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ABSTRACT Hence, the central issues examined here are: (i) how correlation ir

Multi-band, multi-stream and multi-modal approaches have proven to bé€ classifier scores affects the combination mechanism, and (i) how
very successful both in experiments and in real-life applications, amonis correlation affects the classification accuracy in terms of Equal Er-
which speech recognition and biometric authentication are of particuldPr Rate (EER; although there exists other variant of criterion such as
interest here. However, there is a lack of a theoretical study to justiffi€cision cost function, EER is a well-accepted criterion evaluation and
why and how they work, when one combines the streams at the featul® Very often used in the literature) . It should be underlined that there
or classifier score levels. In this paper, we attempt to cast a light ontBXISts many appllcatlon_s of f_uSlon in BA but the_ theoretical aspect of
the latter subject. While there exists literature discussing this aspedt!Sion, particularly dealing with correlation and in terms of Equal Er-

a study on the relationship between correlation, variance reduction a#@f Rate, has not been treated elsewhere in the literature. In this stud
Equal Error Rate (often used in biometric authentication) has not beg#® mean operator is used as a case study for studying these issues !
treated theoretically as done here, using the mean operator. Our finding@USe it can be interpreted theoretically. In practice, non-linear trainabl
suggest that combining several experts using the mean operator, Multinctions such as Multl-L‘ayer Pec.eptron.s and Support Vector Machine:
Layer-Perceptrons and Support Vector Machialeaysperform better ~ €an a_lso_ be used but their analysis requires more ef_forts than done her
than theaverage performancef the underlying experts. Furthermore, Our findings suggest that the combined experts using the mean oper:
in practice,mostcombined experts using the methods mentioned abovEr @lwaysperform better than the average of their participating experts.
perform better thathe best underlying expert Furthermore, in practicenostcombined experts, particulary those using

1. INTRODUCTION non-linear trainable classifiers, perform better tlaay of their partici-

. . . . . ating experts.
Multi-band is a technique often used in speech recognition or speakgr The rest of this paper is organised as follows: Section 2 studies vari:

authenticat.ion that splits frequency into §evera| subbapds SO t.hff"t ea nce reduction due to the mean operator and Section 3 shows its relatic
subband will be processed separately by its corresponding classifier. T ith classification error reduction. Section 4 discusses how non-lineal

classifier scores are then merged by some combination mechanisms | yimbination mechanisms can be useful. Conclusions are in Section 5
Multi-stream is a similar technique except that each stream uses diffef- ’ ’
ent feature sets. There are very few literature reported the use of multi- ) .2- VARIANCE REDUCTION ,
stream for speaker authentication although both applications use concdgt x be abiometric measuremetitat represents a persyi,(x) be the
tually similar techniques. One such example can be found in [2]. Multi7-th measured relationship between the biometric faihd the person
modal is yet another technique that is applied in Biometric Authentica®f @ single accessand there aréV such measurements per access, i.e.,
tion (BA), where each modality is a biometric trait associated to a persord, = 1, - - -, V. For example; could denote thg-th subband of a spec-
such as face and speech. These approaches have proven to be very §i@gram representing the speech of a person;jittestream or type of
cessful both in experiments and in real-life applications, e.g, [1, 3] fofeature (e.g. Mel-scale Frequency Cepstrum Coefficients);-thebio-
speech recognition and [4—6] for face and speaker authentication. ~ Metric modality (e.g., speech, face or fingerprint), jhéh sample, the
Unfortunately, there is a lack of a theoretical study to justify whyj-th classifier (but for theameaccess). In this contexy/ (x) is referred
and how they work, when one combines the streams at the feature & @s an instance of theth responseof the biometric measuremest
classifier score levels. The former is called feature combination while thgiven by an expert system (often called a score in the literature). Typ
latter is called posterior combination in [7]. In a separate study in BA [8]ically, this output (e.g. score) is compared with a predefined thresholc
these two approaches are called Variance Reduction (VR) via extractoi@ Make the accept/reject decision. Ixi) to be a deterministic func-
and VR via classifiers. The term variance reduction is originated fronfion or an ideal function that consistently gived whenx corresponds
[9, Chap. 9], from the observation that when two classifier scores ar® the client and-1 when it corresponds to the impostor. Then we can
merged by a simple mean operator, tesultant varianceof the final write th_e mapping function of each response as the summation betwee
score will be reduced with respect to theerage variancef the two  the desired function and an errof (x):
original scores. Y’ (x) = h(x) +w’(x). 1)
To the authors opinion, theoretical justifications of these approachegote that the error term? (x) follows an unknown distributiof?’? (x)
have not been thoroughly investigated. Pankanti et al [10] shaded somgth zero mean. Since’ (x) is dependent os, it is obvious that’ (x),
lights on this subject using AND and OR operator. Unfortunately, theifyhich follows the distributiory’? (x), is also dependent aa Dropping

proof requires the assumption that the scores due to the underlying ex-for clarity (since it ispresentin every term discussed), one can write
perts are independent (not correlated), which is often not true when thfie expectation 0¥/, E[Y7], as:

underlying experts receive tteamebiometric data. Sanchez et al [4] i i

showed both theoretically and empirically that fusing multiple instances E[Y’] = B[h] + E[W’] = h, @)
of biometric traits can indeed reduce the system error by as much as 40%ssuming thatY’” and Y* can be correlated, the covariance between
The theoretically analysis, unfortunately, again did not deal with the casgyem can be written as follows:
when the expert opinions are correlated. Cov(Y?,Y®) = ETI(VYj — E[Y7))(Y* - E[ykD]
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separately, and (ii) alV responses are used together. For the first caseyhich is true wherd?/™ andW™ are not correlated. This is the lowest
this variance is called theverage of variancever all N, and is denoted  theoretical bound thatZ,, can achieve. Basically, this shows that by

aso?y. It can be calculated as follows: averagingN scores, theariance of averagérZ,,) can be reduced by
) N a factor of N with respect to theverage of variancé¢o?,), when two
oav = Z Cov(Y?,Y7) = Z E[W?W’],  (4)  instances of’™ andY™ are not correlated.
J 1 Jj=1

2.2. Dependence Assumptionp # 0
where Eqn. (3) is used. To calculate the variance of the second casB)e upper bound can be derived from the second assumptiofithat
one needs to determine how the responses are combined. One easy wagWV,, are correlated, i.ep # 0. This worst-case bound is in fact equal
to combine them is to use the mean operator (more complicated, linet® o4y, i.e., there is no gain. To be more explicit, we wish to test the
(e.g. [9, Sec. 9.6]) and non-linear functions can also be used but the ubgpothesis thatZ,, < o4y . By using Egns. (8) and (9), this can be
of mean operator is particularly useful for this discussion). The resultarghown as follows: )

Y . 2
averaged response,denotedfass deflned as follow: ocom < Oav
N

N
Y=— ZYJ (5) e ZJJ + 2 Z POmTn < %203 (11)
iz

m:l,m<n

i — 1Ly 31—
Not'e that ac_cordlng to this deflnltloE[ I=x Za’ E[Y_ ] = h.The By multiplying both sides byV? and rearranging them, we obtain:
variance ofY (over many accesses), denotedods,,,, is called the N N
variance of averageand can be calculated as follows: 0<(N-1) Z ) Z PO O
oeom = CovY,Y)=E (Y —E[Y])(Y — E[Y)) i=1 m=1,m<n
= E (Y-h)(Y~-h) Given that(N — 1) > o7 = 32| (07 + o7) (the proof can be

found in the appendix), this inequality can further be simplified to:
N N

0 < Z (Ufn + ai) -2 Z POTmOn,
1 N 1 N m=1,m<n m=1l,m<n
= B NZ(Y’”—h)) NZ(Y”—h))] N
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where Egns. (2) and (5) are used. The indexandn are introduced to

take into account the possible covariance of error among diffé#€fit  |n other words, hypothesis in Eqn. (11) is always true, regardless of the
andW™. Before expanding Eqn. (6) further, let us define the correlationalue p. As a consequence, we have just shown #ab,, < o4y .

among differentV™ andW™ as follows: Taking this conclusion and that of Egn. (10), one can conclude that:
_ E[W w ] 7 1 2 2 2
= (7) Noav <ocom < oav. (13)
wheres,, ando,, are the standard deviationsidf™ and¥ ™. Note that ) . . ) )
correlation has the property thatl < p < +1. Going back to Eqn. (6), Referring back to Eqn. (8), ib < 0, i.e., W; is negatively correlated,

we have: then the right hand term in this equation would be negative and conse
quentlycZon < %afw! Obviously, negative correlation would help
) 1 N o N S improve the results. However, and unfortunately, in reality, negative cor-
ocom = E N2 Z WW7 +2 Z wrw relation will not happen if the underlying experts are trained separately,
J=1 m=1,m<n i.e., for a given instant, y; for< = 1,..., N, will tend to agree with
1 X o 9 N each other (hence positively correlated) most often than to disagree wit
= N Z EWW’] + Nz Z EW™W"] each other (hence negatively correlated). One possible exception will b
j=1 m=1,m<n that the experts are specifically trained to be decorrelated or even neg:
N tively correlatedn a collaborative way By fusing scores obtained from
= = Zg‘] +33 Z POmOn, (8)  experts that are trained independently (which is often so in multimodal
N m:l,m,<n fusion), one can almost be certain that p < 1.

2.3. Introduction of « as a gain factor

J 31 —
since B[W/ W] = U by definition. Now, we need to consider two To measurexplicitly the factor of reduction, we introdueg which can

cases: whefV,, andW are independent from each other (i@~ 0)

< . 2
and when they are not (i.e2,%# 0). be defined as follows: a= %. (14)
2.1. Independence Assumptionp = 0 By dividing Eqn. (13) byoZo angrearranglng it, we can deduce that
In this case,E[W™W?"] = 0, hencep = 0. As a consequence, the 1<a<N. (15)

right term in Egn. (8) will be zero. In the same notation, Egn. (4) can b

rewritten as: ©One direct implication of variance reduction is tltlé more hypothe-

N ses usedincreasingNV), the better the combined systemeven if the
1 Z C,]?’ 9) hypotheses of underlying experts are correlated. This will come at a cos
- of more computation proportional . Experiments in [1] (in speech

recognition) and [4] (in face verification) provide strong evidences to

Comparing Eqgns. (8) and (9), it can ble easily seen that: support this claim. Moreover, the gain (measured uglnghich is non-
cZoy = NUZV’ (10) linearly but monotonically proportional te, as defined in Section 3) is

often very small (near 1) comparedAd[8].
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Fig. 1. Averaging score distributions in a two-class problem a_nd_ the standard deviatio_n of scores belonging to the clienf'satd
similarly ;.; ando; for the impostor sef. Note that the use of an error
50 ‘ ‘ ‘ ‘ function for such analysis has been reported in [11], but with differences

in the definition of the error function. In another similar work (but limited
to the context of combining multiple samples) [4], the Equal Error Rate
(EER) curve was not calculated explicitly and validated via experiments
as done here. Furthermore, the issue on how the dependency amoil
samples affects the resultant variance was not studied theoretically &
done in Section 2.

The minimal error happens when FARE FRR@) = EER, i.e., the
Equal Error Rate. Making these two terms equal (Egns (16) and (17))
and using the property that érfz) = —erf(z), we can deduce that:

EER (%)

g — H1oc + pcor

18
5 o1 +oc ( )
0 i i i i By introducing Eqn. (18) into Eqgn. (17) (or equivalently into Eqn. (16)),
0 20 40 60 80 100 .
o+0 we obtain: 1 1 e — 1
. I C o . EER=- — —erf ——— . (29)
Fig. 2. Equal error rate versus the sum of standard deviations of client 2 2 (oc +01)V2
and impostor scores To check the validity of Egn. (19), we actually compared this theoretical
EER with the empirical EER, calculated by using the optimal threshold:
3. VARIANCE REDUCTION AND EER REDUCTION 0" = arg min,[FAR(0) — FRR(0)]
Until now, it is not clear how variance reduction can lead to better classiand approximated by the commonly used Half Total Error Rate:
fication, in terms of false rejection rate (FRR) and false acceptance rate HTER = (FAR(6") + FRR(07))/2

(FAR) in a biometric authentication system. Figure 1 illustrates the ef-

fect of averaging scores in a two-class problem, such as in BA wher&he difference between the theoretical EER and HTER is actually very
an identity claim could belong either to a client or an impostor. Let ussmall, as shown in Figure 3. This difference is due to the fact that the
assume that the genuine user scores in a situation where 3 samples @ient and impostor distributions are not truly Gaussian. On the other
available but are used separately, follow a normal distribution of meahand, it also reveals that the Gaussian assumption is acceptable in pra
1.0 and varianceo(, (x) of genuine users) 0.9, denoted&%1,0.9),  tice. Assuming thatc = 1 andu; = —1, we plot the graph EER by
and that the impostor scores (in the mentioned situation) follow a nowarying the termv; + o¢ in Figure 2. EER is therefore a monotonically
mal distribution ofA/(—1, 0.6) (both graphs are plotted with “+"). If for  increasing function as; + o¢ increases.

each access, the 3 scores are used, according to Eqn. (15), the varianceUsing the notation in Section 2, lef.o 5, ando& o, be the standard

of the resulting distribution will be reduced by a factor of 3 or less. Bothdeviations of the fused scores (using the mean operator) of both the im
resulting distributions are plotted with “0”. Note the area where bothpostor and client distributions, respectively. These definitions also apply
the distributions overlap before and after. The latter area is shaded the average of the standard deviatierls, ando$,. From Eqn. (13),
Figure 1. This area corresponds to the zone where minimum amount wfe can deduce that:

mistakes will be committed given that the threshold is optimRkcreas- 45 :
ing this area implies an improvement in the performance of the system. .
40- b
Let the scores’ probability density functiopdf) be P(y|x € xc¢)
for the client setC' and P(y|x € x;) similarly for the impostor sef. asf 8
Let us first assume that thepdfs are Gaussians. FRR and FAR can then
be defined as: 0 <27 i
FRR(O) = / P(ylx € x¢)dy o |
0 2
1 —(y — pc) 1 ]
= ex d 2
/_oo ocV2m P 20% Y
1 1 — 15r ¥ ]
= -+ —erf 0= pno , and (16) % *
2 2 oc 2 0 : : : : : o
0.1 0.2 0.3 0.7 0.8 0.9

) ) O(ﬁc - u,)ois(c_‘ + oﬁf’ ) ]
Fig. 3. The theoretical and empirical EER as a function of ratio

1optimal in the Bayes sense, when (1) the cost and (2) probability of botit

types of errors are equal. ur — pe)/(or + o¢), carried out on 72 independent experiments on

the NIST2001 database with HTER ranging from 10% to 45%



obom < ohy andeSon < oSy Secondly, variance reduction can be derived in many ways, other thal

] ) ) ) ) ) o streams, bands (both are considered features) and modalities: sample
Since EER is a monotonically increasing function as shown in Figure Zjirtyal samples and classifiers [8]. Thirdly, analytical analysis shows that
these inequalities imply that: the more hypotheses that are available the more robust the system will b
EER(céon, oéon) < EER(chy, o5y, This is confirmed by experiments as reported in [1]. Finally, the success

ful use of non-linear technigues in combining scores really depends ol
the correct estimate of the underlying hyperparameters using technique
In fact, without assuming the Gaussian distribution, as long as thguc(? a}f cross-valldatlor;, aT supf_port_ed b)f/ ewdelnces in tﬁg] AIthoughth:
EER function has a monotonically increasing behaviour with respect t tudy Ere concerns only classi |(;at|on o two-class problems, then n
e analysis taV-class problems is straightforward, e.g., by using one-

or + oc , the above conclusions remain valid. To require that EER b . : ; . ; S8
. . . . NP against-all encoding scheme. This theoretical study is certainly limited
a monotonically increasing function, the necessary condition is that thé

right tail of the impostoipdfis a decreasing function and the left tail of ?utsg??\?S?fegggfsaggtjnz%\ggﬁt;?eans to predict the best combinatio
the clientpdfis an increasing function. A Gaussian function exhibits ¥

when both theuc and i are normalisedsuch that they are constant
across different streams, bands and modalities.

such behaviour on its left and right tails. Unfortunately, in the case of 6. ]\,]APPENDIXN . 5
non-Gaussiapdfs, the analytical analysis such as the one done here is Proof of (N — 1) 332, 07 = > .0, (07 + 07)
more difficult. . .
To evaluate the improvement due to variance reduction, we can d -etN"'i be a ga”d%m Va”gbl.e tand: tLd o jjg Th(]avterm 2. 02) Th
fine a gain factop, similar toa: defined in Eqgn. (14), as follows: i=1,i<; (73 f”j) can be interpreted g8, Zj:_iﬂ(ai +oj). The
mean(EER;) problem now is to count how many: there are in the term, for any

mean — T e~ 20 _

B EERcoum (20) k=1,...,N. . .

where EER o1 is the EER of the combined system (with reduced vari-___1nere are two cases here. The first case is when k, the term
i : : SN SN (02+0?) becomesY Y , (02 +0?). There arg N —

ance) and EERis the EER of the-th system. In our previous work [8] i=1 2uj=i+1\9% J 2j=k+1\9k T 0j)-

in the context of biometric authenticatioall experimentsverified that k) terms ofo?.

Bmean > 1, which is theoretically achievableS, ... can only mea- In the second case, whgn= k, the termy_>" | SN . (o7 + 07)

sure the relative improvement with respect to the average EER of t ~1

Nfien becomesy ¥~ (07 + o). There arek — 1) terms ofo?.

underlying expert. In practice, one wishes to know whether the resultant e total number ob2 is just the sum of these two cases, which is

combined expert is better than the best underlying expert. This can t@\/— k)+ (k—1) = (N — 1), for anyk drawn from1, .. ., N. The sum

measured using: Boin = min; (EER;) 21) of (N—1) o7, overall possible: = 1,..., N then gives N — 1) ;|
_ ) Lo E ’ - 2

which is defined very similarly t meiﬁ%%cept that the minimum EER  7%° N o N 5 5

of the underlying experts is used,.;, > 1 implies that the resultant Therefore(N — 1) 3752, 07 = >imy (07 +05). U

expert is better than the best underlying expert. In fact, for Fath. 7. REFERENCES
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