-
ative edit distance. We sample froply | y*;7) by stratified sampling, where we first select a
particular distance, and then sample an output with th&hie value. Here we focus on edit dis-
tance sampling, as Hamming distance sampling is a simp&aiapcase. Given a sentengé of
lengthm, we count the number of sentences within an edit distanederee € {0,...,2m}. Then,
we reweight the counts byxp{—e/7} and normalize. Let(e, m) denote the number of sentences
at an edit distance from a sentence of lengtln. First, note that a deletion can be thought as a
substitution with a nil token. This works out nicely becagaen a vocabulary of length, for each
insertion we have options, and for each substitution we have 1 options, but including the nil
token, there are options for substitutions too. When= 1, there aren possible substitutions and
m + 1 insertions. Hence, in total there &t + 1)v sentences at an edit distanceloiNote, that
exact computation of(e, m) is difficult if we consider all edge cases, for example whearé¢hare
repetitive words iny*, but ignoring such edge cases we can come up with approxooat#s that
are reliable for sampling. When> 1, we estimate:(e, m) by

e,y =3 <m) (m o 28) o, (12)

s=0
wheres enumerates over the number of substitutions. Ontmkens are substituted, then those
positions lose their significance, and the insertions keeford after such tokens could be merged.
Hence, givers substitutions, there are really — s reference positions far— s possible insertions.
Finally, one can sample according to BLEU score or othersecgmetrics by importance sampling
where the proposal distribution could be edit distance siagpbove.
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3 RML analysis

In the RML framework, we find the model parameters by minimgzthe objective[(7) instead of
optimizing the RL objectivei.e. regularized expected reward i (3). The difference lies inim
mizing Dxr, (¢(y | y*;7) | pe(y | x)) instead of Dk, (pa(y | x) || ¢(y | ¥*;7)). For convenience,
let's refer tog(y | y*; 7) asq, andpy(y | x) asp. Here, we characterize the difference between the
two divergencesDx1, (¢ || p) — Dkw (p || ¢), and use this analysis to motivate the RML approach.

We will initially consider the KL divergence in its more geakform as a Bregman divergence,
which will make some of the key properties clearer. A Bregrdiaergence is defined by a strictly
convex, differentiable, closed potential functibn: 7 — R [5]. Given F' and two point®, ¢ € F,
the corresponding Bregman divergerege : 7 x F — RT is defined by

Dr(pllg)=F(p)—F(q)—(p—q) VF(q) , (12)

the difference between the strictly convex potentiap &nd its first order Taylor approximation
expanded about Clearly this definition is not symmetric betwegrandq. By the strict convexity
of F' it follows that D (p || ¢) > 0 with D (p || ¢) = 0 if and only if p = ¢. To characterize the
difference between opposite Bregman divergences, we ggavisimple result that relates the two
directions for an arbitrary Bregman divergence. Hat denote the Hessian @f.

Proposition 1. For any twice differentiable strictly convex closed potnf’, andp, ¢ € int(F):

Dr (gl p)=Dr (ol q)+3a—p) (Hrb) — Hr(a))(q - p) (13)
forsomen = (1—a)p+ag, 0 <a<3), b= (1-8)g+Bp, (0< B < 3). (seesupp. material)

For probability vectorg, ¢ € APl and a potentiaF (p) = —7H (p), Dr (p || ¢) = 7Dkr. (p || q).
Let f* : RIYI — AlYI denote a normalized exponential operator that takes avedaéd logit
vector and turns it into a probability vector. Letands denote real-valued logit vectors such that
qg = f*(r/7) andp = f*(s/7). Below, we characterize the gap between:, (p(y) || ¢(v)) and
Dxr, (q(y) || p(y)) in terms of the difference betweefy) andr(y).

Proposition 2. The KL divergence betwegrandq in two directions can be expressed as,

Dki(p | @) = Dxv(q |l p) + = Vary. /7 [s(y) —r(y)] — e Vary. s+ (a/r) [s(y) = r(y)]
< Dxr. (gl p) + |Is — I3,
for somen = (1 - a)r+as, (0 < < 3), b=(1-p)s+6r, (0< B < 3). (seesupp. material)

Given Propositiofll2, one can relate RL and RML objectivig, (0; 7) (B) andLrmr(0; 7) (B), as,

Lry=TLrvr+74 Y {Vary~ e (oyr) [8(Y) = r(¥)] = Vary < p-(a/m) [5(y) = 7(y)] } - (14
(x,y*)€D

wheres(y) denotesr-scaled logits predicted by the model such thdty | x) = f*(s(y)/7), and
r(y) = r(y,y*). The gap between regularized expected rewdrd (5)aschled RML criterion[(88)

is simply a difference of two variances, whose magnitudeekeses with increasing regularization.
Propositiof 2 also shows an opportunity for learning athons: if 7 is chosen so that= f*(r/7),
thenf*(a/7) andf*(b/7) have lower variance than(which can always be achieved for sufficiently
smallr providedp is not deterministic), then the expected regularized rdwaderp, and its gra-
dient for training, can be exactly estimated, in princifiig,including the extra variance terms and
sampling from more focused distributions thanAlthough we have not yet incorporated approxi-
mations to the additional variance terms into RML, this israaresting research direction.

4 Reated Work

The literature on structure output prediction is now quisty with three broad categories: (a) su-
pervised learning approaches that ignore task reward amonlg supervision; (b) reinforcement
learning approaches that use only task reward and ignomnggjon; and (c) hybrid approaches
that attempt to exploit both supervision and task reward.

Work in category (a) includes classical conditional randetd approaches and the more recent
maximum likelihood training of RNNs. It also includes moeeent approaches, suchas [6,/19, 34],



that ignore task reward, but attempt to perturb the traimpgts and supervised training structures
in a way that improves the robustness (and hopefully thergdination) of the resulting prediction
model. Related are ideas for improving approximate maxirfikelihood training for intractable
models by passing the gradient calculation through an ajrpede inference procedure [13,] 33].
Although these approaches offer improvements to standasdmum likelihood, we feel they are
fundamentally limited by not incorporating task reward.eTDAGGER method [31] also focuses
on using supervision only, but can be extended by replatiegtirrogate loss with a task loss; even
then, this approach assumes that an expert is availabldeb daery alternative sequence, which
does not fit the current scenario.

By contrast, work in category (b) includes reinforcemeirténg approaches that only consider
task reward and do not use any other supervision. Beyondaldéional reinforcement learning
approaches, such as policy gradient [44, 37], and acttc-§8€], Q-learning |[41], this category
includes SEARNI[11]. There is some relationship to the wadspnted here and work on relative
entropy policy search [28], and policy optimization via egfation maximization [43] and KL-
divergencel[17, 39], however none of these bridge the gapewmet the two directions of the KL-
divergence, nor do they consider any supervision data asveck.

This paper clearly falls in category (c), where there is alsabstantial body of related work that has
considered how to both exploit supervision information erfidrm training by task reward. We have
already mentioned large margin structured output traifi@&], which explicitly uses supervision
but only considers an upper bound surrogate for task losseRly, this line of research has been
improved to directly consider task reward|[14], but is lieditto a perceptron like training approach
and continues to require reward augmented inference thabte efficiently achieved for general
task rewards. A recent extension to gradient based trawfidgep RNN models has recently been
achieved for structured predictian [4], but reward augraedmference remains required, and many
heuristics were needed to apply the technique in practice.h@ve also already mentioned work
that attempts to maximize task reward by bootstrapping sonmaximum likelihood policy [30, 32],
but such an approach only makes limited use of supervisiomeSvork in robotics has considered
exploiting supervision as a means to provide indirect samgmuidance to improve policy search
methods that maximize task reward|[22, 23], but these appezado not make use of maximum
likelihood training. Most relevant is the work [18] which@icitly incorporates supervision in the
policy evaluation phase of a policy iteration proceduré titherwise seeks to maximize task reward.
Although interesting, this approach only considers a gygedicy form that does not lend itself to
being represented as a deep RNN, and has not been applieddnistd output prediction.

One advantage of the RML framework is its computational iefficy at training time. By con-
trast, RL and scheduled sampling [6] require sampling froenrhodel, which can slow down the
gradient computation bgx. Structural SVM requires loss-augmented inference whichfien
more expensive than sampling from the model. Our framewnhki@quires sampling from a fixed
exponentated payoff distribution, which can be thought s of input pre-processing. This pre-
processing can be parallelized by model training by havisgexific thread handling loading the
data and augmentation.

5 Experiments

We compare our approach, reward augmented maximum liledifl®ML), with standard maximum
likelihood (ML) training on sequence prediction tasks using state-chthattention-based recur-
rent neural networks [35/ 3]. Our experiments demonstiaethe RML approach considerably
outperforms ML baseline on both speech recognition and ima¢ranslation tasks.

5.1 Speech recognition

For experiments on speech recognition, we use the TIMITsg#taa standard benchmark for
clean phone recognition. This dataset comprises recasdiagn different speakers reading ten
phonetically rich sentences covering major dialects of Aca@ English. We use the standard
train/ dev/test splits suggested by the Kaldi toolkit [29].

As the sequence prediction model, we use an attention-leaweder-decoder recurrent modelof [7]
with three256-dimensional LSTM layers for encoding and o2i6-dimensional LSTM layer for
decoding. We do not modify the neural network architecturiesggradient computation in any way,
but we only change the output targets fed into the networgfadient computation and SGD update.
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Figure 1: Fraction of different number of edits applied toegugence of lengtR0 for differentr.
At 7 = 0.9, augmentations with to 9 edits are sampled with a probability0.1. [view in color]

Method | Dev set | Test set

ML baseline 20.87 (0.2, 4+0.3) | 22.18 (0.4, +0.2)
RML, 7 = 0.60 19.92 (—0.6, +0.3) | 21.65(—0.5, +0.4)
RML, 7 =0.65 | 19.64 (—0.2,+0.5) | 21.28 (—0.6,+0.4)
RML, 7 = 0.70 18.97 (0.1, +0.1) | 21.28 (—0.5, +0.4)
RML, = 0.75 18.44 (—0.4,40.4) | 20.15(—0.4, +0.4)
RML, 7 = 0.80 18.27(-0.2, +0.1) | 19.97 (-0.1, +0.2)
RML, 7 =0.85 | 18.10(—0.4,+0.3) | 19.97 (0.3, 40.2)

RML, 7 = 0.90 | 18.00 (—0.4, +0.3) | 19.89 (—0.4, +0.7)
RML, 7 = 0.95 18.46 (—0.1, 40.1) | 20.12(-0.2,+0.1)
RML, 7 = 1.00 18.78 (—0.6, +0.8) | 20.41 (—0.2, +0.5)

Table 1: Phone error rates (PER) for different methods onlTIdev and test sets. Average PER
of 4 independent training runs is reported.

The input to the network is a standard sequencesfdimensional log-mel filter response statistics.
Given each input, we generate new outputs around ground tamgets by sampling according to
the exponentiated payoff distribution. We use negativedidiance as the measure of reward. Our
output augmentation process allows insertions, deletemd substitutions.

An important hyper-parameter in our framework is the terapee parameter;, controlling the
degree of output augmentation. We investigate the impati®hyper-parameter and report results
for 7 selected from a candidate setofe {0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0}. Ata
temperature of- = 0, outputs are not augmented at all, butraBicreases, more augmentation
is generated. Figuid 1 depicts the fraction of different hara of edits applied to a sequence of
length20 for different values of. These edits typically include very small number of deiesicand
roughly equal number of insertions and substitutions. Rseitions and substitutions we uniformly
sample elements from a vocabularysafphones. According to Figulé 1, at= 0.6, more thar60%

of the outputs remain intact, while at= 0.9, almost all target outputs are being augmented Wwith
to 9 edits being sampled with a probability larger thtaih. We note that the augmentation becomes
more severe as the outputs get longer.

The phone error rates (PER) on both dev and test sets foreatiffealues of- and the ML baseline
are reported in Tablgl 1. Each model is trained and testthes, using different random seeds.
In Table[1, we report average PER across the runs, and inthases the difference of average
error to minimum and maximum error. We observe that a tentiperaf~ = 0.9 provides the
best results, outperforming the ML baseline ©9% PER on the dev set artl3% PER on the
test set. The results consistently improve when the tenyrerancreases from.6 to 0.9, and they
get worse beyond = 0.9. It is surprising to us that not only the model trains with Isaclarge
amount of augmentation at = 0.9, but also it significantly improves upon the baseline. Hipal
we note that previous workl[9, 10] suggests several refingrterimprove sequence to sequence
models on TIMIT by adding noise to the weights and using mocei$ed forward-moving attention
mechanism. While these refinements are interesting andcinalg be combined with the RML
framework, in this work, we do not implement such refinemeatsl focus specifically on a fair
comparison between the ML baseline and the RML method.



Method | Average BLEU| Best BLEU

ML baseline 36.50 36.87
RML, 7 = 0.75 36.62 36.91
RML, 7 = 0.80 36.80 37.11

RML, T = 0.85 36.91 37.23
RML, 7 = 0.90 36.69 37.07
RML, 7 = 0.95 36.57 36.94

Table 2: Tokenized BLEU score on WMT'14 English to Frenchlested on newstest-2014 set.
The RML approach with different considerably improves upon the maximum likelihood bagelin

5.2 Machinetrandation

We evaluate the effectiveness of the proposed approach oif"®MENglish to French machine
translation benchmark. Translation quality is assessat)uskenized BLEWscore, to be consis-
tent with previous work on neural machine translation [35263. Models are trained on the full
36M sentence pairs from the training set of WMT’14, and evadain3003 sentence pairs from
newstest-2014 test set. To keep the sampling process effazie simple on such a large corpus, we
again augment output sentences based on edit distanceehrtlywallow substitution (no insertion
or deletion). One may consider insertions and deletionsaorpding according to exponentiated
sentence BLEU scores, but we leave that to future work.

As the conditional sequence prediction model, we use antattebased encoder-decoder recurrent
neural network similar tol [3], but we use multi-layer encodad decoder networks comprising
three layers 01024 LSTM cells. As suggested byl[3], for computing the softmaration vectors,
we build a feedforward neural network witld24 hidden units, which is fed with the last encoder
and the first decoder layers. Across all of our experiment&eep the network architecture and
the hyper-parameters the same. We find that all of the modkle\a their peak performance after
about4 epochs of training, once we anneal the learning rates. Taceethe noise in BLEU score
evaluation, we report both peak BLEU score and BLEU scoresaysl among abowt evaluations

of the model while doing the fifth epoch of training.

Table2 summarizes our experimental results on WMT'14. We tiaat our ML translation baseline
is quite strong, if not the best among neural machine tréinalaodels|[35, 13, 26], achieving very
competitive performance for a single model. Even given sustrong baseline, the RML approach
consistently improves the results. Our best model with goeaturer = 0.85 improves average
BLEU by 0.4, and best BLEU by0.35 points, which is a considerable improvement. Again we
observe that as we increase the amount of augmentation#rem0.75 to 7 = 0.85 the results
consistently get better, and then they start to get worde mvidre augmentation.

Details. We train the models using asynchronous SGD wihreplicas without momentum. We
use mini-batches of sizE28. We initially use a learning rate of5, which we exponentially decay
down t00.05 after800K training steps. We keep evaluating the models betwieeand1.3 million
steps and we report average and peak BLEU scores in[Table @sé\&vocabulary00 K words for
the source language aB@K for the target language. We shard 8tg{-way softmax ont® GPUs
for speedup. We only consider training sentences that ate 8@tokens. We replace rare words
with several UNK tokens based on their first and last charachg inference time, we replace UNK
tokens in the output sentences by copying source words diogpto largest attention dimensions.
This rare word handling bares some similarity|tal [26].

6 Conclusion

We presented a learning algorithm for structured outpudlipti®n, which generalizes maximum
likelihood training by enabling direct optimization of thask evaluation metric. Our method is
computationally efficient and simple to implement, and ilyaequires augmenting the output tar-
gets used for training a maximum likelihood model. We présanethod for sampling from output
augmentations with increasing edit distance, and we shawusing such augmented outputs for
training improves maximum likelihood models by a consitéganargin, on both machine trans-
lation and speech recognition tasks. We believe this framnlews applicable to a wide range of
probabilistic models with arbitrary reward functions. tridre work, we intend to explore the appli-
cability of this framework to other probabilistic models @asks with other evaluations metrics.
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A Proofs

Proposition 1. For any twice differentiable strictly convex closed poi&nt’, andp, ¢ € int(F):

Dr(qllp)=Dr(p|lq)+ 2(a—p) (Hr(b) — Hr(a))(q — p) (15)
forsomea = (1 —a)p+ag, O<a<3), b=(1-pB)g+p8p, (0<B<3).

Proof. Let f(p) denoteVF(p) and consider the midpoirﬁ%. One can expresﬁ(%) by two Taylor
expansions around andq. By Taylor's theorem there isam = (1 — a)p + agfor 0 < a < % and
b=pBp+ (1—B)qforo < p < 1suchthat

F(42) = F(p)+ (&2 —p) " f(p) + (L2 — p) " Hr(a) (L2 — p) (16)
= F(9)+ (%2 —q) fa) + 3(H2 —q) " Hr(b)(H2 —q), 17)
hence,  2F(%52) = 2F(p)+ (¢—p) " f(p) + 2(¢—p) " Hr(a)(q —p) (18)
= 2F(q)+(p—q) f(@)+ 3(p—q) Hr(b)(p—q) (19)
Therefore,
F(p)+ F(q) —2F(42) = F(p) = F(q) — (p—q) f(g) — 2(p—q) " Hr(b)(p—q)  (20)
F(g)=F(p)—(a—p) f(p) —3(a—p) Hr(a)g—p)  (21)
= Dr(pllg)—1(p—q) Hrb)(p—q) (22)
= Dr(qllp)—3(q—p) Hr(a)(q—p), (23)
leading to the result. a

For the proof of Propositidnl 2, we first need to introduce adefinitions and background results. A Bregman
divergence is defined from a strictly convex, different@ahtlosed potential functio’ : 7 — R, whose
strictly convex conjugaté™ : 7* — Ris given by () = sup,.c (7, ¢) — F(q) [5]. Each of these potential
functions have corresponding transfefs, 7 — F* andf* : 7* — F, given by the respective gradient maps
f = VFandf* = VF*. Akey property is thatf* = £~ [E], which allows one to associate each object
g € F with its transferred image = f(g) € F* and vice versa. The main property of Bregman divergences
we exploit is that a divergence between any two domain abjeah always be equivalently expressed as a
divergence between their transferred images; that is,fppac F andg € F, one hasl|5]:

Dr(plla)= F(p)—(p,r)+F"(r)=Dr-(r|s), (24)

Dr(qllp) =F"(s) = (s,q) + F(a) =Dr-(s|r), (25)
wheres = f(p) andr = f(q). These relations also hold if we instead cheseF* andr € F* in the range
space, and useg= f*(s) andg= f*(r). In general[(2¥) and(25) are not equal.

Two special cases of the potential functidnsnd F'* are interesting as they give rise to KL divergences. These
two cases includé’; (p) = —7H (p) andF; (s) = 7lse(s/7) = Tlog 3°, exp (s(y)/7), wherelse(-) denotes
the log-sum-exp operator. The respective gradient mapg &g = 7(log(p) + 1) andf} (s) = f*(s/7) =
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m exp(s/T), where f* denotes the normalized exponential operator;ferscaled logits. Below,
we deriveDrx (r || s) for suchF;:
Dz (s [r) = Fi(s) = F1(r) = (s =) V(1)
= 7lse(s/T) — rlse(r/T) — (s — )" f2(r)
= = 7((s/r —1se(s/)) = (/7 ~Lse(r/7))) [ (r)
= 7f2() ((r)7 —1se(r/T)) — (s/7 —1se(s/T))) (26)
= 7f7(r)" (log f7 (r) —log f;(s))

7Dk (f7(r) || £7(s))
= 7Dk (g p)

Proposition 2. The KL divergence betweerand g in two directions can be expressed as,
Dxr(plla) = Dxu(q |l p)+ 572 Varywpo/m [5(y) = ()] = 52 Varywpa/n [s(y) = 7(y)] (27)
< Dxi(qllp)+ s =73, (28)
forsomea = (1 —a)r+as, 0<a<3), b=(1-p)s+pr, (0<B<I).
Proof. For a potential functiod; (r) = tlse(r/7), given [26), one can re-express Proposifibn 2 by multiply-
ing both sides by as,
Dpz (r || s) = Drx (s || 7) + 3= Vary< g/ [5(y) = r(y)] = = Varywpa/n [s(y) = r(y)] . (29)
Moreover, for the choice of* (a) = Tlse(a/7), it is easy to verify that,
Hp:(a) = (Diag(f7 (a)) - f7(a)f7 (@) "), (30)

whereDiag(v) returns a square matrix the main diagonal of which comprsesctorv. Substituting this
form for Hr+ into the the quadratic terms iR {15), one obtains,

(s—7) Hr:(a)(s—7) = L(s —r) " (Diag(f;(a)) — fr(a)fi(a)")(s —7) (31)
= L (Bymsra) [(5(y) = 7(3))?] = Eymsr(a) [s(y) = 7(¥)]?) (32)
= %Varny:(a) [s(y) —r(y)] - (33)

Finally, we can substitudé {B3) and its variant fdF-- (b) into (13) to obtain[(20) and equivalently (27).
Next, consider the inequality ib (R8). L&t= s — r and note that

Dps (1| s) — Dpx (s || 7) = =6 " (Hpx(b) — Hpzx(a))d (34)

= 8" Diag(f;(b) - f7(a)d+ = (87 f7(@)* = (" fr(0)*  (35)

< Z16131£2(b) — £5 (@)oo + = N81311£5 (a) 3 (36)

< 1605+ llol13 37)

since| £ (b) — f7 ()]l < 2and||f7(a)|3 < |If7 (a)]f} < 1. O
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