Probabilistic Melodic Harmonization
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Abstract. We propose a representation for musical chords that allows
us to include domain knowledge in probabilistic models. We then in-
troduce a graphical model for harmonization of melodies that considers
every structural components in chord notation. We show empirically that
root notes progressions exhibit global dependencies that can be better
captured with a tree structure related to the meter than with a simple dy-
namical HMM that concentrates on local dependencies. However, a local
model seems to be sufficient for generating proper harmonizations when
root notes progressions are provided. The trained probabilistic models
can be sampled to generate very interesting chord progressions given
other polyphonic music components such as melody or root note pro-
gressions.

1 Introduction

Probabilistic models for analysis and generation of polyphonic music would be
useful in a broad range of applications, from contextual music generation to
on-line music recommendation and retrieval. However, modeling music involves
capturing long term dependencies in time series. This has proved very difficult
to achieve with traditional statistical methods. Note that the problem of long-
term dependencies is not limited to music, nor to one particular probabilistic
model [1]. This difficulty motivates our exploration of chord progressions and
their interaction with melodies. In its simplest definition, a chord is a group of
note names. Chord progressions constitute a fixed, non-dynamical structure in
time and thus can be used to aid in describing long-term musical structure in
tonal music. A harmonization is a particular choice of chord progression given
other components of tonal music (e.g. melodies or bass lines). In this paper,
we propose a graphical model to generate harmonizations given melodies based
on training data. In general, the notes comprising a chord progression are not
played directly. Instead, given that a particular temporal region in a musical
piece is associated with a chord, notes comprising that chord or sharing some
harmonics with notes of that chord are more likely to be present.



Graphical models can capture the chord structures and their interaction with
melodies in a given musical style using as evidence a limited amount of symbolic
MIDI® data. One advantage of graphical models is their flexibility, suggesting
that our models could be used either as an analytical or a generative tool to
model chord progressions. Moreover, models like ours could be integrated into
more complex probabilistic transcription models [2], genre classifiers, or auto-
matic composition systems [3].

Cemgil [2] uses a somewhat complex graphical model that generates a map-
ping from audio to a piano-roll using a simple model for representing note tran-
sitions based on Markovian assumptions. This model takes as input audio data,
without any form of preprocessing. While being very costly, this approach has
the advantage of being completely data-dependent. However, strong Markovian
assumptions are necessary in order to model the temporal dependencies be-
tween notes. Hence, a proper chord transition model could be appended to such
a transcription model in order to improve polyphonic transcription performance.
Raphael [4] use graphical models for labeling MIDI data with traditional West-
ern chord symbols. Lavrenko and Pickens [5] propose a generative model of poly-
phonic music that employs Markov random fields. While being very general, this
model would benefit from having access to more specific musical knowledge. For
instance, we go a step further in this paper by including abstract chord repre-
sentation in the model? as a smoothing technique towards better generalization.
Allan and Williams [8] designed a harmonization model for Bach chorales us-
ing Hidden Markov Models (HMMs). While generating excellent musical results,
this model has to be provided polyphonic music with specific 4 voice structure as
input, restricting its applicability in more general settings. Our proposed model
is more general in the sense that it is possible to extract the appropriate chord
representation from any polyphonic music, without regard to specific labeling or
harmonic structure. One can then use it to generate harmonization given any
melody without regard to the musical style of the corpus of data at hand.

2 Graphical Models

Graphical models [9] are a useful framework to describe probability distributions
where graphs are used as representations for a particular factorization of joint
probabilities. Vertices are associated with random variables. A directed edge
going from the vertex associated with variable A to the one corresponding to
variable B accounts for the presence of the term P(B|A) in the factorization of
the joint distribution for all the variables in the model. The process of calculating
probability distributions for a subset of the variables of the model given the joint
distribution of all the variables is called marginalization (e.g. deriving P(A, B)
from P(A, B,C)). The graphical model framework provides efficient algorithms

3 In our present work, we only consider notes onsets and offsets in the MIDI signal.
4 The proposed model is defined using standard jazz chord notation as described in
[6, 7].



for marginalization and various learning algorithms can be used to learn the
parameters of a model, given an appropriate dataset.

The Expectation-Maximization (EM) algorithm [10] can be used to estimate
the conditional probabilities of the hidden variables in a graphical model. This
algorithm proceeds in two steps applied iteratively over a dataset until conver-
gence of the parameters. First, the E step computes the expectation of the hidden
variables, given the current parameters of the model and the observations of the
dataset. Secondly, the M step updates the values of the parameters in order to
maximize the joint likelihood of the observations and the expected values of the
hidden variables.

Marginalization must be carried out in the proposed model both for learning
(during the expectation step of the EM algorithm) and for evaluation. The in-
ference in a graphical model can be achieved using the Junction Tree Algorithm
(JTA) [9]. In order to build the junction tree representation of the joint distribu-
tion of all the variables of the model, we start by moralizing the original graph
(i.e. connecting the non-connected parents of a common child and then removing
the directionality of all edges) so that some of the independence properties in
the original graph are preserved. In the next step (called triangulation), we add
edges to remove all chord-less cycles of length 4 or more. Then, we can form
clusters with the maximal cliques of the triangulated graph. The Junction Tree
representation is formed by joining these clusters together. We finally apply a
message passing scheme between the potential functions associated to each clus-
ter of the Junction Tree. These potential function can be normalized to give the
marginalized probabilities of the variables in that cluster. Given evidence, the
properties of the Junction Tree allow these potential functions to be updated.
Exact marginalization techniques are tractable in the proposed model given its
limited complexity.

3 Interactions Between Chords and Melodies

Each note in a chord has a particular impact on the chosen notes of a melody
and a proper polyphonic model should be able to capture these interactions.
Also, including domain knowledge (e.g. A major third is not likely to be played
when a diminished fifth is present) would be much easier in a model dealing
directly with the notes comprising a chord. While such a model is somewhat
tied to a particular musical style, it is also able to achieve complex tasks like
melodic accompaniment.

3.1 Melodic Representation

A simple way to represent a melody is to convert it to a 12-dimensional con-
tinuous vector representing the relative importance of each pitch class over a
given period of time ¢. We first observe that the lengths of the notes comprising
a melody have an impact on their perceptual emphasis. Usually, the meter of
a piece can be subdivided into small time-steps such that the beginning of any



note in the whole piece will approximately occur on one of these time-steps. For
instance, let ¢ be the time required to play a whole measure. Given that a 4-beat
piece (where each beat is a quarter note in length) contains only eight notes or
longer notes, we could divide every measure into 8 time-steps with length ¢/8
and every notes of the piece would occur approximately on the onset of one of
these time-steps occurring at times 0,t/8,2t/8,...,7t/8. We can assign to each
pitch-class a perceptual weight equal to the total number of such time-steps it
covers during time t.

However, it turns out that the perceptual emphasis of a melody note depends
also on its position related to the meter of the piece. For instance, in a 4-beat
measure, the first beat (also called the downbeat) is the beat where the notes
played have the greatest impact on harmony. The second most important one is
the third beat. We illustrate in Table 1 a way of constructing a weight vector
assessing the relative importance of each time-step in a 4-beat measure divided
into 12 time-steps with swing eight notes, relying on the theory of meter [11]. At
each step represented by a row in the table, we consider one or more positions
that have less perceptual emphasis than the previous added ones and increment
all the values by one. The resulting vector on the last row accounts for the
perceptual emphasis that we apply to each time-step in the measure.

Table 1. This table illustrates a way to construct a vector assessing the relative im-
portance of each time-step in a 4-beat measure divided into 12 time-steps. On each
row, we add positions that have less perceptual importance than the previous added
ones, ending with a weight vector covering all the possible time-steps

Beat1..2..3..4..

512312412312

Although this method is based on widely accepted musicological concepts,
more research would be needed to assess its statistical reliability and to find
optimal weighting factors.

3.2 Modeling Root Note Progressions

One of the most important notes in a chord with regard to its interaction with
the melody may be the root note®. For example, bass players play the root note

® The root note of a chord is the note that gives its name to the chord. For instance,
the root note of the chord Em7b5 is the note E.



of the current chord very often when accompanying other musicians in a jazz
context. Figure 1 shows a model that learns interactions between root notes (or
chord names) and the melody.

NG AN/ ANV AN/
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1O 00 00 00 0
1O O 00 00 00

Fig.1. A graphical model to predict root note progressions given melodies. White
nodes are hidden random variables while gray nodes are observed

Discrete nodes in levels 1 and 2 are not observed. The purpose of the nodes
in level 1 is to capture global chord dependencies related to the meter [11, 12].
Nodes in level 2 are modeling local chord dependencies conditionally to the global
dependencies captured in level 1. For instance, the fact that the algorithm is
accurately generating proper endings is constrained by the upper tree structure.

Such a model is able to predict sequences of root notes given a melody,
which is a non-trivial task even for humans. Nodes in level 1 and 2 are discrete
hidden variables and play the same role than in previous models. Nodes in level
2 are tied according to the numbers shown inside the vertices. Probabilities
of transition between levels 3 and 4 are fixed with probabilities of substitution
related to psychoacoustic similarities between notes [13]. These random variables
have 12 possible states corresponding to each possible root note. We thus model
the probability of substituting one root note for one another. Nodes in level 3
are hidden while nodes in level 4 are observed. Discarding level 4 and directly



observing nodes in level 3 would assign extremely low probabilities to unseen
root notes in the training set. Instead, when observing a given chord on level 4
during learning, the probabilities of every root notes are updated with respect
to the fixed probabilities of substitution. Nodes in level 5 are continuous 12-
dimensional Gaussian distributions that are also observed during training where
we model each melodic observation using the technique presented in Section 3.1.

Evaluation of Root Notes Prediction Given Melody In order to evalu-
ate the model presented in Figure 1, a database consisting of 47 standard jazz
melodies in MIDI format and their corresponding root note progressions taken
in [6] has been compiled by the authors. Every sequence was 8 bar long, with
a 4-beat meter, and with one chord change every 2 beats (yielding observed
sequences of length 16). It was required to divide each measure into 24 time-
steps in order to fit each melody note to an onset. The technique presented in
Section 3.1 was used over a time span t of 2 beats corresponding to the chords
lengths.

The proposed tree model was compared to an HMM (built by removing
nodes in level 1) in terms of prediction ability given the melody. In order to
do so, average negative conditional out-of-sample likelihoods of sub-sequences of
length 4 on positions 1, 5, 9 and 13 have been computed. For each sequence of
chords x = {x1,...216} in the appropriate validation set, we average the values

—log P(xi, ..., Tiy3|®1, ..., Ti 1, Tiga, ..., T16)- (1)

with i € {1,5,9,13}. Hence, the likelihood of each subsequence is conditional
on the rest of the sequence taken in the validation set and the corresponding
melody.

Double cross-validation is a recursive application of cross-validation [14] where
both the optimization of the parameters of the model and the evaluation of the
generalization of the model are carried out simultaneously. We let the number
of possible states for random variables in levels 1 and 2 go independently from
2 to 15. This technique has been used to optimize the number of possible values
of hidden variables and results are given in Table 2 in terms of average con-
ditional negative out-of-sample log-likelihoods of sub-sequences. This measure
is similar to perplexity or prediction ability. We chose this particular measure
of generalization in order to account for the binary metrical structure of chord
progressions, which is not present in natural language processing, for instance.

The fact that results are better for the tree model than for the HMM tells
us that non-local dependencies are present in root notes progressions [12]. Gen-
erated root notes sequences given out-of-sample melodies are presented in Sec-
tion 3.4 together with generated chord structures.

3.3 Chord Model

Before describing a complete model to learn the interactions between complete
chords and melodies, we introduce in this section a chord representation that



Table 2. Average conditional negative out-of-sample log-likelihoods of sub-sequences
of root notes of length 4 on positions 1, 5, 9 and 13 given melodies. These results are
computed using double cross-validation in order to optimize the number of possible
values for hidden variables. The results are better (lower negative likelihood) for the
tree model than for the HMM

Model Negative log-likelihood

Tree 6.6707

HMM 8.4587

allows us to model dependencies between each chord component and the proper
pitch-class components in the melodic representation presented in Section 3.1.

The model that we present in this section is observing chord symbols as they
appear in [6] instead of actual instantiated chords (i.e. observing directly musical
notes derived from the chord notation by a real musician). This simplification
has the advantage of defining directly the chord components as they are con-
ceptualized by a musician. This way, it will be easier in further developments
of this model to experiment with more constraints (in the form of independence
assumptions between random variables) derived from musical knowledge. How-
ever, it would also be possible to infer the chord symbols from the actual notes
with a deterministic method, which is done by most of the MIDI sequencers
today. Hence, a model observing chord symbols instead of actual notes could
still be used over traditional MIDI data.

Each chord is represented by a root note component (which can have 12
possible values given by the pitch-class of the root note of the chord) and 6
structural components detailed in Table 3. While it is out of the scope of this
paper to describe jazz chord notation in detail [7], we just note that there exists
a one-to-one relation between the chord representation introduced in Table 3
and chord symbols as they appear in [6].

We show in Table 4 the mappings of some chord symbols to structural vectors
according to this representation. The fact that each structural random variable
has a limited number of possible states will produce a model that is compu-
tationally tractable. While such a representation may not look general for a
non-musician, we believe that it is applicable to most of tonal music by intro-
ducing proper chord symbol mappings. Moreover, it allows us to directly model
the dependencies between chord components and melodic components.

3.4 Chord Model given Root Note Progression and Melody

Figure 2 shows a probabilistic model designed to predict chord progressions given
root note progressions and melodies. The nodes in level 1 are discrete hidden
nodes as in the root notes progressions model. The gray boxes are subgraphs
that are detailed in Figure 3.



Table 3. Interpretation of the possible states of the structural random variables. For
instance, the variable associated to the 5th of the chord can have 3 possible states.
State 1 corresponds to the perfect fifth (P), state 2 to the diminished fifth (b) and
state 3 to the augmented fifth (#)

Values

Component 1 2 3 4

3rd M m sus-
5th P b # -
7th no M m M6
9th no M b #
11th no # P -
13th no M - -

Table 4. Mappings from some chord symbols to structural vectors according to no-
tation described in Table 3. For instance, the chord with symbol 7#5 has a major
third (M), an augmented fifth (#), a minor seventh (m), no ninth, no eleventh and no
thirteenth

Symbol 3rd 5th 7th 9th 11th 13th

6 11 4 1 1 1
M7 1 1 2 1 1 1
m7b5 2 2 3 1 1 1
7b9 11 3 3 1 1
m7 2 1 3 1 1 1
7 1 1 3 1 1 1
9#11 1 1 3 2 2 1
m9 2 1 3 2 1 1
13 1 1 3 2 1 2
m6 2 1 4 1 1 1
9 1 1 3 2 1 1
dim7 2 2 4 1 1 1
m 2 1 1 1 1 1
T#5 1 3 3 1 1 1
945 1 3 3 2 1 1




AR R R

Fig. 2. A graphical model to predict chord progressions given root notes progressions
and melodies. The gray boxes correspond to subgraphs presented in Figure 3

Fig. 3. Subgraph of the graph presented in Figure 2. Each chord component is linked
with the proper melodic components on the bottom



The H node is a discrete hidden node modeling local dependencies and cor-
responding to the nodes on level 2 in Figure 2. The R node corresponds to the
current root note. This node can have 12 different states corresponding to the
pitch class of the root note and it is always observed. Nodes labeled from 3rd
to 13th correspond to the structural chord components presented in Section 3.3.
Node B is another structural component corresponding to the bass notation (e.g.
G7/D is a G seventh chord with a D on the bass). This random variable can have
12 possible states defining the bass note of the chord. All the structural com-
ponents are observed during training to learn their interaction with root note
progressions and melodies. These are the random variables we try to predict
when using the model on out-of-sample data. The nodes on the last row labeled
from 0 to 11 correspond to the melodic representation introduced in Section 3.1.

It should be noted that the melodic components are observed relative to the
current root note. In Section 3.2, the model is observing melodies with absolute
pitch, such that component 0 is associated to note C, component 1 to note C+#,
and so on. On the other hand, in the present model component 0 is associated
to the root note defined by node R. For instance, if the current root note is G,
component 0 will be associated to G, component 1 to G#, component 2 to A,
and so on. This approach is necessary to correctly link the structural components
to the proper melodic components as shown by the arrows between the two last
rows of nodes on Figure 3.

Generation of harmonization It is possible to evaluate the prediction ability
of the model for chord structures. We present in Table 5 the average negative
conditional out-of-sample log-likelihoods of chord structures of length 4 on po-
sitions 1, 5, 9 and 13, given the rest of the sequences, the complete root note
progressions and the melodies for the tree model and an HMM model built by
removing the nodes in level 1 in Figure 2.

Table 5. Average negative conditional out-of-sample log-likelihoods of sub-sequences
of chord structures of length 4 on positions 1, 5, 9 and 13, given the rest of the sequences
and the complete root note progressions and melodies using double cross-validation

Model Negative log-likelihood

Tree 9.9197
HMM 9.5889

Again, we used double cross-validation in order to optimize the number of
hidden variables in the models. We observe that the HMM gives better results
than the tree model in this case. This can be explained by the fact that the root
note progressions are given in these experiments. This would mean that most
of the contextual information would be contained in the root note progression,
which make sense intuitively. Further statistical experiments could be done to



investigate this behavior. Table 6 shows three different harmonizations of the
last 8 measures of the jazz standard Blame It On My Youth [6] generated by the
proposed model.

Table 6. Three different harmonizations of the last 8 measures of the jazz standard
Blame It On My Youth. Rows beginning with OC correspond to the original chord pro-
gression. Rows beginning with OR correspond to the most likely chord structures given
the original root note progression and melody with respect to the model presented in
Section 3.4. Finally, rows beginning with NH correspond to a new harmonization gen-
erated by the same model and the root note progression model presented in Section 3.2
when observing original melody only

OC (1-8) AbM7 Bb7 Gm7 Cm7 Fm7 Fm7/Eb Db9#11 C7

OR AbM7 Bb7 Gm7 C7 Fm7 Fm7 Db7 Cm7
NH c7 c7 Gm7 Gm7 Fm7 Fm7 Bb7 Bb7
OC (9-16) Fm7 Edim7 Fm7 Bb7 Eb6 Eb6 Eb6 Eb6
OR Fm7 E9 Fm7 Bb7 Eb6 Eb6 Eb6 Eb6
NH Edim7 Gm7 Fm7 Bb7 Eb6 Eb6 Eb6 Eb6

When observing the predicted structures given the original root notes pro-
gression, we see that most of the predicted chords are the same as the originals.
When the chord differs, the musician will observe that the predicted chords
are still relevant and are not in conflict with the original chords. It is more in-
teresting to look at the sequence of chords generated by taking the sequence
of root notes with the highest probability given by the root note progression
model presented in Section 3.2 and then finding the most likely chord struc-
tures given this predicted root note progression and the original melody. While
some chord change are debatable, most of the chords comply with the melody
and we think that the final result is musically interesting. These results show
that valid harmonization models for melodies that could learn different mu-
sical styles could be implemented in commercial software in the short term.
More generated results from the models presented in this paper are available on
http://www.idiap.ch/~paiement/canai.

4 Conclusion

In this paper, we introduced a representation for chords that allows us to eas-
ily introduce domain knowledge in a probabilistic model for harmonization by
considering every structural components in chord notation.

A second main contribution of our work is that we have shown empirically
that chord progressions exhibit global dependencies that can be better captured
with a tree structure related to the meter than with a simple dynamical HMM
that concentrates on local dependencies. However, the local (HMM) model seems



to be sufficient when root notes progressions are provided. This behavior suggest
that most of the time-dependent information may already be contained in root
note progressions.

Finally, we designed a probabilistic model that can be sampled to generate
very interesting chord progressions given other polyphonic music components
such as melody or even root note progressions.
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