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Abstract. Most conventional features used in speaker authentication
are based on estimation of spectral envelopes in one way or another,
e.g., Mel-scale Filterbank Cepstrum Coefficients (MFCCs), Linear-scale
Filterbank Cepstrum Coefficients (LFCCs) and Relative Spectral Per-
ceptual Linear Prediction (RASTA-PLP). In this study, Spectral Sub-
band Centroids (SSCs) are examined. These features are the centroid
frequency in each subband. They have properties similar to formant fre-
quencies but are limited to a given subband. Empirical experiments car-
ried out on the NIST2001 database using SSCs, MFCCs, LFCCs and
their combinations by concatenation suggest that SSCs are somewhat
more robust compared to conventional MFCC and LFCC features as
well as being partially complementary.

1 Introduction

Speech recognition is the task of determining the linguistic contents of a speech signal,
while speaker authentication is the task of verifying whether a person really is who he or
she claims to be. Even though both tasks are very different, the front-end processing of
speech signals is often common. Although there is some literature on designing new and
effective speech features for speaker authentication [8] (i.e., Line Spectrum Pairs, Time-
Frequency Principal Component and Discriminant Components of the Spectrum), Mel-
scale Frequency Cepstral Coefficients (MFCCs), which are commonly used in speech
recognition, remain the state-of-the-art features, as far as speaker authentication is
concerned. Empirical studies in [12] showed that Linear-scale Frequency Cepstral Co-
efficients (LFCCs) [11] achieve comparable performance to that of MFCCs [12, 14].
According to the same study, Perceptual Linear Prediction (PLP) cepstral coefficients,
which are widely used in speech recognition, did not perform significantly better than
MFCCs. Furthermore, in the same experiment setting, the performance of PLP with
RASTA-preprocessing (RASTA-PLP) [6] was slightly worse than PLP alone. Hence,
features that work better in speech recognition may not always work better in speaker
authentication.

The aim of this study is double-fold: to provide complementary features that de-
scribe information not captured by the conventional state-of-the-art MFCC features
for speaker authentication tasks; and to examine how these features perform alone, as
compared to MFCC features. In [2, Sec. 3.3], frequency and amplitude information are
extracted from “spectral lines” [5]. Spectral lines are extracted from the spectrogram of
a signal by using thinning and skeletonisation algorithms that are often used in image-
processing. Low frequency spectral lines in this case actually correspond to the funda-
mental frequency or pitch. The pair (frequency, amplitude) hence represents a point



in 2D space. With quantisation on frequency and amplitude, this frequency/amplitude
encoded data was classified using a feed-forward network and was shown to achieve a
lower generalisation error as compared to the encoding scheme which uses fixed fre-
quency intervals with their corresponding amplitude values. The study suggests that
frequency information, when encoded properly, can increase the robustness of a speech
recognition system.

Contrary to the first approach, in the context of speaker authentication, Sönmez
et al directly estimated the (long-term) pitch information using parametric models
called log-normal tied mixture models [16]. Follow-up work [15] used the (local varia-
tion of) pitch dynamics which contain speaker’s intonation (speaking style). In both
works, the resultant pitch system was combined with the cepstral feature-based sys-
tem by summation of (log-)likelihood scores over the same utterance. They all showed
improvement over the baseline system.

In the context of speech recognition, frequency information can be represented in the
form of Spectral Subband Centroids (SSCs) [9], which represent the centroid frequency
in each subband. In conventional MFCC features, the power spectrum in a given sub-
band is often smoothed out, so that only the (weighted) amplitude of the power spec-
trum is kept. Therefore, SSCs provide different information to conventional MFCCs. It
has been demonstrated [9] that SSCs, when used in conjunction with MFCCs, result in
better speech recognition accuracy than that of the baseline MFCCs; when used alone,
SSCs achieve performance that is comparable (but with slight degradation) to that of
MFCCs.

Would frequency information enhance the performance of a speaker authentication
system? According to [15, 16], the answer is yes. How should this information be incor-
porated into an existing system based on MFCC features? In this work, SSCs are used
as a preliminary study since they can be incorporated at the frame-level (and of course
at the classifier-score level) while this is not possible in [15, 16]. Furthermore, in these
works, spectral information other than pitch (e.g. higher frequency band) is not used
at all. Secondly, SSCs have not been applied to speaker authentication, constituting
an interesting research question.

The rest of this paper is organised as follows: Section 2 briefly presents SSCs.
Section 3 explains the experiment setting. This is followed by empirical results in
Section 4 and conclusions in Section 5.

2 Spectral Subband Centroids

Let the frequency band [0, Fs/2] be divided into M subbands, where Fs is the sampling
frequency. For the m-th subband, let its lower and higher edges be lm and hm, respec-
tively. Furthermore, let the filter shape be wm(f) and P γ(f) be the power spectrum
at location f raised to the power of γ. The m-th subband centroid, according to [9], is
defined as:

Cm =

R hm

lm
fwm(f)P γ(f)df

R hm

lm
wm(f)P γ(f)df

(1)

Note that the term wm(f)P γ(f) can be viewed as a bias which influences where the
centroid should be. A peak in this term leads to a higher weight in the corresponding
f . Typically, wm(f) takes on the shape of either a square window (ones over the m-th
subband and zeros everywhere else) or a triangular window. In the case of MFCCs,
wm is a triangular window. The same window is used here. The use of γ parameter in
this function is a design parameter and is not motivated by any psychological aspect of
hearing. The γ parameter has been used elsewhere in the literature [4] as part of feature
extraction (which is called a two-dimensional root spectrum) for speech recognition.
According to that study, γ is a design parameter which can be optimised on a given
data set and task at hand.



Fig. 1. SSC features across time

Figure 1 shows a conventional spectrogram overlaid with the SSC features with
five equally-spaced bands, calculated using square windows. The utterance contains
three digits: “zero”, “one” and “two”. It can be observed that, firstly, when there is no
speech, SSCs in a given frequency subband tend to be the center of the band. On the
other hand, with the presence of speech, SSCs show some regular trends: the trajectory
of SSCs in a given subband actually locates the peaks of the power spectrum in that
subband. This coincides with the idea of spectral lines [5] discussed earlier. However, in
this context, the representation is limited to one value per subband. Secondly, if there
is not enough centroids, then SSCs will not adequately represent a given speech signal.

Prior to testing SSCs using a real-life noisy database, we carried out several prelim-
inary studies on SSCs using Linear Discriminant Analysis (LDA) under the Analysis
of Variance (ANOVA) framework [10]. A subset of XM2VTS database and the female
development set of NIST2001 (same as the one described in Section 3) were used for
this test. The LDA analysis was used because it can separate useful sources of variance
(e.g. physical articulatory features) from harmful sources of variance (e.g. handset dif-
ferences, environmental and channel noise) [7]. We outline several conclusions of the
preliminary studies reported in [10]:

– Based on LDA, we showed that about 12 to 16 centroids cover 99% of variance that
is speaker discriminative. If less than 12 centroids are used, the speech utterance
will be under-represented.

– Additional experiments based on LDA suggest that class labels (speaker’s identi-
ties) not separable in SSC feature space are separable in MFCC (Mel-scale Fre-
quency Cepsstrum Coefficient) feature space. This suggests that SSCs are poten-
tially complementary to MFCCs.

– The Fisher-ratio test showed that the feature space induced by MFCCs is more
separable than that induced by SSCs, thus predicting that the performance due to
MFCCs under matched conditions is probably better than that due to SSCs.

– Preliminary empirical experiments on the female development subset of NIST2001
showed that about 16 to 18 centroids are optimal for speaker authentication.



– A theoretical study showed that mean-subtracted SSCs can somewhat reduce the
effects of additive noise. The mean subtraction is done as follows:

Cm − E{Cm} (2)

where E{Cm} is the expectation of Cm over the whole utterance in a single ac-
cess claim. The demonstration began with the assumption that a signal is com-
posed of additive noise and the original clean signal. Deriving SSCs and mean-
subtracted SSCs using this formulation, we showed that the additive component
is partially cancelled during the mean subtraction. Empirical studies on NIST2001
also strongly supported this observation.

– Lastly, we showed empirically that first temporal derivates (deltas) of SSCs can
also be used to further improve the performance.

The above studies were limited to studying the characteristics of SSCs compared to
MFCCs under clean conditions. In this paper, the aspect of noise-robustness is evalu-
ated.

3 Experiment Setup

In this study, a subset of NIST2001 was used to evaluate how well these features
perform on telephone data with and without additive environmental noise, on speaker
authentication tasks. It was obtained from the Switchboard-2 Phase 3 Corpus collected
by the Linguistic Data Consortium. In this paper, only the female subset (which is
known to be slightly more difficult than the male subset) was used for evaluation.
In the original database, data for two different handsets are present (i.e., carbon and
electret). However, only data from electret handsets were used (5 speakers who used the
carbon handsets were removed) so that any variation of performance, if any, will not be
attributed to this factor. This database was separated into three subsets: a training set
for the world model, a development set and an evaluation set. The female world model
was trained on 218 speakers for a total of 3 hours of speech. For both development
and evaluation (female) clients, there was about 2 minutes of telephone speech used to
train the models and each test access was less than 1 minute long. The development
population consisted of 45 females while there were 506 females in the evaluation set.
There are 2694 accesses for the development population and 32029 accesses for the
evaluation population, with a proportion of 10% of true claimant accesses. Four types
of noise (white, oproom (for operational room), factory and lynx), taken from the
NOISEX-92 database [17], were used to contaminate the NIST2001 dataset.

The classifier used in this paper is based on Gaussian Mixture Models (GMMs),
similar to the one used in [13]. It models the statistical distribution of training feature
vectors for each client. Briefly, a common impostor GMM model (also called a world
model) is first obtained from the said 218 speakers using the Expectation-Maximization
algorithm [3]. The world model is then adapted to each client’s speech features using
Maximum a Posteriori (MAP) estimation [13]. To make a decision, an average log-
likelihood ratio between the client-adapted model and the world model (over all feature
frames) is compared to a threshold chosen on development data.

The commonly used Half Total Error Rate (HTER) is used as evaluation criterion1.
It is defined as (FAR+FRR)/2, where FAR is False Acceptance Rate and FRR is False
Rejection Rate. Here, we assume that the costs of false acceptance and false rejection
are equal and that the prior (class) distribution of clients and impostors are equal as
well. The HTER is calculated based on a threshold which itself is estimated from a
development set. This threshold is estimated such that |FAR(θ)−FRR(θ)| is minimised
with respect to θ. It is then used to make decisions on an evaluation set. Hence, the

1
It should be noted the popular Equal Error Rate (EER) was not used here because this criterion
does not reflect real applications where a threshold must be fixed in advance. Moreover, the use
of DET or ROC curves to compare two systems has recently been shown to be erroneous and
misleading [1], despite the fact that they are widely accepted in the literature.
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Fig. 2. A priori HTERs (in %) of SSCs, MFCCs and MFCC+SSC feature sets on the
female evaluation subset of NIST2001 database, under mismatched conditions, using
thresholds estimated on clean development data.

HTER is unbiased with respect to the evaluation set since its associated threshold is
estimated a priori on the development set. We call the resultant measure an a priori
HTER and is used whenever an evaluation set is used. The smaller the HTER is, the
better the performance.

4 Empirical Results in Mismatched Conditions

Preliminary studies in [10] showed that the following configuration of SSCs was optimal
for the speaker authentication task: 16 centroids, sampled using triangular windows and
spaced linearly on the Mel-scale, with delta information and mean-subtraction. This
configuration was used on the female evaluation subset (contrary to the development
subset used in [10]). Furthermore, only bands in the 300-3400 Hz frequency range are
used. The log of delta energy is also used. To accomplish energy normalisation, the
absolute log energy is not used.

There are two goals: to investigate how resistant SSCs are to mismatched noisy
conditions; and to see if concatenation of SSCs with conventional features will improve
performance. Two conventional features are used here: LFCCs and MFCCs. The LFCCs
are extracted using 24 filterbanks with 16 cepstrum coefficients. MFCCs are extracted
using 24 filterbanks with 12 cepstrum coefficients. Several noise types are artificially
added to the database at the following Signal-to-Noise Ratios (SNRs): 18, 12, 6 and
0 decibels. Two sets of experiments are conducted: in the first set, MFCCs, SSCs and
their combined features are trained in clean conditions and tested in noisy conditions.
Hence the combined MFCC-SSC features have 12 + 16 = 28 dimensions. With delta
information, which also has 28 dimensions and log energy, the resultant features have 57
(28×2+1) dimensions. Using the same configuration, the second set of experiments used
LFCCs instead. The resultant LFCC-SSC combined features have 65 ((16+16)×2+1)
dimensions. GMMs with 128 Gaussians were used as classifiers for all experiments. The
number of Gaussians was found by cross-validation based on the LFCCs features.

The results are shown in Figures 2 and 3 for these two sets of experiments.
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Fig. 3. A priori HTERs (in %) of SSCs, LFCCs and LFCC+SSC feature sets on the
female evaluation subset of NIST2001 database, under mismatched conditions, using
thresholds estimated on clean development data.

For both sets of experiments, it can be observed that MFCCs (respectively LFCCs)
perform better than SSCs under clean conditions but are not as good as SSCs under
noisy conditions. When MFCCs (respectively LFCCs) are combined with SSCs, the
resultant feature sets perform better than any of the features when used alone, in
both clean and noisy conditions. Hence, SSCs are potentially useful as complementary
features for speaker authentication.

5 Conclusions

Spectral Subband Centroids (SSCs) are relatively new features that exploit the dom-
inant frequency in each subband. The use of SSCs in recent literature has shown
some successes in speech recognition. In this study, the potential use of SSCs in text-
independent speaker authentication task was studied. Preliminary findings in [10] based
on ANOVA and LDA showed that SSCs are potential complementary features to con-
ventional features such as MFCCs. In this paper, we valided these findings using the
female development subset of the NIST2001 SwitchBoard database. Based on the re-
sults, it is concluded that that SSCs perform somewhat better than MFCCs in noisy
conditions; and that combining SSCs with MFCCs (and respectively LFCCs) improves
the accuracy of the system in both clean and noisy conditions compared to using any
of the feature sets alone. Hence, dominant frequencies represented by SSCs contain
speaker discriminative information, somewhat different from what MFCCs (respec-
tively LFCCs) provide. One potential future direction to study the usefulness of the
medium to long-term time-trajectory of SSCs. This is motivated by [15], where it
is shown that speaker’s pitch dynamics (speaker’s intonation) are useful for speaker
authentication. The advantage of using the time-trajectory of SSCs as compared to
pitch dynamics is that not only that the (low frequency) pitch is included, the whole
frequency band is actually taken into account.
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