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Abstract. Biometric authentication is a process of verifying an identity claim
using a person’s behavioural and physiological characteristics. Due to the vul-
nerability of the system to environmental noise and variation caused by the user,
fusion of several biometric-enabled systems is identified as a promising solution.
In the literature, various fixed rules (e.g.min, max, median, mean) and train-
able classifiers (e.g. linear combination of scores or weighted sum) are used to
combine the scores of several base-systems. Howexactlydo correlation and im-
balance nature of base-system performance affect the fixed rules and trainable
classifiers? We study thesejoint aspects using the commonly used error mea-
surement in biometric authentication, namely Equal Error Rate (EER). Similar
to several previous studies in the literature, the central assumption used here is
that the class-dependent scores of a biometric system are approximately normally
distributed. However, different from them, the novelty of this study is to make a
direct link between the EER measure and the fusion schemes mentioned. Both
synthetic and real experiments (with as many as 256 fusion experiments carried
out on the XM2VTS benchmark score-level fusion data sets) verify ourproposed
theoretical modeling of EERof the two families of combination scheme. In par-
ticular, it is found that weighted sum can provide the best generalisation perfor-
mance when its weights are estimated correctly. It also has the additional advan-
tage that score normalisation prior to fusion is not needed, contrary to the rest of
fixed fusion rules.

1 Introduction

There exists a vast literature study that proposes to model theoretical classification errors for fu-
sion, e.g., [1–3]. However, to the best of our knowledge, a direct modeling of Equal Error Rate
(EER), i.e., an evaluation error commonly used in biometric authentication tasks, has not been
attempted. This is partly because of the unknown decision threshold which prevents further anal-
ysis. Analysis of EER is cumbersome without making any assumption about the distribution of
the classifier scores, e.g., using a non-parametric approach. We tackle this problem by assuming
that the class-dependent scores are normally distributed. With a very large number of independent
experiments, our previous work [4] shows that although the class-dependent scores are often not
normally distributed, the estimated EER isfairly robust to deviation from such assumption.

In [1], the theoretical classification error of six classifiers are thoroughly studied for a two-
class problem. This study assumes that the base classifier scores are probabilities∈ [0, 1]. Hence
probability of one class is one minus the probability of the other class and the optimal threshold



is always set to0.5. It also assumes that all baseline classifier scores are drawn from a common
distribution. Gaussian and uniform distributions are studied. The first assumption is not always
applicable to biometric authentication. This is because the output of a biometric system is of-
ten not necessarily a probability but a distance measure, a similarity or a log-likelihood ratio.
Moreover, decisions are often taken by comparing a classifier score with a threshold. The second
assumption, in practice, is also unrealistic in most situations, particularly in multimodal fusion.
This is because the (class-dependent) score distributions are oftendifferentacross different clas-
sifiers. The proposed EER model is also different from the one presented in [2, 3] in terms of
application, assumption and methodology (see Section 3).

The goal of this paper is thus to study the EER of fixed and trainable fusion classifiers with
respect to the correlation and the imbalance performance nature of baseline systems. Section 2
briefly discusses the general theoretical EER framework and how it can be applied to study sev-
eral commonly used fusion classifiers. Section 3 discusses the important assumptions made and
draws differences between EER and current theoretical model to explaining why fusion works.
Sections 4 and 5 present experimental results on synthetic and real data. These are followed by
conclusions in Section 6.

2 Theoretical EER

The fundamental problem of biometric authentication can be viewed as a classification task to
decide if personx is a client or an impostor. In a statistical framework, the probability thatx is a
client after a classifierfθ observes his/her biometric trait can be written as:

y ≡ fθ(fe(s(x))), (1)

where,s is a sensor,fe is a feature extractor,θ is a set of classifier parameters associated to the
classifierfθ.

Note that there exists several types of classifiers in biometric authentication, all of which can
be represented by Eqn. (1). They can be categorized by their outputy, i.e., probability (within the
range[0, 1]), distance metric (more than or equal to zero), or log-likelihood ratio (a real number).
the context of multimodal BA,y is associated to the subscripti, which takes on different meanings
in different context of fusion, as follows:

yi(x) =

8
>><
>>:

fθ(fe(s(xi))) if multi-sample
fθ(fe(si(x))) if multimodal
fθ(fe,i(s(x))) if multi-feature
fθ,i(fe(s(x))) if multi-classifier

(2)

Note thati is the index to thei-th sample in the context of multi-sample fusion.i can also mean
the i-th biometric modality in multimodal fusion, etc. In a general context, we refer toyi(x) as
thei-th responseand there are altogetherN responses (i = 1, . . . , N ). It is important to note that
all yi(x) belong to thesameaccess. We writeyi instead ofyi(x) for simplicity, while bearing in
mind thatyi is always dependent onx.

To decide if an access should be granted or not, allyi|∀i have to be combined to form a single
output. This can be expressed as:yCOM = fCOM (y1, . . . , yN ). Several types of combination
strategies are used in the literature, e.g.,min, max, median, mean (or sum), weighted sum,
product and weighted product. They are defined as follow:

ymin = mini(yi), ymax = maxi(yi) ymed = mediani(yi),

ywsum =
PN

i=1 wiyi, and ywprod =
QN

i=1 ywi
i ,

(3)

wherewi|∀i are parameters that need to be estimated. Themean operator is a special case of
weighted sum withwi = 1

N
. Similarly, the product operator is a special case of weighted product

with wi = 1.



The decision function based on the scorey (for anyy after fusion{yCOM |COM ∈ {min, max,
mean, median, wsum, prod, wprod} or anyyi prior to fusion; both cases are refered to simply
asy) is defined as:

decision=

¡
accept ify > ∆
reject otherwise.

(4)

Because of the binary nature of decision, the system commits two types of error called False Ac-
ceptance (FA) and False Rejection (FR) errors, as a function of the threshold∆. FA is committed
whenx belongs to an impostor and is wrongly accepted by the system (as a client) whereas FR
is committed whenx belongs to a client and is wrongly rejected by the system. They can be
quantified by False Acceptance Rate (FAR) and False Rejection Rate (FRR) as follow:

FAR(∆) = FA(∆)
NI

and FRR(∆) = FR(∆)
NC

, (5)

where FA(∆) counts the number of FA, FR(∆) counts the number of FR,NI is the total number
of impostor accesses andNC is the total number of client accesses.

At this point, it is convenient to introduce two conditional variables,Y k ≡ Y |k, for each
k being client or impostor, respectively i.e.,k ∈ {C, I}. Hence,yk ∼ Y k is the scorey when
personx is k ∈ {C, I}. Let p(Y k) be the probabilistic density function (pdf ) of Y k. Eqns. (5)
can then be re-expressed by:

FAR(∆) = 1− p(Y I > ∆) and FRR(∆) = p(Y C > ∆). (6)

Because of Eqn. (4), it is implicitly assumed thatE[Y C ] > E[Y I ], whereE[z] is the expectation
of z. Whenp(Y k) for bothk ∈ {C, I} are assumed to be Gaussian (normally distributed), they
take on the following parametric forms (see [4]):

FAR(∆) = 1
2
− 1

2
erf

ş
∆−µI

σI
√

2

ť
and FRR(∆) = 1

2
+ 1

2
erf

ş
∆−µC

σC
√

2

ť
(7)

whereµk andσk are mean and standard deviation ofY k, and the erf function is defined as
follows:

erf(z) =
2√
π

Z z

0

exp
č−t2

ď
dt. (8)

At Equal Error Rate (EER), FAR=FRR. Solving this constraint yields (see [4]):

EER= 1
2
− 1

2
erf

ş
F-ratio√

2

ť
≡ eer(F-ratio) where F-ratio= µC−µI

σC+σI . (9)

The functioneer is introduced here to simplify the EER expression as a function of F-ratio
becauseeer will be used frequently in this paper. Note that the threshold∆ is omitted since there
is only one unique point that satisfies the EER criterion.

2.1 Theoretical EER of Fusion Classifier

We now derive several parametric forms of fused scores using different types of classifiers,
namely the single-best classifier,mean, weighted sum, product rule and Order Statistics (OS)-
combiners such asmin, max and median. The OS-combiners are further discussed in Sec-
tion 2.2.

The analysis in this section is possible due to the simple expression of F-ratio, which is
a function of four parameters:{µk, σk|∀k={C,I}} as shown in Eqn. (9). Suppose that thei-
th response isyk

i sampled fromp(Y k
i ) and there areN classifiers, i.e.,i = 1, . . . , N . The

average baselineperformance of classifiers, considering that each of them works independently
of the other, is shown in the first row of Table 1. The (class-dependent) average variance,σk

AV , is
defined as the average over all the variances of classifier. This is in fact not a fusion classifier but
theaverage performanceof classifiers measured in EER. The single-best classifier in the second



Table 1.Summary of theoretical EER based on the assumption that class-independent scores are
normally distributed.

Fusion methods EER where

average baseline1 EERAV = eer
ş
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σC
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+σI
AV

ť µk
AV = 1

N

P
i µk

ią
σk

AV

ć2
= 1

N

P
i

ą
σk

i

ć2

single-best classifierEERbest = eer
ş
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ş
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mean rule EERmean = eer
ş
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mean+σI

mean
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N

P
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ć2
= 1
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P
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i,j

weighted sum3 EERwsum = eer
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OS combiners2 EEROS = eer
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µC
OS−µI

OS

σC
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ą
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Remark 1: This is not a classifier but the average performance of baselines when used inde-
pendently of each other. By its defintion, scores are assumed independent as classifiers function
independently of each other.Remark 2: OS classifiers assume that scoresacross classifiersare
i.i.d. The reduction factorγ is listed in Table 2. The mean and weighted sum classifiersdo not
assume that scores are i.i.d.Remark 3: the weighted product (respectively product) takes the
same form as weighted sum (respectively sum), except that log-normal distribution is assumed
instead.

row chooses the baseline classifier that maximises the F-ratio. This is the same as choosing the
one with minimum EER because F-ratio is inversely proportional to EER, as implied by the left
part of Eqn. (9).

The derivation of EER of weighted sum (as well asmean) fusion can be found in [5]. The
central idea consists of projecting theN dimensional score onto a one dimensional score via
the fourth equation in Eqns. (3). Suppose that the class conditional scores (prior to fusion) are
modeled by a multivariate Gaussian with mean(µk)T = µk

1 , . . . , µk
N and covarianceΣk of

N -by-N dimensions. LetΣk
i,j be thei-th row andj-th column of covariance matrixΣk for k =

{C, I}. E[·] is the expectation operator (over samples) andW k
i is the noise variable associated to

classifieri for all k. The linear projection fromN dimensions of score to one dimension of score
has the same effect on the Gaussian distribution: fromN multivariate Gaussian distribution to a
single Gaussian distribution with meanµk

wsum and variance(σwsum)2 defined in the fourth row
of Table 1 for each classk. Themean operator is derived similarly withwi = 1

N
∀i. Note that the

weightwi affects both the mean and variance of fused scores. In [4], it was shown mathematically
that the EER ofmean, EERmean, is always smaller than or equal to the EER of the average
baseline performance (EERAV ). This is closely related to the ambiguity decomposition [6] often
used in the regression context (as opposed to classification as done in [4]). However, there is
no evidence that EERmean ≤ EERbest, i.e., the EER of the best-classifier. In [7], it was shown
thatσk

wsum ≤ σk
mean, supposing that thewi∀i are optimal. In [3], when the correlation among

classifiers is assumed to be zero,wi ∝ (EERi)
−1. As a result, this implies that EERwsum ≤

EERmean. The finding in [7] is more general than that of [3] because the underlying correlation
among baseline classifiers is captured by the covariance matrix. Hence, fusion using weighted
sum can, in theory, have better performance than themean rule, assuming that the weights are
tuned optimally. A brief discussion of weight-tuning procedures are discussed in Section 5.2.
Although there exists several methods to tune the weights in the literature, to the best of our



knowledge, no standard algorithmdirectly optimises EER (hence requiring further investigation
which cannnot be dealt here).

For the product operator, it is necessary to boundY to be within the range[0, 1], otherwise
the multiplication is not applicable. Consider the following case: two instances of classifier score
can take on any real value. The decision function Eqn. (4) is used with optimal threshold being
zero. With an impostor access, both classifier scores will be negative if correctly classified. Their
product, on the other hand, will be positive. This is clearly undesirable.

The weighted product (and hence product) at first seems slightly cumbersome to obtain. How-
ever, one can apply the following logarithmic transform instead:log(Y k

wprod) =
P

i wi log(Y k
i ),

for anyyk
i sampled fromp(Y k

i ). This turns out to take the same form as weighted sum. Assuming
thatY k

i is log-normally distributed, we can proceed the analysis in a similar way as the weighted
sum case (and hence themean rule).

2.2 Theoretical EER of Order Statistics Combiners

To implement fixed ruleorder statistics(OS) such as the maximum, minimum and median com-
biners, scores must be comparable. Unfortunately, attempting to analyse analytically the EER
values as done in the previous section is difficult without making (very) constraining assump-
tions.

The first assumption is that the instance of scores must becomparable. If scores of various
types of classifiers are involved for fusion, their range may not be comparable. Hence, score
normalisation is imperative while this pre-processing step isunnecessaryin the previous section.
The second assumption assumes that scores are i.i.d. In this case, there exists a very simple
analytical model1. Although this model seems too constraining, it is at least applicable to fusion
with multiple samples which satisfies some of the assumptions stated here: scores are comparable;
and they areidentically distributedbut unfortunately not necessarilyindependentlysampled.

All OS combiners will be collectively studied. The subscript OS can be replaced bymin,
max andmedian. Supposing thatyk

i ∼ Y k
i is an instance ofi-th response knowing that the

associated access claim belongs to classk. yi has the following model:yk
i = µk

i + ωk
i , where

µk
i is a deterministic component andωk

i is a noise component. Note that in the previous section
ωk

i is assumed to be normally distributed with zero mean. The fused scores by OS can be written
as:yk

OS = OS(yk
i ) = µk + OS(ωk

i ), wherei denotes thei-th sample (and not thei-th classifier
output as done in the previous section). Note thatµk is constant acrossi and it isnot affected
by the OS combiner. The expectation ofyk

OS as well as its variance are shown in the last row of
Table 1, whereγ2 is a reduction factor andγ1 is a shift factor, such thatγ2(σ

k)2 is the variance
of OS(ωk

i ) andγ1σ
k is the expected value ofOS(ωk

i ). Bothγ’s can be found in tabulated form
for various noise distributions [8]. A similar line of analysis can be found in [2] except that class-
independent noise is assumed. The reduction factors of combining the first five samples, assuming
Gaussian distribution, are shown in Table 2. The smallerγ2 is, the smaller the associated EER.
The fourth column of Table 2 shows the reduction factor due tomean (as compared to the second
and third columns). It can be seen thatmean is overall superior.

3 General Discussion

We gather here a list of assumptions made that will be used in simulating a theoretical comparison
of fixed and trainable fusion classifiers listed in Table 1. For each assumption, we discuss its
relevance and acceptability in practice.

1 This assumption will beremovedduring experimentation with synthetic data.



Table 2.Reduction factorγ2 of variance (2 for the second moment) with respect to the standard
normal distribution due to fusion withmin, max (the second column) andmedian (third column)
OS combiners for the first five samples according to [8]. The fourth column is themaximum
reduction factor due tomean (at zero correlation), with minimum reduction factor being 1 (at
perfect correlation). The fifth and sixth columns show the shift factorγ1 (for the first moment) as
a result of applyingmin andmax for the first five samples. These values also exist in tabulated
forms but here they are obtained by simulation. Formedian, γ1 is relatively small (in the order
of 10−4) beyond 2 samples and hence not shown here. It approaches zero as N is large.

N γ2 values γ1 values
OS combiners mean OS combiners

min, max, median ( 1
N

) min max

1 1.000 1.000 1.000 0.00 0.00
2 0.682 0.682 0.500 -0.56 0.56
3 0.560 0.449 0.333 -0.85 0.85
4 0.492 0.361 0.250 -1.03 1.03
5 0.448 0.287 0.200 -1.16 1.16

1. Class-dependent gaussianity assumption.Perhaps this is the most severe assumption as
this does not necessarily hold in reality. In [4], 1186 data sets of scores were used to verify
this assumption using the Kolmogorov-Smirnov statistics. Only about a quarter of the data
sets supported the gaussianity assumption. However, to much surprise, the theoretical EER
(estimated using the Gaussian assumption) matches closely its empirical counterpart (ob-
tained by directly estimating the EER from scores). Hence, the theoretical EER employed
here is somewhat robust to deviation from such assumption. This in part may be due to the
fact that the classifier scores are unimodal but not necessarily Gaussian. The Gaussianity
assumption is used mainly because of its easy interpretation. A mixture of Gaussian compo-
nents could have been used in place of a single Gaussian. However, this subject requires a
dedicated study which cannot be adequately dealt in the present context.

2. Score comparability assumption.This assumption isonly necessaryfor OS combiners
because of their nature that requires comparison relation “≥”. Scores can be made compa-
rable by using score normalisation techniques. We use here the zero-mean unit-variance
normalisation (or z-score), where a score is subtracted from its global mean and divided by
its standard deviation, both of which are calculated from a training set. For the product rule
which naturally assumes classifier outputs are probabilistic (in the range[0, 1]), the min-max
normalisation is used. This is done by subtracting the score from its smallest value and di-
vided by its range (maximum minus minimum value), all of which calculated from a training
set

3. Class-dependent correlation assumption.Under such assumption, one assumes that the
correlation of client and impostor distributions are correlated, i.e.,ρI ∝ ρC . This means
that knowing the covariance of impostor joint distribution, one can actually estimate the
covariance of the client joint distribution. A series of 70 intramodal and multimodal fusion
experiments taken from the BANCA database were analysed in [4] and it was shown that the
correlation betweenρI andρC is rather strong, i.e., 0.8.

Different from studies in [1, 2], we do not assume identical distribution across different classifiers.
In fact, for OS combiners, the analytical EER expression that does not commit such assumption



is cumbersome to be evaluated. Hence, we propose to resolve to simulations, which are relatively
easier to carry out and reflectbetterthe fusion tasks in biometric authentication.

Note that we do not make the independence assumption in the sense that correlation across
different classifiers is non-zero. In fact, the correlation among classifier scores is captured by the

covariance matrix via the definition of correlation, as follows:ρk
i,j ≡ Σk

i,j

σk
i σk

j

. This indicates that if

one uses a multivariate Gaussian, the correlation is automatically taken care of by the model.
Our theoretical analysis is different from [2, 3] in several aspects. In [2, 3], two types of

errors are introduced, namely Bayes (inherent) error and added error. The former is due to un-
biased classifier whose class posterior estimates correspond to the true posteriors. The latter is
due to biased classifiers which result in wrongly estimated class posteriors. The EER used here
is commonly found in binary classification problems while the error (sum of bayes error and
added error) applies to any number of classes. It is tempting to conclude that EER is equivalent to
the Bayes error for a two-class problem. There are, however, important differences. In [2, 3] (the
former), the bayes error is due to additive error in the feature space near the decision boundary.
In EER (the latter), the input measurement is not a set of features but a set of scores of one or
more base-classifiers. The output posteriors between the two classes in the former are enforced
by linear approximation, whereas in the latter, they are assumed to be (integral of) Gaussian. The
local continuity at the boundary is hence implicitly assumed. Furthermore, the Bayes error cannot
be reduced (the added error can) but EER can [4].

4 Experiments with Synthetic Data

We designed a series of 110 synthetic experiment settings. Each experiment setting consists of a
fusion task oftwoclassifier outputs. All three assumptions mentioned in Section 3 are used here,
i.e., (1) the 2D scores will be sampled from a multivariate Gaussian distribution for each class
(client and impostor); (2) scores are comparable, i.e., the mean of client and impostor distributions
are fixed to 0 and 1, respectively. However, for the product rule, scores are further normalised into
the range[0, 1] by the min-max normalisation; and finally, (3) thesamecovariance matrix is used
for the client and impostor distributions.

In order to evaluate classifier performance, Half Total Error Rate (HTER) is commonly used
for biometric authentication. It is defined as: HTER= 1

2
(FAR(∆)+FRR(∆)), where the thresh-

old ∆ is chosen to minimise the Weighted Error Rate (WER) at a given pre-definedα ∈ [0, 1]
which balances between FAR and FRR. WER is defined as:

WER(α) = αFAR(∆) + (1− α)FRR(∆). (10)

To optimise the EER criterion, instead of WER,α = 0.5 is used. We further define a performance

gain variable calledβmin, as follows:βmin = HTERbest

HTERCOM
whereCOM is any one of the fusion

classifiers/rules under study. Whenβmin > 1, the particular fusion classifier is better than the
best underlying system.

The first classifier, designed as thebetterclassifier of the two, has a (class-dependent) vari-
ance of 0.5 and is kept constant across all synthetic data sets, whereas the second classifier has a
variance that varies with a ratio between 1 to 4 (or absolute variance value between 0.5 to 2). This
causes the first expert to have a HTER between 5.3% and 6.2%, with a mean of 5.8% and the sec-
ond expert between 5.4% and 22% of HTER with a mean of 15% at the EER point. Furthermore,
the correlation value is varied between 0 and 1, at a step of 0.1 increment.

The simulation results are shown in Figure 1. For figures (a)-(e), the plane withβmin = 1
indicates the best single classifier, i.e., the baseline performance. As can be seen, the weighted
sum classifier achieves the best overall gain. In fact, itsβmin > 1 across all variance ratios and
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Fig. 1.Performance gain of HTER, at EER criterion, with respect to the best underlying classifier,
βmin, (the Z-axis) across different variance ratios (of two experts) from 1 to 4 (the X-axis) and
different correlation values from 0 to 1 (the Y-axis), as a result of fusing synthetic scores of
two expert systems (classifiers) assuming class-dependent scores are normally distributed. The
scores are combined using (a)mean, (b) weighted sum, (c)min, (d) max and (e) product fusion
classifiers. (f): the weight of theweakerexpert found in the weighted sum after training. This can
be thought of as the degree of “reliance on the weaker expert”.

across all correlation values. Themean rule shows that the performance gain is more than 1
only when the variance ratio is 3 at correlation=0. As correlation increases, to maintain a positive
gain, the variance ratio has to be decreased. This behaviour has been theoretically verified in [4].
The min and max rules follow the same trend asmean and weighted sum except that their gain is
much smaller. There is no significant difference between the min and max rules. This is somewhat
expected following their theoretical EER models presented in Table 1.

We further examined the weight attributed to the second (weaker) classifier by the weighted
sum classifier to see how the weights evolve with various variance ratios and correlations. This
weight can be interpreted as “reliance on the weaker system”. This is shown in Figure 1(f). On
this Cartesian coordinate system (X is correlation and Y is variance ratio), the point (1,1) im-
plies that the two classifiers have exactly the same performance. Hence, the weight attributed to
classifier 1 or 2 makes no difference. However, at exact correlation (=1), the weight attributed to
classifier 2 (the weaker one) immediately becomes zero as the variance ratio increases. Further-
more, there is absolutely no improvement for this case (see in Figure 1(b)). On the other hand,
at zero-correlation, the weaker classifiercontributesto fusion (i.e., the weights are not zero). The
corresponding performance gainalways increaseswith decreasing variance ratio (increasingly



stronger weak classifier). The product rule only has performance as good as the single-best clas-
sifier at variance ratio=1 while does not match the rest of the fusion classifiers. Its performance
does not evolve with the correlation. One plausible explanation of such suboptimal performance
comes from [9], stating that the the product rule is more sensitive to error as compared to the
sum (ormean) rule. Despite their difference, all fusion classifiers except the product rule show
that low correlation and low variance ratio increase the fusion performance. Note that no gener-
alisation performance is involved here. In real applications, where there is a mismatch between
training and test data sets, generalisation performance becomes an important concern. This is
treated in the next section with real data.

5 Experiments with Real Data

5.1 Database Settings and Evaluation

The publicly available2 XM2VTS benchmark database for score-level fusion [10] is used. There
are altogether 32 fusion data sets and each data set contains a fusion task of two experts. These
fusion tasks contain multimodal and intramodal fusion based on face and speaker authentication
tasks. For each data set, there are two sets of scores, from thedevelopmentand theevaluation
sets. The development set is useduniquelyto train the fusion classifier parameters, including the
threshold (bias) parameter, whereas the evaluation set is used uniquely to evaluate the generalisa-
tion performance. They are in accordance to the two originally defined Lausanne Protocols [11].
The 32 fusion experiments have 400 (client accesses)× 32 (data sets)= 12,800 client accesses
and 111,800 (impostor accesses)× 32 (data sets) = 3,577,600 impostor accesses.

The most commonly used performance visualising tool in the literature is the Decision Er-
ror Trade-off (DET) curve. It has been pointed out [12] that two DET curves resulting from two
systems are not comparable because such comparison does not take into account how the thresh-
olds are selected. It was argued [12] that such threshold should be chosena priori as well, based
on a given criterion. This is because when a biometric system is operational, the threshold pa-
rameter has to be fixeda priori. As a result, the Expected Performance Curve (EPC) [12] was
proposed. This curve is constructed as follows: for various values ofα in Eqn. (10) between 0
and 1, select the optimal threshold∆ on a development (training) set, apply it on the evaluation
(test) set and compute the HTER on the evaluation set. This HTER is then plotted with respect
to α. The EPC curve can be interpreted similarly to the DET curve, i.e., the lower the curve, the
better the generalisation performance. In this study, thepooledversion of EPC is used to visu-
alise the performance. The idea is to plot a single EPC curve instead of 32 EPC curves for each
of the 32 fusion experiments. This is done by calculating theglobal false acceptance and false
rejection errors over the 32 experiments foreachof theα values. The pooled EPC curve and its
implementation can be found in [10].

5.2 Experimental Results and Discussion

Figure 2 shows the pooled EPC curves of several fusion classifiers/rules under study, each over
the 32 XM2VTS fusion data sets. As can be observed, the weighted sum gives the best generali-
sation performance. Themean rule follows closely. As expected, bothmin andmax rules have
improved generalisation performanceafterscore-normalisation. For the normalised case (see fig-
ure (b)),max turns out to outperformmin significantly for a large ofα, according to HTER
significance test at 90% of confidence [13].

2 Accessible at http://www.idiap.ch/∼norman/fusion
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Fig. 2. Pooled EPC curves, each derived from 32 fusion data sets, as a result of applying
min, max, mean and weighted sum fusion, with (a) unnormalised orignal scores, (b) margin-
transformed scores, (c) z-scores and (d) F-ratio transformed scores.

The weight parameters in the weighted sum are optimised using a 1D search procedure with
a constant step-size of 0.05 within the bound[0, 1] since only two classifier outputs are involved.
This strategy has been employed by [14] for user-specific weighting. The advantage of this tech-
nique over the technique assuming zero-correlation, such as [3] or Fisher-ratio [7, Sec. 3.6] is
that no assumption is made about the underlying class-dependent distribution. Support Vector
machines with linear kernel could also have been used instead since it too does not make this
assumption. We actually carried out the two control experiments using the two techniques men-
tioned and found that their generalisation performance are significantly inferior to our line search
or SVM approach (not shown here). This is a probable reason why the empirical study conducted
here is somewhat different from [15], where the authors did not find weighted sum significantly
outperforms themean rule, although thesamedatabase was used.

6 Conclusions

In this study, the theoretical and empirical aspects of fixed and trainable fusion classifiers are stud-
ied using the EER. Although this subject is well studied [1–3], the effects of correlation on Order
Statistics (OS) combiners, e.g,min, max, andmedian, are largely unknown or rarely discussed
due to intractable analysis. We studied thejoint effectof correlation and base-classifier imbal-
ance performance on EER by simulation. This simulation is based on three major assumptions:
class-dependent Gaussianity assumption, score comparability assumption and class-dependent
correlation assumption. Each assumption are adequately addressed (see Section 3). In particular,
for the second assumption, several score normalisation techniques are discussed. Based on 4 fu-
sion classifiers× 2 normalisation techniques (and)× 32 data sets = 256 fusion experiments, we
show that weighted sum, when weights are tuned correctly, can achieve the best generalisation
performance, with the additional advantage that no score normalisation is needed.
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