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Abstract

Chord progressions are the building blocks from which tonal music is constructed.
The choice of a particular representation for chords has a strong impact on statis-
tical modeling of the dependence between chord symbols and the actual sequences
of notes in polyphonic music. Melodic prediction is used in this paper as a bench-
mark task to evaluate the quality of four chord representations using two prob-
abilistic model architectures derived from Input/Output Hidden Markov Models
(IOHMMs). Likelihoods and conditional and unconditional prediction error rates
are used as complementary measures of the quality of each of the proposed chord
representations. We observe empirically that different chord representations are op-
timal depending on the chosen evaluation metric. Also, representing chords only by
their roots appears to be a good compromise in most of the reported experiments.

Key words: Music Models, Graphical Models, Probabilistic Algorithms, Machine
Learning.

1 Introduction

Probabilistic models for analysis and generation of polyphonic music would be
useful in a broad range of applications, from contextual music generation to on-
line music recommendation and retrieval. However, modeling music involves
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capturing long term dependencies in time series. This has proved very difficult
to achieve with traditional statistical methods. Note that the problem of long-
term dependencies is not limited to music, nor to one particular probabilistic
model [5]. This difficulty motivates our exploration of chord progressions and
their interaction with melodies.

1.1 Music Background

A chord is a group of three or more notes. A chord progression is simply a
sequence of chords. In probabilistic terms, the current chord can be seen as
a latent variable (local in time) that conditions the probabilities of choosing
particular notes in other music components, such as melodies or accompa-
niments. Chord changes occur at fixed time intervals in most of the musical
genres, which makes them much simpler to detect than beginnings and endings
of musical notes, which can happen almost everywhere in a music signal. Thus,
knowing the relations between such chords and actual notes would certainly
help to discover long-term musical structures in tonal music. For instance, an
interesting challenge arising in the music information retrieval context is tran-
scription, i.e. converting audio data into any kind of symbolic representation
such as MIDI or traditional music notation. However, because of fundamental
difficulties inherent to the nature of sound, state-of-the-art techniques are not
able to accomplish this task with a sufficient level of precision for most prac-
tical applications. An intermediate goal is to try to infer chord symbols from
audio data [3,19]. This task is simpler than complete transcription of poly-
phonic audio signal. Combining reliable chord transcription with a model of
the conditional distribution of other music components (e.g. melodies) given
chords could help to improve transcription error rates of existing algorithms.
Following the same idea, such models could even be included in genre classi-
fiers or automatic composition systems [9] to increase their performance.

In most tonal music theories, chord names are defined by a root note that
can either be expressed by its absolute pitch-class® or by its relation with the
current key. The key of a song is designated by a note name (the tonic), and
is the base of a musical scale from which most of the notes of the piece are
drawn. Most commonly, that scale can be either in major or minor mode.

LA pitch-class is a note name, like C or D. In this paper, we consider enharmonics
(e.g. Eb and D#) to be completely equivalent.



1.2  Previous Work

Previous papers describe probabilistic models to solve music related problems.
Using graphical models, Cemgil [6] introduces a somewhat complex probabilis-
tic model that generates a mapping from audio to a piano-roll using a simple
model for representing note transitions based on Markovian assumptions. This
model takes as input audio data, without any form of preprocessing. While
being computationally costly, this approach has the advantage of being com-
pletely data-dependent. However, strong Markovian assumptions are necessary
in order to model the temporal dependencies between notes. Hence, a proper
chord transition model could be appended to such a transcription model in or-
der to improve polyphonic transcription performance. Raphael and Stoddard
[19] use graphical models for labeling MIDI data with traditional Western
chord symbols. Lavrenko and Pickens [14] propose a generative model of poly-
phonic music that employs Markov random fields. While being very general,
this model would benefit from having access to more specific musical knowl-
edge. For instance, we go a step further in this paper by using abstract chord
representations as a smoothing technique towards better generalization. Be-
gleiter et al. [2] provide an interesting comparison of variable order Markov
models used for polyphonic music prediction, but without any use of chord
information to overcome long term dependencies. Harmonization is the genera-
tion of a chord progression for a given melody. Allan and Williams [1] designed
a harmonization model for Bach chorales using HMMs. While generating ex-
cellent musical results, this model has to be provided polyphonic music with a
specific 4 voice structure as input, restricting its applicability to very specific
settings. The models proposed in this paper are more general in the sense that
it is possible to extract the appropriate chord representation from any poly-
phonic music, whatever the specific labeling, harmonic structure, or musical
style.

1.8 Comparing Chord Representations

Despite the simple and relatively universal chord building principles, many
different notations have been used through music history to represent chord
progressions [7]. We face the same problem in the computer science literature,
where each author uses a notation corresponding to his musical background
[1,16,19,20,23]. All these papers describe arbitrary chord representations em-
bedded in probabilistic models, which are mostly variants of Hidden Markov
Models (HMMSs). However, to the best of our knowledge, there is no avail-
able quantitative comparative study of the effect of the choice of particular
chord representations to solve practical applications. Each chord representa-
tion carries specific information that could be more adapted to certain tasks



(or musical styles) than others. At the same time, all of these notations en-
capsulate basic information about a chord, such as its root.

What are the most appropriate chord representations in terms of statistical
polyphonic music modeling? Also, what are the most appropriate objective
criteria for parameter estimation and evaluation of such representations? This
paper explores these issues by using melodic prediction [22] given chords as a
benchmark task to evaluate the quality of four chord representations defined
in Section 2, along with various graphical models involving different temporal
dependencies. Likelihoods and conditional and unconditional prediction error
rates are used as complementary measures of the quality of each of the pro-
posed chord representations in Section 3. Finally, we discuss our empirical
results and draw conclusions in Section 4.

The generative models described in this paper are trained with the EM al-
gorithm. It should be noted that probabilistic models can also be trained
with discriminative training methods [12]. However, a generative approach is
more appropriate here, since the objective of the reported experiments is not
to optimize absolute melodic prediction performance, but to compare chord
representations in a more general way.

2 Melodic Prediction Models

In order to assess the effect of using particular chord representations for
melodic prediction, we propose two kinds of probabilistic models, described
using the graphical model framework.

2.1 Graphical Models and EM

Graphical models [13] are useful to define probability distributions where
graphs are used as representations for a particular factorization of joint prob-
abilities. Vertices are associated with random variables. A directed edge going
from the vertex associated with variable A to the one corresponding to vari-
able B accounts for the presence of the term P(B|A) in the factorization of the
joint distribution of all the variables in the model. The process of computing
probability distributions for a subset of the variables of the model given the
joint distribution of all the variables is called marginalization (e.g. deriving
P(A, B) from P(A, B,C)). The graphical model framework provides efficient
algorithms for marginalization and various learning algorithms can be used to
learn the parameters of a model, given an appropriate dataset.



The Expectation-Maximization (EM) algorithm [8] can be used to estimate the
conditional probabilities of the hidden variables in a graphical model. Hidden
variables are variables that are neither observed during training nor during
evaluation of the models. These variables represent underlying phenomena
that have an impact on the actual observations, but that cannot be observed
directly. The EM algorithm proceeds in two steps applied iteratively over a
dataset until convergence of the parameters. Firstly, the E step computes the
expectation of the hidden variables, given the current parameters of the model
and the observations of the dataset. Secondly, the M step updates the values
of the parameters in order to maximize the joint likelihood of the observations,
given the expected values of the hidden variables.

2.2 A Local Model

The first proposed modeling strategy is to look at the direct effect of particular
chord representations without any influence from past observations.

Let m/ = (m{, ...,m?) be the j-th melody in a dataset where each song have
length n. Each m! is a discrete random variable representing the melodic note
played at time ¢ in song 7. In this paper, we assume octave invariance for the
melodic observations. In other words, all notes belonging to the same pitch-
class are considered to be the same (e.g. all C notes regardless of octave are
associated to the same random variable value). Hence, we assign one possible
value of m{ to each pitch-class, plus one extra value for silence, leading to a
total of 13 possible melodic values.

Also, let ¢/ = (c,...,c)) be the chord progression in song j where each ¢!
is a discrete random variable with a possible number of values depending on
the chosen chord representation, as described in Section 2.4. Each ¢/ is the
chord that is occurring while melodic note m] is played in the j-th song of the
dataset. A very simple approach is to model the joint distribution of m’ and
¢’ with

pLocal(mj7Cj) - Hp(c‘g)p(mglcg) ’ (1)

t=1

where both p(c]) and p(m]|c]) are multinomial distributions. The factorization
of the joint distribution in Eq. (1) is illustrated by the graphical model in
Figure 1, not considering the dashed arrows. The upper indices of the random
variables have been removed in the figure for clarity. In the remainder of this
paper, we refer to this model as the Local model, because each time-step is
independent of the others. Variables in level 1 are observed during training
and testing.
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Fig. 1. A simple probabilistic model corresponding to the factorization in Eq. (1),
where the upper indices of the random variables have been removed for clarity. The
influence of each chord on melodic observations is direct. Circles represent random
variables and arrows represent conditional probability distributions. The dashed
lines are not present in the Local model, thus making each observation completely
local in time. Variables in level 2 correspond to melodic observations.

The chosen melodic representation does not account for note similarities. In
the proposed models, the probability of the melodic observations given appro-
priate other random variables is modeled by multinomial distributions. Such
a distribution does not embed any notion of similarity between its possible
outcomes. However, we chose this melodic representation for its simplicity
and also to avoid introducing bias while measuring the quality of the chord
representations for melodic prediction. While this model is overly simplistic
for practical purposes, it has the advantage of isolating the direct effect of
particular chord representations on the choice of melodic notes. Since all the
variables are observed during training, parameters for this model can be easily
learned from a dataset by standard maximum likelihood techniques.

2.8 TOHMM Model

A more realistic model can be designed by adding extra hidden variables in
the previous model to consider influences from the past when trying to predict
a melody note. Let h/ = (h{, ..., h?) be a vector of discrete hidden variables.
The joint distribution of m’, ¢/, and h’ can be factorized by

n

Prow(m?, ¢ W) = p(c])p(hi|e))p(md |h]) [T p(cl)p(hi|hi_, ] )p(mi|h]) (2)

t=2

where all the distributions are multinomial. This particular factorization is
illustrated by the graphical model shown in Figure 2, where the upper indices
of the variables have been removed for clarity. This model is very similar to an
Input/Output Hidden Markov Model (I0HMM) [4]. Chord variables ¢} in level
1 are always observed. Hidden variables h! in level 2 are used to introduce
dependencies between time frames in the model. Again, melodic variables ¢/
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Fig. 2. Variant of an IOHMM model, as expressed by the joint factorization in Eq. (2).
The upper indices of the variables have been removed for clarity. The variables in
level 1 are observed and correspond to chord observations. Variables in level 2 are
hidden, while variables in level 3 correspond to melodic observations.

in level 3 have 13 possible values as in the Local model presented in Sec-
tion 2.2. There is no link between level 1 and level 3 variables on Figure 2,
contrary to standard IOHMMs [4]. The number of possible values is highly
variable from one chord representation to another. Considering that, we chose
to remove the usual links between inputs and outputs in IOHMMs in order
to limit the impact of the particular choice of a chord representation on the
capacity of the model. This way, the number of possible values of the chosen
chord representation has an impact on the parameterization of the conditional
distribution of the hidden variables, but not on the conditional distributions of
the predicted melodic variables. Learning in the model is done with the stan-
dard EM algorithm [8]. Marginalization must be carried out in the proposed
model both for learning (during the expectation step of the EM algorithm)
and for evaluation. Exact marginalization with the standard Junction Tree
Algorithm [13] is tractable in IOHMMs because of their limited complexity.

2.4  Chord Representations

The chord representations that we introduce in this section consider chord
symbols as they are represented in musical analysis instead of actual instan-
tiated chords. In other words, we observe chord symbols such as they appear
in music sheets [21] instead of observing the notes that would be played by a
musician reading these chord symbols. As we noted in Section 1, chords can
be seen as a latent variable (local in time) that conditions the probabilities
of choosing particular notes in other music components, such as melodies or
accompaniments. The chord symbol “C Maj7” is usually constructed using
the pitch classes C, E, G, and B. However, it really defines a conditional prob-



ability over all pitch classes. For instance, the pitch class D would normally be
much more likely over this particular chord than the pitch-class Bb. Note that
it is easy to infer valid chord symbols from the actual notes in most datasets
with deterministic methods, which is done by most of the MIDI sequencers
today. Hence, a model observing chord symbols instead of actual notes could
still be used over traditional MIDI data with minimal preprocessing effort.

Four chord representations have been used in the experiments described in
Section 3. First, what we call a Naive representation is to consider every chord
(including the choice of the root) as a distinct observation. This representation
has the disadvantage of excluding any notion of chord similarity. Moreover,
this representation leads to a large number of states for the associated random
variables (e.g. 152 in the current experiments, corresponding to each different
chord found in the dataset described in Section 3). This can be harmful when
learning over small datasets because of the high number of parameters. Despite
all these drawbacks, such a representation can be useful if the notions of
chord similarities are included in others parts of the models, such as in the
conditional probabilities between variables [15].

Another possible chord representation is to discard any information except
the root, yielding random variables with 12 possible values. While having a
reasonable number of possible values, such a representation introduces a lot
of smoothing in the models. It is possible to automatically detect the key and
the mode (major or minor) of a song. Given that information, the root is very
often sufficient to predict the whole structure of the rest of the current chord.
For instance, given a song in C major and observing a root C, it is very likely
that the complete chord associated to this root is a variant of C major.

We can also restrict ourselves to a subset of all possible chords [3,20] by map-
ping more complex observed chord symbols to a subset of simpler ones. Such
a representation is also used in the experiments described in this paper. We
define only whether a chord is minor, major or dominant, leading to chord
random variables with only 3 possible values. In this case, if we observe for
instance the chord C7#5b9, we map this chord to the value corresponding to
a dominant (7) chord. In the remainder of the paper, this representation is
referred to as the mM7 (minor-Major-dominant 7th) representation.

Finally, we can combine the Root representation and the mM7 representation.
This leads to discrete random variables with 36 possible values (12 roots times
3 chord qualities).



3 Comparing Chord Representations

53 jazz standards melodies [21] were recorded by the first author in MIDI for-
mat. Corresponding chord labels were also manually added to this corpus. The
complexity of the chord sequences and melodies found in the corpus is repre-
sentative of the complexity of common jazz and pop music. The songs were
transposed to the key of C. This simplification has no impact on the generality
of the experiments since automatic key detection is relatively reliable. Every
song was 16 bars long, with four beats per bar, and with one chord change
every two beats. The shortest notes in the dataset are eighth notes. Hence, two
melodic observations were made for each beat, yielding observed sequences of
length 128. Since chords span multiple melodic observations, their symbols
were repeated multiple times (e.g. a 6 beat chord is represented as 12 distinct
observations). This has no impact on the quality of the model since chords
are acting as latent variables. Hence, the fact that chords are repeated in in-
put sequences does not imply actual repetitions in the corresponding melodic
signal.

3.1 Local Model

We chose to use cross-validation [10] to evaluate the proposed models instead
of dividing the dataset into two parts (i.e. a single training set and a single
test set) because of the small size of our experimental dataset. Assume that
the dataset is divided into K folds T71,...,Tk (each containing different se-
quences), and that the k-th fold T}, contains n; test sequences. We also define
k(j) such that Vj, j € Ty;). In other words, k(j) is the index of the fold
containing the sequence j. Let

iy = arg max procai(s(s)) (mi|c’) (3)

where the parameters of pLocal(k(j))(m{ |c’) are learned on all the sequences of
the dataset, without the sequences in Tj;. Hence, mg is the most probable
melodic observation at time ¢ in test song j given the whole chord progression,
according to the Local model described in Section 2.2. Given Eq. (1), we have
that

J

mt = arg maXpLocal(k(j))(mﬂcz) :

Thus, a melodic prediction in the Local model only depends on the current
chord observation. Finally, let €] = 1if /] # m]. When using cross-validation,



Table 1

Out-of-sample classification error and average negative out-of-sample log-likelihood
for local models. The lower the better for both evaluation measures. The number
of possible states for each chord representation is given in the second column.

Model Chord states | % of Error | Neg. Log-Likelihood
Naive 152 77.39 357.48
Roots + mM7 | 36 80.93 316.33
Roots 12 81.40 293.95
mM7 3 82.41 295.29
Freq 0 83.34 301.40

the out-of-sample classification error of the local model is given by

TR ()

In words, the out-of-sample error is just the average number of times the
algorithm makes a mistake when trying to predict melodic observations over
songs unseen during training. Out-of-sample classification errors (computed
with 5-fold cross-validation) for the Local model described in Section 2.2 and

for each of the chord representations given in Section 2.4 are presented in
Table 1.

It should be pointed out that the classification error is really the criterion we
want to minimize when developing models for practical applications. In such
a context, the system must make a decision at each time step. As an example,
a melodic model could be appended to a transcription algorithm. In such a
context, the model would have to guess what is the most likely next note,
given the previous notes and the audio measurements.

On each iteration of cross-validation, one fold of the dataset is not used for
training. This subset of the dataset (referred to as the test set in machine
learning literature) can be used to evaluate the model. Hence, it is always
possible to observe a chord symbol during evaluation (or testing) that has not
been observed previously when training the model. Dirichlet priors [11] have
been used on all the chord variables in the algorithms described in this paper
in order to avoid propagating zero probabilities in the models in this case.
Note that we did not include these priors in the descriptions of the proposed
models in order to clarify the presentation. Dirichlet priors on multinomial
distributions amounts to assume that some observations have been made by
the models before learning the parameters. In the reported experiments, we
simply assumed that every variable states given every conditioning variable

10



states have been observed one time.

Parameters are tied over time in the Local model presented in Figure 1. In
other words, the arrows between level 1 and level 2 always correspond to the
same probability table in one fold of the cross-validation. As a benchmark,
we also introduce the Freq model in Table 1, which is simply an algorithm
that always selects the most frequent melodic observation in the training set.
It corresponds to removing level 1 random variables in Figure 1, just leaving
independent observations.

The capacity of a set of functions [24] can be related to the size of the set: the
more functions in the set, the higher the capacity. Searching for the optimal
function in a set with not enough capacity will yield underfitting, while search-
ing in a set with too much capacity will yield overfitting. Hence, techniques
such as cross-validation can be used to select the appropriate set size. With
the Local model, the only direct way to optimize capacity is to vary the pa-
rameter of the Dirichlet prior on the distribution over melodies (which we did
not do in the experiments). However, using a chord representation with more
possible values also increases capacity in this model. Looking at the obtained
results, we see that the rate of error increases when using chord representations
with fewer possible values. It is then possible that all these models somehow
underfit, making the Naive representation (with 152 possible chord values in
the current experiments) the best choice in this context. Not surprisingly, the
Freq model, which always chooses the most frequent melodic observation, is
the worst model in terms of classification error rate. Generalization capabili-
ties of a model can benefit from the smoothing produced by a simplified chord
representation, since this simplification is done by clustering perceptual prop-
erties of chords (e.g. all chords with the same root are clustered together in
the Root representation). This is obviously not the case when using the Freq
model.

Table 1 also shows the average negative out-of-sample log-likelihoods obtained
with the same models again using cross-validation. Using the same notation
as in Equation (4), this measure is given by

> = Zlog (pLocal k) mt|Cj)) : (5)

1
k=1 "Ik jer, T i=

where the parameters of pLocal(k)(m{ |c’) are learned on all the sequences of the
dataset, excluding the ones that are in 7Tj. In other words, we compute each
likelihood on examples that have not been used to learn the parameters in the
model. Note that this performance measure is the one that was optimized over
the training set when learning the parameters of the models with the maximum
likelihood algorithm. The likelihoods of the different models are comparable

11



since all the proposed models observe the same melodic representation.

As can be observed, the negative log-likelihood results are not coherent with
the classification error. For instance, the Freq model has a lower negative log-
likelihood than the Roots + mM7 and Naive models! While being surprising,
this result is plausible since the reported log-likelihoods have been computed
on sequences that have not been used to train the models. Hence, a model
with lower capacity can have better generalization properties than a too com-
plex model (i.e. an overly complex model may overfit the training dataset.)
However, this result is counterintuitive since one would expect that adding
current chord information would help the model to guess what would be the
current melody note.

The observed discrepancies between classification error rate and negative log-
likelihood could be explained by the fact that the negative log-probabilities in
Eq. (5) are not bounded. Suppose that a model fits most of the data quite well
but some of the out-of-sample examples have very low probabilities. Then, the
terms associated to these examples in Equation (5) can take very large values
that could dominate the average negative log-likelihood for all the examples.
On the other hand, the cost of encountering a very unlikely out-of-sample
sequence (with respect to the model being evaluated) in Eq. (4) is only pro-
portional to %, with N = K . being the total number of examples in
the dataset. This observation raises the following interesting question: Is the
likelihood of the model over the observed data the best criterion to optimize
when what we really want to do is to minimize the error of classification? We

further discuss this issue in Section 4.

3.2 TOHMM Model

(Classification error and average negative out-of-sample log-likelihoods can also
be computed for the IOHMM defined in Eq. (2). Let

m’ = arg max PIOHMM (k(5)) (rhj c?) (6)

with mJ = (m],...,m)). Again, the parameters of promwmi(k(j))(m?|c?) are
learned on all the sequences of the dataset, excluding the sequences in Tj ;.
The out-of-sample classification error for the I0HMM is given by Eq. (4), with
el = 1if ] # mi. In other words, the model tries to guess the whole melodic
sequences given the corresponding chord progressions.

12



Table 2

Out-of-sample classification error and average negative out-of-sample log-likelihood
for the IOHMM. The lower the better for both evaluation measures. The number of
possible states for each chord representation is given in the second column.

Model Chord states | % of Error | Neg. Log-Likelihood
Naive 152 79.05 281.84

Roots 12 82.09 223.67

Roots + mM7 | 36 83.17 247.48

mM7 3 84.71 212.47

HMM 0 86.56 196.27

On the other hand, the average negative out-of-sample log-likelihood for the
I0HMM is given by

1
il Z log (pIOHMM(k)<mt|cj)) 3
k=1 "Ik jer,

following the notation in Eq. (5).

Table 2 shows out-of-sample classification error and average negative log-
likelihood for the IOHMM. These results are qualitatively similar to those in
Table 1 for the Local model. This time, the number of possible values for
hidden variables in level 2 of Figure 2 was optimized using 5-fold double cross-
validation, which is a recursive application of cross-validation where both the
optimization of the parameters of the model and the evaluation of the gener-
alization performance of the model are carried out simultaneously. Standard
cross-validation as described in the beginning of this section was applied to
each subset of 4 folds with each hyper-parameter setting and tested with the
best set of parameters (on average) on the remaining hold-out fold. 2 to 20
possible hidden states for the variables h? were tried in the reported experi-
ments.

The same parameters are used over time to define the conditional probability
distributions. For instance, all the vertical arrows between variables in level 1
and level 2 in Figure 2 represent the same probability table. The fact that it
was possible in this context to optimize the capacity of the models by adjusting
the number of states for the hidden variables makes the results in Table 2
more trustworthy than the ones found in Table 1, although they are similar.
It should be pointed out that the capacity of the models was optimized with
respect to the appropriate error measure. For instance, when reporting results
about prediction error rates, capacity is optimized with respect to prediction
error rate (while the models are trained by maximizing the likelihood with the

13



EM algorithm).

The HMM referred to in Table 2 is similar to the IOHMM but removing the chord
inputs layer. Hence, the joint distribution of the melodic observations m’ and
the hidden variables h? estimated by this model is given by

prear(m?, W) = p(h)p(md |[13) T (kA )p(mi|hl)

t=2

where all the distributions are multinomial. Again, all the parameters in this
model can be learned with the standard EM algorithm [18]. This particular
factorization can be represented by the model in Figure 1 with the horizontal
dashed arrows being present and the variables ¢/ replaced by the correspond-
ing variables AJ. In this case, variables in level 1 are hidden and variables in
level 2 are still melodic observations. As expected, the HMM produces higher
out-of-sample classification error than the IOHMMs, which can take advantage
of the chord symbols given as inputs. Interestingly, the Naive representation
for chords seems to be consistently efficient for melodic prediction. In Table 2,
the Naive representation gives statistically significantly better results than
the Roots representation with a confidence level of 99%2. This is an indica-
tion that developing probabilistic models with this representation could be a
viable approach, especially if perceived relations between chords are included
in the models via the conditional probabilities related to these chords [15].
The representation including only the roots also performs well. Given these
results, this representation appears to be a good compromise given its rela-
tive simplicity and the fact that it inherently embodies perceptually relevant
smoothing. Using basic chord information (mM7 representation) does not seem
to help with respect to unconditional classification error.

Again, average negative log-likelihoods contradict average classification error
rates. Even worse, the HMMs performs much better than the I0HMMs in terms
of likelihood! This is an indication that such a measure favors models that are
more uniform in essence, thus giving a relatively high probability to unseen
sequences. However, more uniform models are weaker when asked to predict
a single new note, because they define distributions with modes less precisely
adapted to the training data.

2 We used a standard proportion test, assuming a binomial distribution for the
errors and using a normal approximation.
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3.3 Conditional Classification Error

The goal of the models presented here is to predict the melodies in the dataset.
It is out of the scope of this work to evaluate the subjective artistic quality of
the predicted melodies. A more interesting measure of melodic prediction is
the out-of-sample conditional classification error for the Local model, given
by Equation (4), but using instead

~T Jled ond J
My = arg max procai(k) (mi|c’, mi, ..., m{_;)

in the definition of 6{ . The same technique can be applied to compute the
classification error rate for the IOHMM if using the appropriate distribution de-
rived from Eq. (2). This measure is very similar to the unconditional error
described in Section 3.2. However, the models now have access to the true
previous melodic observations when trying to guess the next one. This is dif-
ferent from the unconditional error rate, where each model tries to predict
whole sequences when only given chord progressions.

The only objective performance measure we can provide about a melodic
prediction given a chord progression is to tell if a predicted melody is similar
or not to the one provided in the dataset with the same chord progression.
However, while the space of plausible melodies is huge, we only have access to
a very small number of sequences to measure the performance of the models
given a chord progression. Moreover, given a particular sequence of chords,
one can imagine that a very high number of melodies would be considered
more or less musically similar to the ones in the dataset. Among all these
melodies, some may not share a single note with the true melody associated
with this sequence of chords in the test set. A good melodic prediction model
would be likely to generate any one of these melodies, thus producing a very
high unconditional error rate.

The conditional error rate alleviates this problem by measuring the prediction
performance of a model in regions of the observation space where data is
present, leading to a much more reliable performance measure in this context.
Moreover, distributions that would generalize well according to such a measure
could also be sampled to generate realistic melodies given chord progressions
and initial melodic motives. The Junction Tree Algorithm for marginalization
[13] allows us to fix the state of some variables in the graphical model while
finding the most probable states for other variables. Out-of-sample conditional
classification error rates for the IOHMMs presented in Section 2.3 are shown
in Table 3. We do not provide conditional classification error rates for the
Local model described in Section 2.2, because they would be identical to
the unconditional classification error rates shown in Table 1. When making
a prediction, such models are completely unaware of previous observations
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Table 3

Out-of-sample conditional classification error rates for the IOHMMs. The lower the
better. The number of possible states for each chord representation is given in the
second column.

Model Chord states | % of Error
Roots 12 57.41
Roots + mM7 | 36 58.21
mM?7 3 58.32
Naive 152 69.77
HMM 0 85.27

in time. Also, we do not provide average negative log-likelihoods, since this
measure is not well adapted to prediction tasks, as we noted in Section 3.

Again, the HMM produces higher out-of-sample conditional classification error
rate than the I0HMMs which benefit from chord symbols given as inputs. In Ta-
ble 3, the conditional error rates are much lower than the unconditional ones
for the same models. For each chord representation, the prediction accuracy
gained when observing previous melodic notes is much higher than the differ-
ences in error rates for each chord representation obtained in Table 2. This
means that observing previous melodic notes gives more information about
the likely choices for the current melody than any chord information.

In Table 2, the Naive representation was the best one in terms of unconditional
prediction error rate. On the other hand, this representation has the highest
conditional prediction error rate among all the [OHMMs. When knowing noth-
ing about the previous melodic observations, the model performs better when
provided with a more detailed chord representation. However, given previous
melodic observations, smoothed chord representations lead to better general-
ization in terms of prediction error rate. The Naive representation overfits the
training data because it leads to models with higher capacity. Finally, no rep-
resentation is statistically significantly better than another with a confidence
level of 90% among the three best representations in Table 3.

4 Conclusions

The main motivation behind this paper was to better understand the statis-
tical relations between chord representations and the actual choice of notes in
polyphonic music. To this end, we compared four chord representations using
melodic prediction as a benchmark task. Surprisingly, the Naive representa-
tion where each chord is conceived as a discrete observation apparently per-
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forms well in terms of unconditional prediction error rates. Nevertheless, this
representation overfits when past melodic observations are used to condition
the predictions. In this case, smoothed chord representations seems more ap-
propriate. Given the obtained results, representing chords only by their roots
seems to be a good compromise, especially when all the songs to be analyzed
are transposed to the same key. While being extremely simple, this represen-
tation inherently includes smoothing related to perceptual relations between
notes. The Root+mM7 representation that is used in some important music
information retrieval papers [3,19] is not optimal in terms of out-of-sample
classification error and average negative log-likelihood for both probabilistic
models presented in this paper. However, in practice, the actual choice of a
chord representation should always be made considering the application to be
developed.

An interesting observation when looking at the results of the experiments
done in Section 3 is that the behavior of the average out-of-sample likelihood
does not follow the trends of the average prediction error rate (conditional
or unconditional). On the one hand, the likelihood is a measure of the fit
of a whole distribution to a dataset. However, the classification error seems
to be a better descriptor of the fit of the modes of a distribution. These
remarks are applicable to any domain where parameters of models have to
be learned on small datasets. Provided a nearly infinite amount of data, the
two evaluation measures that we presented would lead to the same ranking
of the models. Thus, likelihood and prediction error would probably be more
comparable when measured with models trained and evaluated with much
more data. How much data is needed in this particular framework to obtain
such a behavior is still an open question that needs to be addressed. Another
important observation is that when learning parameters on small datasets, the
chosen capacities for the models appear to be even more crucial than when
learning on large dataset.

Also, given realistic datasets, optimizing the likelihood of a model with respect
to training data may not be the best strategy when one is only interested in
the modes of the distribution, which can be the case when doing prediction.
An alternative learning strategy would be to maximize the sum of the differ-
ences between the probabilities of the observed classes and the probabilities
of the most probable wrong classes instead of just maximizing the sum of the
log probabilities of the observed classes. This approach is referred to as the
minimum classification error (MCE) algorithm [12].

Finally, it would be interesting to append these models to existing music infor-
mation retrieval algorithms to improve their performance. As a comparison,
language models are regularly used in speech recognition algorithms to con-
strain their search space to reasonable solutions [17].
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