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ABSTRACT technigues and weight change in one way or another indeed change
This study investigates a newlient-dependent normalisatioto im- thefina! depision .function..We propose to implement glient-dep.end.ent
prove biometric authentication systems. There exists many client-dé2rmalisation using F-ratio. The advantage of F-ratio normalisation,
pendent score normalisation techniques applied to speaker authent®aF-Norm, is that it considers client and impostor score distributions
tion, such as Z-Norm, D-Norm and T-Norm. Such normalisation iSimultaneouslyln the terms used in [5, 2], Z-Norm is impostor-centric
intended to adjust the variation across different client models. We pr§-€; normalisation is carried out with respect to the impostor distri-
pose “F-ratio” normalisation, or F-Norm, applied to face and speaké}“t'ons calculgted “offlline” by using addmonal data), T-Norm is also
authentication systems. This normalisation requires onlyabdew Impostor-centric (but with respect to a given utterance calculated “on-
astwo client-dependent accesses are available (the more the bettdpg” Py using additional cohort impostor models). D-Norm is neither
Different from previous normalisation techniques, F-Norm consider§i€nt- nor impostor-centric. It is specific to the GMM architecture
the client and impostor distributiorsimultaneouslyWe show that F- and is based on Kullback-Leibler distance between two GMM models.
ratio is a natural choice because it is directly associated to Equal Erfr[1]: @ similar version of Z-Norm but using only the client distribu-
Rate. It has the effect of centering the client and impostor distribJion was reported. However, this technique requires more client ac-
tions such that a global threshold can be easily found. Another diffef€SSes. The authors’ experiments were based on 5 accesses per client.
ence is that F-Norm actually “interpolates” between client-independefip increase the robustness of the estimated parameters, F-ratio normal-
and client-dependent information by introducing a mixture paramésation (F-Norm) that we propose is client-impostor centric. It requires
ter. This parameteran be optimisedo maximise the class dispersion only two client accesses to obtain the normallsmg parameters. This as-
(the degree of separability between client and impostor distributionBfCt was somewhat studied by [2] but the normalisation used is actually
while the aforementioned normalisation techniques cannot. The resufi¢tracting the empirical (and theoretical) client-dependent threshold
of 13 unimodal experiments carried out on the XM2VTS multimodafrom the expert opinion. Hence, this technique is additive and has no
database show that such normalisation is advantageous over Z_NomHltlpllcatlve effect, i.e, it does not change the variance of the score.

client-dependent threshold normalisation or no normalisation. There exists also another category of approaches that directly es-
timates theclient-dependent thresholehd is surveyed in [1, Sec. 2].
1. INTRODUCTION These approaches are client-impostor centric as well but their output is

yeither accept or reject. This implies that the client-dependent threshold
claim using a person's behavioral and physiological characteristic@?s to be tuned to specific operating costs of false acceptance and false

BA is becoming an important alternative to traditional authenticatioff/ection. They are hence not considered here.

methods such as keys (“something one has’, i.e., by possession) or 1h€ F-Norm that we propose here is different from Z,T,D-Norms
PIN numbers (“something one knows”, i.e., by knowledge) becaus¥ cllgnt-dependentthrgshold technlqu.esmtha.tfew ofthe.se .technlques
it is essentially “who one is”, i.e., by biometric information. There_explmtglo_bgl(or chent-mdepend_er!t) client an_d impostor distributions.
fore, it is not susceptible to misplacement or forgetfulness. Howevef! OUr opinion, there are two similar works in the literature that ex-
today, biometric-based security systems (devices, algorithms, amﬁ]glt the global distributions. In [7], a.global threshold is refllned.wnh a
tectures) still have room for improvement, particularly in their aCcu__cl|ent-de_pendent threshold. In [8]_, client-dependent and cl!ent-lndependeni
racy, tolerance to various noisy environments and scalability as tigformation sources are fused using Support Vector Machines. The au-
number of individuals increases. In this paper, we study the effect gi°rs called this techniqueser-adapted fusionThis approach is dif-
client-dependent variations and show how client-dependent normalidgreént from F-Norm in that the issue of normalisation is considered
tion techniques can be used to improve the overall system accurajf. being part of the optimising parameter for fusion. In this work, F-

Biometric authentication (BA) is a process of verifying an identit

Examples of work in this direction are client-dependent threshold [1{Orm can be treated as a pre-processing step just before a decision
model-dependent score normalisation [2] or different weighing of e _hresho!d is chosen. Hence, it can be readily applied to a unimodal
pert opinions using linear [3] or non-linear combination [4]. Therd?i0metric system. We explicitly compared F-Norm with Z-Norm and
also exists a vast literature on score normalisation, such as Z-Norfiient-dependent threshold normalisation and found that F-Norm is in
T-Norm [5] (for Test Normalisation), D-norm [6] (for Distance Nor- ovgrall superior. The experlmental results .b.ase.d on the average of '13
malisation). They are commonly applied to speaker verification proly_nlrr_lodal blor_netrlc experl_ments (7 face verification an_d 6 speaker veri-
lems where client-dependent Gaussian Mixture Models are used. tion experiments) _carrled out on the XM2VTS multimodal database
core idea about client-dependent normalisation is that there are posifPPOrt our hypothesis.

ble variations among different client models. All these normalisation
2. F-RATIO NORMALISATION
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assuming Gaussian distributions on the scores, it has been shown [9] 2 oroinal 1 ZNorm 1 TR
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A — M (4) Fig. 1. Comparison of the effects of F-Norm and Z-Norm. Left: The

ol +o¢ original distributions containing 3 client models (each represented by

It can therefore be seen that F-ratio occurs naturally. The term F-rat@ntinuous, dotted and dashed lines; client score distributions are plot-
is used here because this value is somevgiratlar to the standard ted with bold lines and impostor score distributions with thin lines). A

Fisher ratio. In a two-class problem, the Fisher ratio [10, pg. 107] iglobal threshold may not be optimal. Middle: After applying Z-Norm,

defined as o r the impostor distributions become normal whereas the client distribu-
i o (5) tions vary. Right: after applying F-Norm, all the client and impostor
(6€)2 + (01)?" distributions are aligned so that a global threshold can be found easily.
In the literature [5], Z-Norm is defined as:
e
T %(]SJ), 6) for a positive constant. To ensure that the F-ratio value will not

change, the corresponding for k = {C, I} will have to be changed

wherej indicates a client-dependent estimateg:6fando’ (j). T-  accordingly. Let*’ be the modified standard deviations. We can then
Norm is defined similarly. They differ in the ways these parameters aigrite the constraint as:

derived. The parameters in T-Norm are derived from scores obtained c I 9
from thesameaccess data but frodifferentclassifier models obther F-ratio = “C — “I = CCC,_ (_CII,) = = a . )
clients(online). The parameters in Z-Norm are derived from additional Al o to o to

data samples (not used to train the classifier models) of stimelated ~ The solution to this equation is:

impostorg(offline). We are interested in Z-Norm here, assuming that a

fewadditional data samples are available from client for implementing g =g, (10)
the normalisation. where,
In[2], client-dependent threshottrmalisation, otarget-impostor o — 2a (11)
normalisation as called by the authors, was studied and has two vari- uC —pul’
ants: for k = {C, I}. By taking the square of Eqn. (10) and applying the
TI1 ) definition of variance of), we obtain
y = y— Seer(j) ) . -
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where Sgrr(j) is a threshold found empirically (directly estimated = E J@G*-ER) ? 12)

from the data) and\(5) is defined in Eqn. (4), both calculated from

a given training set of client identity. The difference between these Since«’ is not dependent on the class lakeEqn. (12) is also valid

two normalisation techniques is that the latter relies on the Gaussianifhen applying tay, instead ofy®. Therefore, to map the client and

assumption whereas the former does not. impostor means to canonical values, one needs to modify the variance
To give a quick idea about F-ratio normalisation, we will considewithout affectingthe F-ratio and the corresponding EER. This simply

the effect of Z-Norm and theesiredeffect of F-Norm in Figure 1. translates into multiplying scorgwith o, i.e.,

In the left, there are 3 client score distributions and thier respective R otk (13)

impostor score distributions, respectively modeled from the output of Y v

3 client models. Z-Norm has the effect of normalising the varyingHowever, we still need to centre the mean of the transformed scores,

impostor distributions into a single canonical impostor distribution s§0 that they are exacty.|vx. The expected value of the distribution

that decisions can be taken more easily. Unfortunately, it introducégmpled fromy*” is:

variations into the client distributions. The objective of F-Norm is to R — ok (14)

fix both distributions, such that their means are “locked” into some pre- po=an

designated locations. For instance, it is intuitive to assign 1 to the cliefdence, the desired transformation, i.e., the F-ratio normalisation, can

mean and -1 to the impostor mean. An immediate problem that m&g achieved by shifting®™’ by ;"' and addingzy.. This can be done

emerge is that the client mean cannot be estimated reliably becad@sefollows:

there are not enough client accesses. Here, we assume that at least as vF o= oy — i o (15)
few as two samples are available. Under such limitation, we propose
to use some prior information in a discriminative way. Note that we have a choice betwekn= C andk = I to perform
To begin with, suppose that the “desired” mearfor k = {C, I}, F-Norm. In biometric authentication task, one often does not have
i.e. client and impostor, respectively, |V, are defined as: enough data to estimate the client mean reliably whereas one often
o ifk=C has enough simulated impostor accesses to estimate the impostor mean

k= _4 if k=1, more reliably. Thereforgs = I is chosen.



By replacing Eqgn. (13) in a class-independent manner (removirggt, an evaluation set and a test set. The training set was used to build
the superscript) and Eqn. (14) into Eqn. (15), we obtain: client models, while the evaluation set was used to compute the deci-
oF = dy—oul +e sion thresholds as well as other hyper-parameters used by classifiers
, I and normalisation. Finally, the test set was used to estimate the per-
= ly—p)ter (16) " formance. The 295 subjects were divided into a set of 200 clients, 25
As a result, we obtain the F-Norm. evaluation impostors and 70 test impostors. There exists two config-
Until now, all variables related tg have not been tied to a partic- urations or two different partitioning approaches of the training and
ular client. Suppose that cliefitconsists of a total ofi/; scores that  eyajyation sets. They are called Lausanne Protocol | and Il (LP1 and
can be used for normalisation and ttidf > 2, i..e, there are atleast 2 | p5y ~the most important thing to note here is that there are only 3
client scores available (apart from those used to train the baseline S¥Soles i : o .
ples in LP1 and 2 samples in LP2 for client-dependent adaptation

tems associated (o clie). Let uc (j) be the client-dependent mean and fusion training. We used altogether 7 face experts and 6 speech
duc be the client-ind dent f th ) andp” : . ; .
andyc be the client-independent mean of these scqué¢j) andy experts for LP1 and LP2. By combining 2 baseline experts at a time

are defined similarly. Because each client has few scpfég) can- according multimodal or intramodal fusion problems, 32 fusion exper-

not be estimated reliably, at least not as reliably.a6j) (assuming : " : -
that many more simulatgd impostor scores are )glflaéjlgb(le). Henge, \llgéents are fur_ther |dent_|f|ed. These experiments were reported in [13].
need some prior information. One such prior is the overall client anine 13 baseline experiments have 400L3 = 5,200 client accesses

impostor means. We incorporate these client-independent informatiéfd 11800x 13 = 1,453,400 impostor accesses. The score files are
sources into Egn. (11) as follows: made publicly available and are documented in$14]

o = 2a (17) 4. EVALUATION USING POOLED EPC CURVE

© BCG) = pl () + (1= B)(uC — pul)’
The g parameter weighs the mean difference between the client- ind
pendent mean difference and the client-dependent mean difference
is tuned by cross-validatidnSimilarly, Eqn. (16) can be incorporated
with client-independent information as follow:

Perhaps the most commonly used performance visualising tool in the
ﬂ'ﬁrature is the Decision Error Trade-off (DET) curve [15]. It has been
pointed out [16] that two DET curves resulted from two systems are
not comparable because such comparison does not take into account
how the thresholds are selected. It was argued [16] that such threshold
yF=ao y— i)+ -y . (18) should be choseapriori as well, based on a given criterion. This is be-
cause when a biometric system is operational, the threshold parameter
Note that slightly different from Eqn. (16), Eqn. (18) does not incluldeas to be fixed priori. As a result, the Expected Performance Curve
cr. This constant does not add any additional information. When apepC) [16] was proposed. We will adopt this evaluation method, which
plied in a client-independent manney, actually ensures that the im- js also in coherence with the original Lausanne Protocols defined for
postor mean is exactly-a and the client mean is exactly The ab-  the XM2VTS database. The criterion to choose an optimal threhsold is
sence ofc; implies that the impostor distribution is centered aroungalled weighted error rate (WER), defined as follows:
zero whereas the client distribution is centered aramnds given by
the constraint in Eqn. (9). WER(a, A) = aFAR(A™) + (1 — a) FRR(A™), (19)
Preliminary experiments show that havingin a class-dependent o
context can adversely affect the resultant score. Hence, the final where FAR and FRR are False Acceptance Rate and False Rejection
Norm function is defined by Eqns. (17 and 18). Preliminary experiXate: Iespectlvely. Note that WER is optimised for a giuea [0, 1].
ments show that = 1 is often optimal, indicating that the shift in- L&t Ao be the threshold thaninimisesWER on adevelo_pmen*t set
troduced by client-dependent impostor mean is useful and very oftdfi€ Performance measure tested oreaaluation set a givenA., is
reliable. This shift is exactly the same as in Z-Norm. Furthermorg2alled Half Total Error Rate (HTER), which is defined as:
these experiments also show thatan take a value of 1 and 0 and * *
any values in between. This shows that incorporatings an extra HTER(a) = FAR(Aa) ; FRR(Aa) (20)
parameter, tuned in a discriminative way, can automatically adjust to
the nature of the scores (which is somewhat experiment-dependeritjie EPC curve simply plots HTER versassince different values of
8 = 1and~y = 1 implies that client-dependent information is benefi-a give rise to different values of HTERs. The EPC curve can be inter-
cial whereas3 = 0 and~ = 0 implies that no client-dependent nor- preted in the same manner as the DET curve, i.e., the lower the curve
malisation is needed. The former case is actually equivalent to clieri$, the better the performance but for the EPC curve, the comparison is
dependent threshold normalisation. This can be shown mathematicaligne at a given cost (controlled ly). One advantage of EPC curve
by finding F-ratio of F-normalised scores and showing that this valué that it can plot a pooled curve from several experiments. For in-
is equivalent to F-ratio of client-dependent threshold normalised scorénce, to compare two methods odérexperiments, only one pooled
(see [11]). In the latter cas@ (= 0), it can also be shown mathemati- curve is necessary. This is done by calculating HTER at a given
cally that the effect is equivalent to no normalisation at all (see [11]).point by taking into account all the false acceptance and false rejection
Hence, effectively, F-Norm is an interpolation between client-deaccesses over al/ experiments. The pooled FAR and FRR across
pendent threshold normalisation and no normalisation at all. It is dift = 1, ..., M experiments for a given € [0, 1] is defined as follow:
ferent from Z-Norm, however, because Z-Norm does not make use of o .,
the client distributions. 2 5—1 FA(AL())

pooled _
FAR (@) == Sr (21)
3. XM2VTS DATABASE AND SYSTEMS q
an
The XM2VTS database [12] contains synchronized video and speech M OFR(AL(H))
data from 295 subjects, recorded during four sessions taken at one FRR'4 (o) = W (22)

month intervals. The database is divided into three sets: a trainin

whereAZ () is the optimised threshold at a given NI is the number
LIn our implementation, we choogkto maximise the F-ratio, which is the of impostor accesses amdC is the number of client accesses. FA

same as minimising EER assuming that the client and impostor scores are each

normally distributed, as shown in Eqgn. (1). 2Accessible at http://www.idiap.ckhorman/fusion




no norm
- - - Z—Norm
—— F—Norm

HTER()
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samespeech utterance aeveralcohort speaker models whereas the
latter appliesseveralspeech utterances on tesamespeaker model),
one further research direction is to implement T-Norm in the form of
F-Norm (instead of the current Z-Norm).

(1]

(2]

Fig. 2. EPC curves of 13 baseline (face and speech) experts taken from
the XM2VTS database with no normalisation, Z-Norm and F-Norm.
~ = 1 and 8 was tuned automatically to maximise F-ratio. The im- [3]
provement due to F-Norm is 95% significant compared to Z-Norm for

o between 0.2 and 0.5. The client-dependent threshold normalisation ) o
4] A. Kumar and D. Zhang, “Integrating Palmprint with Face for User Au-

using Eqn. (8) is in the range between 6.2% and 8.5% of HTER.

and FR count the number of false acceptance and the number of falésé

rejection at a given threshold}, ().
similarly as in Eqgn. (20).

The pooled HTER is defined

5. EXPERIMENTAL RESULTS

(6]

Figure 2 shows the pooled EPC curve of 13 baseline experiments with-

out applying normalisation, applying Z-Norm and applying F-Norm. v

Note that we could not compare F-Norm with T-Norm using the cur-

rent database because we could not have access to the cohort models

or they simply do not exist as T-Norm is specific to speaker verifica-
tion (with Gaussian Mixture Models as classifier) while the data dealtg
with contains face verification systems (with Multi-Layer Perceptrons
as classifier). As can be seen, F-Norm improves steadily over Z-Norm.
The pooled EPC curve should be interpreted as the average perfor-

mance over 13 baseline experiments. Of course, when analysed sepa-

rately on a per experiment basis, the performance difference betwed8]
F-Norm and Z-Norm is not always significant according to the HTER

significant test [17] at 90% of confiderfceHowever, on average over
the 13 experiments, the gain brought by F-Normoassistently positive
andsignificantfor some large range of operating costs.

6. CONCLUSIONS
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