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Abstract— In this paper, several approaches that can be used
to improve biometric authentication applications are proposed.
The idea is inspired by the ensemble approach, i.e., the use of
several classifiers to solve a problem. Compared to using only one
classifier, the ensemble of classifiers has the advantage of reducing
the overall variance of the system. Instead of using multiple
classifiers, we propose here to examine other possible means of
variance reduction (VR), namely through the use of multiple
synthetic samples, different extractors (features) and biometric
modalities. The scores are combined using the average operator,
Multi-Layer Perceptron and Support Vector Machines. It is found
empirically that VR via modalities is the best technique, followed
by VR via extractors, VR via classifiers and VR via synthetic
samples. This order of effectiveness is due to the corresponding
degree of independence of the combined objects (in decreasing
order). The theoretical and empirical findings show that the
combined experts via VR techniquesalways perform better
than the average of their participating experts. Furthermore,
in practice, most combined experts perform better than any of
their participating experts.

I. I NTRODUCTION

Biometric authentication (BA) is the problem of verifying an
identity claim using a person’s behavioural and physiological
characteristics. BA is becoming an important alternative to
traditional authentication methods such as keys (“something
one has”, i.e., by possession) or PIN numbers (“something
one knows”, i.e., by knowledge) because it is essentially “who
one is”, i.e., by biometric information. Therefore, it is not
susceptible to misplacement, forgetfulness or reproduction.
Examples of biometric modalities are fingerprint, face, voice,
hand-geometry and retina scans [1].

However, to date, biometric-based security systems (de-
vices, algorithms, architectures) still have room for improve-
ment, particularly in their accuracy, tolerance to various noisy
environments and scalability as the number of individuals
increases. The focus of this study is to improve the system
accuracy by directly minimising the noise via various variance
reduction techniques.

Biometric data is often noisy because of deformable tem-
plates, corruption by environmental noise, variability over time
and occlusion by the user’s accessories. The higher the noise,
the less reliable the biometric system becomes.

Advancements in biometrics show two emerging solutions:
combining several biometric modalities [2], [3] (often called
multi-modal biometrics) and combining several samples of a
single biometric modality [4]. These techniques are related
to variance reduction(VR). This is a phenomenon originated

from combining classifier scores. Specifically, by combining
the outputs ofN classifier scores using an average operator
(in the simplest case), one can reduce the variance of the
combined score, with respect to the target score, by a factor
of N [5, Chap. 9], if the classifier scores are not correlated
(or independent from each another). On the other hand, in the
extreme case, when they are completely correlated (dependent
on each other), there will be no reduction in variance at all [6].

In the context of BA, when one combines several biometric
modalities or several samples, one indeed exploits the indepen-
dence of each modality and sample, respectively. In this work,
we examine several other ways to exploit this (often partial)
independence, namely via extractors, classifiers and synthetic
samples. In short, all these methods can be termed as follows:
Variance Reduction (VR) via classifiers, VR via extractors,
VR via samples and VR via (biometric) modalities.

To our opinion, VR techniques are potential to improve the
accuracy of BA systems because better classifiers or ensemble
methods, feature extraction algorithms and biometric-enabled
sensors are emerging. Instead of choosing one best tech-
nique (best features, classifiers, etc), VR techniques propose
to combine these new algorithms with existing techniques
(features, classifiers) to obtain improved results, whenever this
is feasible. The added overhead cost will be computation time
and possibly hardware cost in the case of adding new sensors
(as opposed to other VR techniques whichdo not requireany
extra hardware).

II. VARIANCE REDUCTION IN BIOMETRIC

AUTHENTICATION
A. Variance Reduction

This section presents a brief findings on the theory of
variance reduction (VR). Details can be found in [6].

A person requesting an access can be measured by his or her
biometric data. Let this biometric data bex. This measurement
can be done in several methods, to be explored later. Leti
denote thei-th extract ofx by a given method. For the sake
of comprehension, one method to do so is to use multiple
samples. Thus, in this case,i denotes thei-th sample. If
the chosen method uses multiple biometric modalities, then
i refers to thei-th biometric modality. Let the measured
relationship be denoted asyi(x). It can be thought as thei-th
response (of the sample or modality, for instance) given by
a biometric system. Typically, this output (e.g. score) is used
to make the accept/reject decision.yi(x) can be decomposed



into two components, as follows:

yi(x) = h(x) + ηi(x), (1)

whereh(x) is the “target” function that one wishes to estimate
and ηi(x) is a random additive noise with zero mean, also
dependent onx.

Let N be the number of trials, (e.g., the number of sam-
ples, assuming that the chosen method uses multiple samples
hereinafter). The mean ofy overN trials, denoted as̄y(x) is:

ȳ(x) =
1
N

N∑

i=1

yi(x). (2)

When N samples are available and they are used separately,
the average of variancemade by each sample, independently,
is:

VARAV (x) =
1
N

N∑

i=1

VAR[yi(x)], (3)

where VAR[·] is the variance of·.
On the other hand, the variance as a result of averaging (or

variance of average) due to Eq. 2 is defined as:

VARCOM (x) = E[(ȳ(x)− h(x)])2], (4)

where E[·] is the expectation of·. In our previous work [6],
it has been shown that:

1
N

VARAV (x) ≤ VARCOM (x) ≤ VARAV (x). (5)

This equation shows that when scoresyi, i = 1, . . . , N are
not correlated, the variance of average is reduced by a factor
of 1/N with respect to the average of variance. On the
other hand, when the scores are totally correlated, there is no
reduction of variance, with respect to the average of variance.

To measureexplicitly the factor of reduction, we introduce
α, which can be defined as follows:

α =
VARAV (x)

VARCOM (x)
. (6)

By dividing Equation 5 by VARCOM and rearranging it, we
can deduce that1 ≤ α ≤ N .

B. Variance Reduction and Classification Reduction
Figure 1 illustrates the effect of averaging scores in a two-

class problem, such as in BA where an identity claim could
belong either to a client or an impostor. Let us assume that
the genuine user scores in a situation where 3 samples are
available but are used separately, follow a normal distribution
of mean 1.0 and variance (VARAV (x) of genuine users)
0.9, denoted asN (1,

√
0.9), and that the impostor scores

(in the mentioned situation) follow a normal distribution of
N (−1,

√
0.6) (both graphs are plotted with “+”). If for each

access, the 3 scores are used, according to Equation 6, the
variance of the resulting distribution will be reduced by a
factor (which is the valueα defined in Equation 6) of 3 or less.
Both resulting distributions are plotted with “o”. Note the area
where both the distributions cross before and after. The later
area is shaded in Figure 1. This area corresponds to the zone
where minimum amount of mistakes will be committed given

that the threshold is optimal1. Decreasing this area implies an
improvement in the performance of the system.
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Fig. 1. Averaging score distributions in a two-class problem

C. Variance Reduction and Correlation in the Input Score
Space

From the previous section, it is obvious that by reducing the
variance, the classification results should be improved. How
much variance can be reduced depends on how correlated
the input scores are. The correlation between scores of two
experts can be examined by plotting their scores on a 2D-
plan, with one axis for each expert. This is shown in Fig. 2
and 3. The first figure shows a scatter-plot of scores taken from
two experts working on thesamefeatures. The second figure
shows a scatter-plot of scores taken from two experts working
on different biometric modalities. Details of the experts are
explained in Sec. IV. As can be seen, the scores of the former
overlaps more than the latter, i.e., if a boundary is to be
drawn between clients and impostors scores, it would be more
difficult for the former problem than the latter problem. Note
that overlapping occurs when both experts make the same
errors. Thus, there will be more classification errors in the
former problem than in the latter.
D. Exploring Various Variance Reduction Techniques

This section explores various variance reduction (VR) tech-
niques that can be applied to the BA problem.

A BA system can be viewed as a system consisted of
sensors, extractors, classifiers and a supervisor. Sensors such
as cameras are responsible to capture a person’s biometric
traits. Extractors are responsible to compress and detect salient
features that are useful for discriminating a person from the
others. Classifiers are responsible for matching the extracted
features from previously stored features that are known to
belong to the person. Finally, in the context of multiple
modalities, features, classifiers or samples, a supervisor is
needed to merge all the results.

This serial concatenation process of sensors, extractors,
classifiers and a supervisor shows that error may accumulate
along the chain because each module depends on its previous
module. An important finding in Sec. II-A [6] is that it is
beneficial to increase the number of processes. For instance,
one can use more samples or more biometric modalities.
In these two cases,N will be the number of samples and

1Optimal in the Bayes sense, when (1) the cost and (2) probability of both
types of errors are equal.
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Fig. 2. Scores from experts of different features
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Fig. 3. Scores from experts of different biometric modalities

modalities, respectively. This is because by increasingN , one
can decrease the variance further, regardless of how correlated
the scores obtained from theseN experts are. Note that in the
work of Kittler et al [4], they showed that by increasingN
samples up to a limit, there is no more gain in accuracy. When
this happens, they said that the system is “saturated”. In our
context, we expandN through different methods, as follow:

• Multiple Biometric Modalities . Each modality has its
own feature set and classifiers. In other words, they
operate independently of each other [7]–[9].

• Multiple Samples. Samples could be real [4] or virtually
generated [10].

• Multiple Extractors . Each feature is classified by a
classifier independently of other features [11], [12].

• Multiple Classifiers. All classifiers receive the same
input features. Heterogeneous types of classifiers can
be used. Unstable homegenous classifiers such as MLP
trained by bagging or with different hidden units can
also be used. In general, many ensemble methods such
as bagging, boosting, via Error-Correcting Output-Coding
fall in this category [13].

For each method mentioned above, the problem now is to
combine theseN scores. This is treated in the next subsection.

E. Fusions in Variance Reduction Techniques
In Sec. II-A, it has been illustrated that correlation of scores

in the input space plays a vital role in determining the success
of the resultant combined system. Furthermore, by simple
averaging ofN scores, it has been shown that the variance

of the resultant combined score can be reduced by a factor
between 1 andN with respect to the average of variance.

Instead of using simple averaging, one could have used
weighted average, or even non-linear techniques such as Multi-
Layer Perceptrons (MLPs) and Support Vector Machines
(SVMs) [5]. In the latter two cases however, one needs to
select carefully the various hyper-parameters of these models
(such as the number of hidden units of the MLPs or the kernel
parameter of the SVMs). According to the Statistical Learning
Theory [14], the expected performance of a model such as an
MLP or an SVM on new data depends on thecapacityof the
set of functions the model can approximate. If the capacity
is too small, the desired function might not be in the set
of functions, while if it too high, several apparently good
functions could be approximated, with the risk of selecting
a bad one. This phenomenon is often calledover-training.
Although this capacity cannot unfortunately be explicitely
estimated for complex set of functions such as MLPs and
SVMs, its ordering can be used to select efficiently the
corresponding hyper-parameters using some sort of validation
technique. One such method is the K-fold cross-validation.

Algorithm 1 shows how K-fold cross-validation can be used
to estimate the correct value of the hyper-parameters of our
fusion model, as well as the decision threshold used in the
case of authentication. The basic framework of the algorithm
is as follows: first performK-fold cross-validation on the
training set by varying the capacity parameter, and for each
capacity parameter, select the corresponding decision threshold
that minimizes HTER; then choose the best hyper-parameter
according to this criterion and perform a normal training with
the best hyper-parameter on the whole training set; finally test
the resultant classifier on the test set [8] with HTER evaluated
on the previously found decision threshold.

There are several points to note concerning Algorithm 1:
Z is a set of labelled examples of the form(X ,Y), where
the first term is a set of patterns and the second term is a
set of corresponding labels. The “train” function receives a
hyper-parameterθ and a training set, and outputs an optimal
classifierF̂ by minimising the HTER on the training set. The
“test” function receives a classifier̂F and a set of examples,
and outputs a set of scores for each associated example.
The “thrdHTER” function returns adecision thresholdthat
minimizes HTER by minimising|FAR(∆) − FRR(∆)| with
respect to the threshold∆ (FAR(∆) and FRR(∆) are false
acceptance and false rejection rates, as a function of∆) while
LHTER returns the HTERvalue for a particular decision
threshold. What makes this cross-validation different from
classical cross-validation is that there is only one single
decision threshold and the corresponding HTER value for all
the held-out folds and for a given hyper-parameterθ. This is
because it is logical to union scores of all held-out folds into
one single set of scores to select the decision threshold (and
obtain the corresponding HTER).

F. Fusions For VR via Samples
All the VR techniques discussed earlier can be treated in

a general manner, except VR via samples. This is because



Algorithm 1 Risk Estimation(Θ,K,Ztrain,Ztest)
REM: Risk Estimation with K-fold Validation. See [8].
Θ : a set of values for a given hyper-parameter
Zi : a tuple(X i,Yi), for i ∈ {train, test} where
X : a set of patterns. Each pattern contains scores/hypothesis
from base experts
Y : a set of labels∈ {client, impostor}
Let ∪K

k=1Zk = Ztrain

for each hyper-parameterθ ∈ Θ do
for eachk = 1, . . . , K do

F̂θ = train(θ, ∪K
j=1,j 6=kZj)

Ŷk
θ = test(F̂θ, X k)

end for
∆θ = thrdHTER

(
{Ŷk

θ }K
k=1, {Yk}K

k=1

)

end for
θ∗ = arg minθ

(
LHTER

(
∆θ, {Ŷk

θ }K
k=1, {Yk}K

k=1

))

F̂θ∗ = train(θ∗, Ztrain)
Ŷtest

θ∗ = test(F̂θ∗ , X test)
returnLHTER(∆θ∗ , Ŷtest

θ∗ ,Ytest)

the ordering of scores induced by samples are not impor-
tant. Simply concatenating the scores and feeding them to a
classifier may not be an optimal solution. Another problem
that might arise is that when there are many scores, possibly
in the range of hundreds, (one can generate as many virtual
scores as one wishes), matching should be done in terms of
their distribution instead. We hence propose two solutions to
handle this: 1) estimate the likelihood of the set of virtual
scores when coming from either a client or an impostor
distribution; 2) estimate the distribution of the scores so that
matching will be performed between a competing client and an
impostor distribution. Both approaches assume that the scores
are generated independently from some unknown distributions.
Of course this independence assumption is not true, but it is
good enough for most practical problems.

The first approach is carried out using Gaussian Mixture
Models (GMMs) to model the scores. First estimate the
client and impostor distributions using GMMs by separately
maximizing the likelihood of the client and impostor scores
using the Expectation-Maximization algorithm [5]. During
an access request with one real biometric sample, a set of
synthetic samples and hence a set of scores are generated.
These scores will be fed to the client and an impostor GMM
score distribution. Letlog p(x|θC) be the log likelihood of
the set of scoresx given the client GMM modelθC and
log p(x|θI) be the same term but for the impostor model. The
decision is often taken using the so-called log-likelihood ratio:
s = log p(x|θC)− log p(x|θI)

As for the second approach, we propose to first model the
distribution of these synthetic scores using a Parzen window
non parametric density model [5, Chap. 2] and then compute
the relative entropy of each distribution, which is defined as
follows:

L(p, q) = −
∑

i

p(yi) log
q(yi)
p(yi)

, (7)

whereq andp are two distributions. Entropy can be regarded
as a distortion ofq(y) from p(y) This alone does not give
discriminative information. To do so, entropies of a client and
an impostor distribution should be used together. LetL(pC , q)
be the entropy ofq(y) with respect to a client distribution
and L(pI , q) be that of q(y) with respect to an impostor
distribution. Then the difference between these two entropies,
can be defined as:s = L(pI , q)− L(pC , q).

When s > 0, the distortion ofq(y) from an impostor
distribution is greater than that of a client distribution, which
reflects how likely a set of synthetic scores belong to a client.
In fact, for both approaches,s > 4 is used instead, where4 is
a threshold chosena priori according to the HTER criterion.

III. E XPERIMENTAL SETTINGS

A. XM2VTS Database Description
The XM2VTS database [15] contains synchronised video

and speech data from 295 subjects, recorded during four
sessions taken at one month intervals. On each session, two
recordings were made, each consisting of a speech shot and
a head shot. The speech shot consisted of frontal face and
speech recordings of each subject during the pronunciation of
a sentence.

The database is divided into three sets: a training set, an
evaluation set and a test set. The training set was used to
build client models, while the evaluation set (Eval) was used
to compute the decision thresholds (as well as other hyper-
parameters) used by classifiers. Finally, the test set (Test) was
used to estimate the performance.

The 295 subjects were divided into a set of 200 clients,
25 evaluation impostors and 70 test impostors. There exists
two configurations or two different partitioning of the training
and evaluation sets. They are called Lausanne Protocol I and
II, denoted asLP1 and LP2 in this paper. Thus, besides the
data for training the model, the following four data sets are
available for evaluating the performance: LP1 Eval, LP1 Test,
LP2 Eval and LP2 Test. Note that LP1 Eval and LP2 Eval are
used to calculate the optimal thresholds that will be used in
LP1 Test and LP2 Test, respectively. Results are reported only
for the test sets, in order to be as unbiased as possible (using
an a priori selected threshold). Table I is the summary of the
data. In both configurations, the test set remains the same.

TABLE I

THE LAUSANNE PROTOCOLS OFXM2VTS DATABASE

Data sets Lausanne Protocols
LP1 LP2

Training client accesses 3 4
Evaluation client accesses 600 (3× 200) 400 (2× 200)
Evaluation impostor accesses 40,000 (25× 8× 200)
Test client accesses 400 (2× 200)
Test impostor accesses 112,000 (70× 8× 200)

However, there are three training data per client for LP1 and
four training data per client for LP2. More details can be found
in [16].



B. Features Used for the XM2VTS Database

For the face data, a bounding box is placed on a face
according to eyes coordinates located manually. This assumes
a perfect face detection2. The face is cropped and the extracted
sub-image is down-sized to a30× 40 image. After enhance-
ment and smoothing, the face image has a feature vector of
dimension1200.

In addition to these normalised features, RGB (Red-Green-
Blue) histogram features are used. For each colour channel, a
histogram is built using32 discrete bins. Hence, the histograms
of three channels, when concatenated, form a feature vector
of 96 elements. More details about this method, including
experiments, can be obtained from [17].

Another feature set derived from Discrete Cosine Transform
(DCT) coefficients [18], [19] has also given good performance.
The idea is to divide images into overlapping blocks. For
each block, a subset of DCT coefficients are computed. The
horizontal, vertical and diagonal (with respect to a reference
block of) DCT coefficients can also be derived. It has been
shown that these features are comparable (in terms of perfor-
mance in the context of BA) to features derived from Principal
Component Analysis [18].

For the speech data, the feature sets used in the experiments
are Linear Filter-bank Cepstral Coefficients (LFCC) [20],
Phase Auto-correlation derived Mel-scale Frequency Cepstrum
Coefficients (PAC) [21] and Mean-Subtracted Spectral Sub-
band Centroids (SSC) [22]. The speech/silence segmentation
is done using two competing Gaussians trained in an unsu-
pervised way by maximising the likelihood of the data given
a mixture of the 2 Gaussians. One Gaussian will end up
modelling the speech and the other will end up modelling the
non-speech feature frames [23]. In general, the segmentation
given by this technique is satisfactory.

IV. RESULTS

In order to analyse the effects due to VR techniques, we
first present the baseline experimental results. This is followed
by results obtained by various VR techniques. Note that all
results reported here are in terms ofpercentage of HTER, the
thresholds are all selecteda priori (i.e., tuned on the training
set, hence the threshold iscompletely independentof the test
set and is thus unbias), and for the combination strategy,only
two experts are usedeach time.

A. Baseline Performance on The XM2VTS Database
The face baseline experts are based on the following fea-

tures:

1) FH: It is a normalisedface image concatenated with its
RGB Histogram (thus the abbreviationFH)

2) DCTs: It is a set of face features derived from a subset
of DCT-derived coefficients. The DCT algorithm used
overlapping windows (block of sub-image) having the
size of 40 × 32 pixels. (s indicates the use of this

2Hence, even if this is often done in the literature, the final results using face
scores could be optimistically biased due to this manual detection step. Note
on the other hand that due to the clean and controlled quality of XM2VTS,
automatic detectors often yield detection rates around 99%.

small image comparing to the bigger size image with
the abbreviationb).

3) DCTb: Similar to DCTs except that it uses overlapping
windows having the size of80× 64.

The speech baseline experts are based on the following
features:

1) LFCC : The Linear Filter-bank Cepstral Coefficient
(LFCC) speech features were computed with 24 linearly-
spaced filters on each frame of Fourier coefficients
sampled with a window length of 20 milliseconds and
each window moved at a rate of 10 milliseconds. 16
DCT coefficients are computed to decorrelate the 24
coefficients (log of power spectrum) obtained from
the linear filter-bank. The first temporal derivatives are
added to the feature set.

2) PAC: The PAC-MFCC features are derived with a win-
dow length of 20 miliseconds and each window moves at
a rate of 10 miliseconds. 20 DCT coefficients are com-
puted to decorrelate the 30 coefficients obtained from
the Mel-scale filter-bank. The first temporal derivatives
are added to the feature set.

3) SSC: The mean-subtracted SSCs are obtained from 16
coefficients. Theγ parameter, which is a parameter
that raises the power spectrum and controls how much
influence the centroid, is set to 0.7. Also The first
temporal derivatives are added to the feature set.

Two different types of classifiers were used for these ex-
periments: a Multi-Layer Perceptron (MLP) [5] and a Bayes
Classifier using Gaussian Mixture Models (GMMs) to estimate
the class distributions [5]. While in theory both classifiers
could be trained using any of the previously defined feature
sets, in practice only some specific combinations appear to
yield reasonable performance.

Whatever the classifier is, the hyper-parameters (e.g. the
number of hidden units for MLPs or the number of Gaussian
components for GMMs) are tuned on the evaluation set LP1
Eval. The same set of hyper-parameters are used in both LP1
and LP2 configurations of the XM2VTS database.

For each client-specific MLP, the samples associated to the
client are treated as positive patterns while all other samples
not associated to the client are treated as negative patterns. All
MLPs reported here were trained using the stochastic version
of the error-backpropagation training algorithm [5].

For the GMMs, two competing models are often needed: a
world and a client-dependent model. Initially, a world model
is first trained from an external database (or a sufficiently
large data set) using the standard Expectation-Maximisation
algorithm [5]. The world model is then adapted for each
client to the corresponding client data of the training set
of the XM2VTS database using the Maximum-A-Posteriori
adaptation [24] algorithm.

The baseline experiments based on DCT coefficients were
reported in [19] while those based on normalised face images
and RGB histograms (FH features) were reported in [17]. De-
tails of the experiments, coded in the pair(feature, classifier),
for the face experts, are as follows:



1) (FH,MLP) Features are normalisedFace concatenated
with Histogram features. The client-dependent classifier
used is an MLP with 20 hidden units. The MLP is
trained with geometrically transformed images [17].

2) (DCTs,GMM) The face features are DCT-derived co-
efficients with each overlapping window (block of sub-
image) having the size of40 × 32 pixels There are 64
Gaussian components in the GMM. The world model is
trained usingall the clientsin the training set [19].

3) (DCTb,GMM) Similar to (DCTs,GMM), except that
the features used are DCT-derived coefficients with the
overlapping window-size of80×64. The corresponding
GMM has 512 Gaussian components [19].

4) (DCTs,MLP) Features are the same as those in
(DCTs,GMM) except that an MLP is used in place of a
GMM. The MLP has 32 hidden units [19].

5) (DCTb,MLP) The features are the same as those in
(DCTb,GMM) except that an MLP with 128 hidden
units is used [19].

and for the speech experts:
1) (LFCC,GMM) This is the Linear Filter-bank Cepstral

Coefficients (LFCC) obtained from the speech data of
the XM2VTS database. The GMM has 200 Gaussian
components, with the minimum relative variance of each
Gaussian fixed to 0.5, and the MAP adaptation weight
equals 0.1. This is the best known model currently
available.

2) (PAC,GMM) The same GMM configuration as in LFCC
is used. Note that in general, 200-300 Gaussian compo-
nents would give about 1% of difference of HTER.

3) (SSC,GMM) The same GMM configuration as in LFCC
is used.

The baseline performances are shown in Table II.

TABLE II

BASELINE PERFORMANCE INHTER(%) OF DIFFERENT MODALITIES

EVALUATED ON XM2VTS BASED ON a priori SELECTED THRESHOLDS

Data sets (Features, FAR FRR HTER
classifiers)

Face LP1 Test (FH,MLP) 1.751 2.000 1.875
Face LP1 Test (DCTs,GMM) 4.454 4.000 4.227
Face LP1 Test (DCTb,GMM) 1.840 1.500 1.670
Face LP1 Test (DCTs,MLP) 3.219 3.500 3.359
Face LP1 Test (DCTb,MLP) 4.443 8.000 6.221

Speech LP1 Test (LFCC,GMM) 1.029 1.250 1.139
Speech LP1 Test (PAC,GMM) 4.608 8.000 6.304
Speech LP1 Test (SSC,GMM) 2.374 2.500 2.437

Face LP2 Test (FH,MLP) 1.469 2.250 1.860
Face LP2 Test (DCTb,GMM) 1.039 0.250 0.644

SpeechLP2 Test (LFCC,GMM) 1.349 1.250 1.300
Speech LP2 Test (PAC,GMM) 5.283 8.000 6.642
Speech LP2 Test (SSC,GMM) 2.276 1.750 2.013

As can be seen, among the face experiments, (DCTb,GMM)
performs the best across all configurations while (DCTb,MLP)
performs the worst. In the speech experiments, LFCC features
are the best features, followed by SSC and PAC, in decreasing
order of accuracy. Regardless of strong or weak classifiers, as
long as their correlation is weak, they can be used in the VR
techniques.

B. VR via Different Modalities, Extractors, Classifiers
Table III shows the results combining scores of two modal-

ities, two extractors and two classifiers (working on the same
feature space). The second to last column shows the mean
HTER of each of the two underlying experts while the last
column shows the minimum HTER of the two experts. The
three sub-columns under the heading “joint HTER” are the
HTERs of the combined experts via the mean operator, MLP
and SVM. Numbers in bold are the best HTER among the
three fusion methods. A quick examination of this table reveals
that all combined experts via modalities are better than the best
underlying expert (compare min HTER with the scores in the
joint HTER). However, the combined experts via extractors
and classifiers, as shown in Table IV, are not always better
than their participating experts.

TABLE III

PERFORMANCE IN (%) OF HTER OF VR VIA MODALITIES ON XM2VTS

BASED ON a priori SELECTED THRESHOLDS

(a) Face experts and (LFCC,GMM) expert

Data sets Face, Joint HTER mean min
Experts mean MLP SVM HTER HTER

LP1 Test (FH,MLP) 0.399 0.366 0.381 1.507 1.139
LP1 Test (DCTs,GMM) 0.537 0.576 0.613 2.683 1.139
LP1 Test (DCTb,GMM) 0.520 0.483 0.475 1.405 1.139
LP1 Test (DCTs,MLP) 0.591 0.611 0.587 2.249 1.139
LP1 Test (DCTb,MLP) 0.497 0.489 0.485 3.680 1.139
LP2 Test (FH,MLP) 0.151 0.150 0.389 1.580 1.300
LP2 Test (DCTb,GMM) 0.147 0.130 0.252 0.972 0.644

(b) Face experts and (PAC,GMM) expert

Data sets Face, Joint HTER mean min
Experts mean MLP SVM HTER HTER

LP1 Test (FH,MLP) 1.114 0.856 0.970 4.090 1.875
LP1 Test (DCTs,GMM) 1.407 1.425 1.402 5.266 4.227
LP1 Test (DCTb,GMM) 0.899 0.900 0.923 3.987 1.670
LP1 Test (DCTs,MLP) 1.248 1.056 1.009 4.832 3.359
LP1 Test (DCTb,MLP) 3.978 2.455 2.664 6.263 6.221
LP2 Test (FH,MLP) 1.282 0.765 0.855 4.251 1.860
LP2 Test (DCTb,GMM) 0.243 0.222 0.431 3.643 0.644

(c) Face experts and (SSC,GMM) expert

Data sets Face, Joint HTER mean min
Experts mean MLP SVM HTER HTER

LP1 Test (FH,MLP) 0.972 0.786 0.742 2.156 1.875
LP1 Test (DCTs,GMM) 1.028 1.175 1.213 3.332 2.437
LP1 Test (DCTb,GMM) 0.756 0.704 0.742 2.053 1.670
LP1 Test (DCTs,MLP) 1.167 0.829 0.850 2.898 2.437
LP1 Test (DCTb,MLP) 2.986 1.176 1.121 4.329 2.437
LP2 Test (FH,MLP) 0.901 0.302 0.404 1.937 1.860
LP2 Test (DCTb,GMM) 0.049 0.162 0.383 1.329 0.644

C. VR via Virtual Samples

The experiments on VR via samples are presented differ-
ently than the rest because they cannot be evaluated using the
mean HTER and min HTER. Instead, the combined experts
are compared to the original baseline experts (compare the
first row of Table V against the other rows). The two numbers
in bold are the best fusion technique for LP1 and LP2 config-
urations, respectively. The Entropy and GMM approaches are
discussed in Sec. II-F. The median technique refers to combin-
ing synthetic scores using the median operator which is known
to be robust to outlier scores. We note that the best fusion
technique on these datasets are the entropy approach and the



TABLE IV

PERFORMANCE IN (%) OF HTER OF VR VIA EXTRACTORS AND

CLASSIFIERS ONXM2VTS BASED ON a priori SELECTED THRESHOLDS

Data sets (Features, Joint HTER mean min
classifiers) mean MLP SVM HTER HTER

LP1 Test (FH,MLP)
(DCTs,GMM)

1.641 1.379 1.393 3.051 1.875

LP1 Test (FH,MLP)
(DCTb,GMM)

1.123 1.151 1.528 1.772 1.670

LP1 Test (FH,MLP)
(DCTs,MLP)

1.475 1.667 1.476 2.617 1.875

LP1 Test (FH,MLP)
(DCTb,MLP)

1.948 1.933 1.938 4.048 1.875

LP1 Test (LFCC,GMM)
(SSC,GMM)

1.296 1.444 1.142 1.788 1.139

LP1 Test (PAC,GMM)
(SSC,GMM)

3.594 2.954 2.663 4.370 2.437

LP2 Test (FH,MLP)
(DCTb,GMM)

0.896 0.670 0.488 1.252 0.644

LP2 Test (LFCC,GMM)
(SSC,GMM)

1.107 1.034 1.063 1.656 1.300

LP2 Test (PAC,GMM)
(SSC,GMM)

2.614 2.316 2.125 4.328 2.013

LP1 Test (DCTs,GMM)
(DCTs,MLP)

2.873 2.486 2.697 3.793 3.359

LP1 Test (DCTb,GMM)
(DCTb,MLP)

2.898 1.532 1.471 3.946 1.670

GMM approach for LP1 and LP2, respectively. For LP1, the
entropy approach issignificantly betterwith 90% confidence
level than the mean operator according to the McNemar’s
Test3 [25] (i.e., with a difference of 0.006 HTER% between the
two approaches). For LP2, the GMM approach issignificantly
betterthan the mean operator with 99% confidence level. This
shows that exploiting the distribution of scoresis better than
using the simple mean operator.

TABLE V

PERFORMANCE IN (%) OF HTER OF DIFFERENT COMBINATION METHODS

OF SYNTHETIC SCORES.
Method HTER

LP1 LP2
Original 1.875 1.737
Mean 1.612 1.518

Median 1.667 1.547
GMM 1.709 1.493

Entropy 1.606 1.559

D. Evaluation of Experiments

Let us define two measures of gain so as to draw a summary
of the experiments carried out above, as below:

βmean =
meani(HTERi)

HTERc

βmin =
mini(HTERi)

HTERc
,

whereβmean andβmin measure how many times the HTER
of the combined expertc is smaller than the mean and the
min HTER of the underlying expertsi = 1, . . . , N . βmean

is designed to verify Eq. 6, which is somewhat akin toα.
According to the theoretical analysis presented in Sec. II-A,

3This is done by calculating((n01−n10)2− 1)/(n01 +n10) > p where
p is the inverse function ofX 2 distribution (with 1 degree of freedom) at a
desired confidence interval (i.e., 90%), andn01 and n10 are the number of
different mistakes done by the two systems on thesameaccesses

α ≥ 1 should be satisfied. Theβmin, on the other hand, is
a more realistic criterion, i.e., one wishes to obtain better
performance than the underlying experts, but there is no
analytical proof thatβmin ≥ 1.

The βmean for each experiment are shown in Table VI(a)
for VR via modalities, extractors and classifiers, (b) for VR
via synthetic samples and (c) for the gain ratioβmin. Note
that VR via synthetic samples cannot be evaluated with the
βmin criterion. It can only be compared to its original method
(i.e., with real samples). This gain ratio can be defined as
βreal = HTERreal/HTERc, wherereal is the expert that
takes real samples andc is the expert that combines scores
obtained from synthetic samples.

Note that theβmean for VR via modalites are sub-divided
into 3 parts according to the 3 baseline speech experts
(LFCC,GMM), (SSC,GMM) and (PAC,GMM) in asignifi-
cantly decreasing order of accuracy. In such situations, the
βmean for these 3 baselines still have comparable range of
values, which are bigger than other VR techniques. One
possible conclusion is that regardless of the degree of accuracy
of participating experts, as long as they are weakly correlated,
high βmean can be achieved. Although the mean operator
seems to perform the best in the overall VR via modalities
based onβmean, it should be noted that out of the 27 experi-
ments in Table III, 4 experiments are best combined with the
mean operator, while there are 10 and 7 best results for MLPs
and SVMs, respectively. Moreover, the standard deviation of
the mean operator is much larger than that of MLPs and
SVMs. In these experiments, MLP turns out to be a good
candidate for fusion in most situations for VR via modalities.
It should be emphasized that the success application of MLPs
or SVMs in this fusion problem depends largely on the correct
capacity estimate of cross-validation.

Note that Table VI(a) shows thatβmean ≥ 1 for all fusion
techniques but in (c),βmin ≥ 1 is only true for MLPs
and SVMs, but not for the mean operator, which we cannot
guarantee. According toβmean on the mean operator, VR
via modalities achieves the highest gain, followed by VR via
extractors, VR via classifiers and VR via synthetic samples.
A similar trend is observed in (c) according toβmin. Such
ordering is not a coincidence. It reveals that the correlation
is greater and greater in the list just mentioned. In other
words, βmean is inversely proportional to the correlation of
the underlying experts. However, with MLP and SVM as non-
linear fusion techniques, this ordering is slightly perturbed
because both theβmean andβmin show that VR via classifiers
arebetter than VR via extractors. Clearly, in highly correlated
problem such as these, non-linear fusion techniques are better
than the simple mean operator.

V. CONCLUSIONS
Variance reduction (VR) is an important technique to in-

crease accuracy in regression and classification problems. In
this study, several approaches are explored to improve Biomet-
ric Authentication systems, namely VR via modalities, VR via
extractors, VR via classifiers and VR via synthetic samples.
The experiments carried out on the XM2VTS database show



TABLE VI

COMPARISON OF VARIOUSVR TECHNIQUES BASED ON ALL EXPERIMENTS

CARRIED OUT USINGβmean , βmin AND βreal

(a) βmean of all experiments

VR Table No. Joint HTER
techniques of exp. mean MLP SVM
Modalities III(a) 21 5.559 5.390 4.164

(all) ±5.879 ±3.287 ±1.474
III(a) 7 5.680 5.843 4.375

(LFCC) ±2.683 ±2.744 ±1.482
III(a) 7 5.086 5.999 4.694
(PAC) ±4.459 ±4.686 ±1.869
III(a) 7 5.910 4.326 3.422
(SSC) ±9.365 ±2.128 ±0.733

Extractors IV 9 1.604 1.719 1.842
±0.269 ±0.313 ±0.420

Classifiers IV 2 1.341 2.051 2.044
±0.029 ±0.742 ±0.902

Synthetic samples V 2 1.154 MLP and SVM
±0.0002 not used; see (b)

(b) βreal of VR via synthetic samples

Methods Gain ratio
Mean 1.154± 0.000178

Median 1.124± 0.000002
GMM 1.130± 0.002198

Global Entropy 1.141± 0.001422
Local Entropy 0.854± 0.000028

(c) βmin of all VR techniques except synthetic samples

VR Table No. Joint HTER
techniques of exp. mean MLP SVM
Modalities III(a) 21 3.043 3.109 2.459
Extractors III(b) 9 1.009 1.067 1.120
Classifiers III(c) 2 0.873 1.221 1.190

that the combined experts due to VR techniquesalways
perform better than the average of their participating experts,
which can be explained by VR using the mean operator. Fur-
thermore, all combined experts via modalities outperform the
best participating expert based on the HTER. By means of non-
linear variance reduction techniques, i.e., the use of MLPs and
SVMs for combing scores obtained from participating experts,
empirical study shows that, in average, these techniques could
produce better results than their participating experts, in the
context of VR via extractors and classifiers. In the context
of VR via samples, exploiting the distribution of synthetic
scores using GMM or Parzen-windows is better than the mean
operator. In short, this study shows that non-linear fusion
techniques using MLPs and SVMs, and incorporating other
a priori information (i.e., distribution of synthetic score in the
case of synthetic samples) are vital to achieve high gain of
fusion. In highly correlated situations (i.e, VR via extractors
and classifiers), non-linear fusion techniques are very useful.
In weakly correalted situations (i.e., VR via modalities),
the mean operator could be feasible but non-linear fusion
techniques are still useful if the capacity search using cross-
validation is reliable. As new and more powerful extraction
and classification algorithms become available, they can all be
integrated into the VR framework. Therefore, VR techniques
are potentially very useful for biometric authentication.
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