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Abstract— Combining multiple information sources such as modalities of biometric traits, or multiple features (of the
subbands, streams (with different features) and multi modal data same biometric traits), multiple classifiers or multiple samples.
has been shown to be a very promising trend, both in experiments gqres are then fused using a COmbination Mechanism (COM
and to some extents in real-life biometric authentication appli- . . T !
cations. Despite considerable efforts in fusions, there is a lack of also called a sgpemsor, a fusion expert/classifier). )
understanding on the roles and effects of correlation and variance ~ Although fusion in the context of BA has been discussed
(of both the client and impostor scores of base-classifiers/experts). elsewhere, in the authors’ opinion, there is still a lack of
Often, scores are assumed to be independent. In this paper, theoretical analysis and understanding, particularly with re-
we explicitly consider this factor using a theoretical model, spect to correlation. Hong et al [2] shed some light on this

called Variance Reduction-Equal Error Rate (VR-EER) analysis. biect by d trating that binina th t opini
Assuming that client and impostor scores are approximately SUPIECt DY demonstrating that combining the expert opinions

Gaussian distributed, we showed that Equal Error Rate (EER) USing AND and OR will result in improved performance.
can be modeled as a function of-ratio, which itself is a function ~Unfortunately they assumed that the baseline expert opinions
of 1) correlation, 2) variance of base-experts and 3) difference are not correlated. Sanchez et al [3] showed both theoretically
of client and impostor means. To achieve lower EER, smaller 5,4 empirically that fusing multiple instances of biometric
correlation and average variance of base-experts, and larger , . .

mean difference are desirable. Furthermore, analysing any of trait can indeed reduce the_ system error by as_ mgch as
these factors independently, e.g. focusing on correlation alone,40%. The theoretical analysis, unfortunately, again did not
could be miss-leading. Experimental results on the BANCA mul- deal with the case where the expert opinions are correlated.
timodal database confirm our findings using VR-EER analysis. Since multiple instances of the same biometric traits are likely
We analysed four commonly encountered scenarios in biometric to be correlated, it is not clear how correlation in expert

authentication which include fusing correlated/uncorrelated base- . h th ted i t alth h
experts of similar/different performances. The analysis explains opinions can hamper the expected improvement, althoug

and shows that fusing systems of different performances igot they observed that “saturation” may happen, i.e., using more
alwaysbeneficial. One of the most important findings is that posi- instances of the same biometric trait cannot help improve
tive correlation “hurts” fusion while negative correlation (greater  the performance further. Using the XM2VTS database, Kittler
‘diversity”, which measures the spread of prediction score with ot 5| [4] examinedntramodal (i.e., different base-experts of
respect to the fused score), improves fusion. However, by linking . . . . .
the concept of ambiguity decomposition to classification problem, the ;ameblometrlc _tralt). andmultlmodgl (ie., basg-expert;
it is found that diversity is not sufficient to be an evaluation Of different biometric traits) expert fusion. According to this
criterion (to compare several fusion systems), unless measures areempirical study, for multimodal fusion, there is no strong
taken to normalise the (class-dependent) variance. Moreover, by evidence that trainable fusion strategies (based on Decision
linking the concept of bias-variance-covariance decomposition t0 emp|ate [5] and Behaviour Knowledge Space [6]) offer better
classification using EER, it is found that if the inherent mismatch .
(between training and test sessions) can be learned from the data, performance than simple rul_es (based on sum and vote). The_y
such mismatch can be incorporated into the fusion system as a femarked that although adding more experts can reduce vari-
part of training parameters. ance, such gain is downplayed by the increased ambiguity due
Index Terms— Biometric authentication, variance reduction, 0 the weak experts. For intramodal fusion, where the expert

bias-variance-covariance decomposition, ambiguity decomposi- Scores are highly correlated, increasing the number of experts

tion, pattern recognition, classification improve monotonically with fusion results. Unfortunately, the
issue of correlation is not examined in details. Vermuulen et
l. INTRODUCTION al [7] studied empirically the case of combining two systems’

L . _hypotheses. Specifically, they examined the combination of

IO.METR.'C aqthenpcaﬂop (BA) is the’problen*! of Veri-piq systems with equal performance, with unequal perfor-

fylng_an identity Cl{?"m using a person's t,’e“av'?“ra' anFhance and with one system outperforming the other under
physiological characteristics. Examples of biometric modglyain conditions. They observed that fusing two systems is
fties are f|n_gerpr|r_1t, face_, voice, h_and-geometry and re""?:l?ivantageous when the errors committed by both systems are
scans [1]. Biometric data is often noisy because of deformabl6 . related, i.e., the combined system may benefit from the
nature of biometric traits, corruption by environmental nOiS%ase where, for the same access, one system commits an error
variability over time and occlusion by the user's accessorieg, § the other makes the right decision and vice-versa. Again,
This affects the accuracy and the reliability of a BA systeny,o cqrrefation of these errors are not explored further.
One popular trend to improve accuracy is to use multiple The goal of this study is to apply the VR-EER analysis
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4, 1920 Martigny, Switzerland. E-mai{norman,bengip@idiap.ch. is Equal Error Rate (EER) analysis) that we have proposed



in [8] on the fusion using a non-trainable COM, namelgtudy conducted in [13] The classifiers involved are Gaussian
the mean operator. Different from our previous work, thisixture Models (GMMs), Multi-Layer Perceptrons (MLPSs)
study takes into account the effect of score normalisation suahd Support Vector Machines (SVM&II the score files are
that the resultant scores have zero-mean and unit-variangged to test the Gaussian hypothesis as reported in Section IlI-
The VR-EER analysis provides a very simple framework tG.
analyse what happens when the scores are correlated, or wheh subset of single modality experiments were selected to
the variances of the base-expert are high/low. Since thestedy fusion as reported in Section V. These experiments
factors are actually inter-related, attempts to analyse oneveere carried out by University of Surrey (2 face experiments),
the other often fail. Using the proposed framework testd®IAP (1 speaker experiment), UC3M (1 speaker experiment)
on the BANCA database, we were able to identify differertnd UCL (1 face experiment). The specific score files used are
contributing factors that determine the success and failure asf follow:
fusion, in the context of BA. Based on the VR-EER analysis, « IDIAP_voice_gmm_auto_scale_33_ 200
four commonly encountered scenarios of fusion in biometrice SURREY_face svm_auto
authentication are discussed and analysed. « SURREY_face_svm_man
In this paper, we also linked the concepts of ambiguity « UC3M_voice_gmm_auto_scale_34_ 500
decomposition [9] and bias-variance-covariance decomposi- UCL_face Ida_man
tion [10] that are important analysis tools in regression profer each of the 7 protocols. Each of these files contains
lems to specific classification problems (using Equal Erreiie following columns of data: the true identity, the claimed
Rate evaluation criterion). To the best of our knowledge, tligentity, a unique access tag and the associated expert score
link between these concepts and classification problems h#we the access. Moreover, for each protocol, there are two
not been shown elsewhere in the literature, as also pointed subgroups, called g1 and g2. In this paper, gl is used as a
by Brown [11]. development set (calledev) while g2 is used as an evaluation
In the literature, fusion in BA often relies on one or twaset (calledeva). By combining each time two baseline experts
reported experiments. It should be stressed that our approatia protocol, one can obtain 10 fusion experiments, given by
to fusion is different in that, we tried to conduct as manyC, (5 “choose” 2). This results in a total of 70 experiments
experiments as available to us, such that some meaningf all 7 protocols.
statistics can be derived and generalised to other fusion usin?
the same technique. ITl. PRELIMINARY AND RECENTFINDINGS ONVR-EER
Section Il presents briefly the BANCA experiment setup Our proposed theoretical model [8] has two parts. The first
whereby 1186 experiments were used to study EER afifie deals with Variance Reduction (VR) and the second relates
another 70 experiments were used to study fusion. Sectionftratio (which involves variance discussed in the first part) to
discusses the preliminary findings of the VR-EER analysigual Error Rate (EER).
and notations used. Section IV presents what happens to )
fusion when scores are normalised. The effects of varianfe Variance Reduction
and correlation are verified in Section V. Using these findings, The fundamental problem of BA can be viewed as a
we analysed four commonly encountered scenarios of fusiolassification task to decide if persan is a client or an
in Section VI. Two important analysis tools and concepimpostor. In a statistical framework, the probability tkais a
that are well-studied in regression problems are linked tlient after a classifielfy observes his/her scanned biometric
a specific classification problem in Sections VII and Villitrait can be written as:
Future extensions and limitations of the study are discussed = fo(fo(s(x))) 1)
in Section IX. This is followed by conclusions in Section X. Y=Jotjels ’
where, s is a sensor,f, is a feature extractord is a set
of classifier parameters associated to the classjfieif the
[l. EXPERIMENT SETUP classifier is associated to a unique client identifywe can
replaced by 6(j). Note that there exists several types of
The BANCA database [12] is the principal database useghssifiers in BA, all of which can be represented by Eqn. (1).
in this paper. It has a collection of face and voice prints afhey can be categorized by their outpyti.e., probability
up to 260 persons in 5 different languages. In this papefithin the rangel0, 1)), distance metric (more than or equal
we only used the English subset, containing only a total ef zero), or log-likelihood ratio (a real number). In the context
52 persons; 26 females and 26 males. There are altogetbemultimodal BA, y is associated to the subscriptwhich

7 protocols, namely, Mc, Ma, Md, Ua, Ud, P and G, eacfakes on different meanings in different context of fusion, as
simulating matched control, matched adverse, matched ¢§itows:

graded, uncontrolled adverse, uncontrolled degraded, pooled Folfe(5(x2))) if multi-sample

and grant test, respectively. For protocols P and G, there Folfo(5i(x))) if multimodal

are 312 client accesses and 234 impostor accesses. For all ¥ = Folfeus(5(x))) if multi-feature 2)
other protocols, there are 78 client accesses and 104 impostor f&,i(fe(s(x))) if multi-classifier

accesses. There are altogether 1186 score files containing
single modality experiments or fusion experiments, thanks to dAvailable at “ftp:/ftp.idiap.ch/pub/bengio/banca/barsmres”



Note thati is the index to thei-th sample in the context 1,..., N, denoted ago%,,)? is, according to [8]:
of multi-sample fusioni can also mean theéth biometric

modality in multimodal fusion, etc. In a general context, k2o b a k vk
we refery,; as thei-th responseand there are altogethéy <UAV) N p Cov(¥i7,Y7)
responses {=1,...,N). N

The analysis here, based on Equal Error Rate (EER), re- = iZE[WﬁWf]
quires that the class label of the claimant be known in advance. N i=1

EER is a commonly used performance evaluation criterion in
BA and will be defined in Section IlI-B. Suppose thg
is the i-th response (sample, modality, feature or classifier) i

belonging to clasg = {C, I}, i.e., either client or impostor. , hare we adopted the following notatiofiou(Y}*, Y*) as the
We adopt the convention that the meanypf is greater than covariance betweed’* and Y, for anyi,j € {1J N}
k=1 i 7 9 LIS .
that ofy;=". = , By definition, Cou(Y*, Y¥) = E[W*WF. Wheni = j, we
Supposey;’; is t_hey-th opserved sample of thieth response 5ptain the variance oF ¥, which is denoted ags*)2.
of class k, recalling thati = 1,...,N andk = {C,[}. In the second case, alV responses are used together and

We assume that this observed variable has a determinigfig compined using the mean operator; the resultant score can
component and a noise component and that their relationyis \ritten as:

additive. The deterministic component is due to the fact that N

the class is discrete in nature, i.e., during authentication, we vk 1 Zy‘k ©6)
know that a user ireither a client or an impostor. The noise coM ™ N R

component is due to some random processes during biometric =t

acquisition (e.g. degraded situation due to light change, miéer any k& € {C,I}. The variance ofY/,,, (over many
alignment, etc) which in turn affects the quality of extractedccesses), denoted &s¢.,,)?, is called thevariance of
features. Indeed, it has a distribution governed by the extrac&rage and can be calculated as follows (see [8] for details
feature setf, (s(x))) often in a non-linear way. By ignoring Of this derivation):
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the source of distortion in extracted biometric features, we 2 .
: : (cEon) = Cov(Y&on, Yeon)
actually assume the noise component to be random (while coMm COM> ~COM
in fact they may be not if we were able to systematically 1 £ 2
incorporate all possible variations into the base-expert model). - N2 Z (‘7.7‘) +
Let u¥ be the deterministic component. Note that its value FIN
is only dependent othe classt = {C, I'} and independent of 2 ok k
. . - — Z P T O
j. We can now modeyf;j as a sum of this deterministic value N2 e mmTmens
plus the noise termw} ;, as follows: L
k k k N
Yig = M + W, ©)) H’_N/
2 k k _k
for k € {C,I} wherew}; follows an unknown distribu- N2 Z PmnTmn 7

tion W* with zero mean ando¥)? variance, e w; ~ m=bmen
WE (0, (cF)?). By adopting such a simple model, from the L ) - 3
fusion point of view, we effectively encode thigh response WNe€réon, , is the correlation coefficient betwééfii andY,,;
of a biometric system as the sum of a deterministic value afff ¥ € {C,I}. The first underbrace term is thaverage
another random variable, in a class-dependent way. Followilgfianceof the base-expertskwhne th]? second underbrace term
Eqgn. (3), we can deduce thaf; ~ Y/ = W (uf, (oF)2). is the covarlancebetweenYm_ and Y} fo_r m # n. This is

J ¢ et because the term}, 0% ok is by definition equivalent to

N N m-n
correlation, i.e.,

Hence, the expectation af* (o{/er differentj samples) is:

E[Y}] = Elui] + EW]] = u}. 4) ok, nok ok = E[WEWE], )
Note that different from [8], here we do not requijrk to take Note thatp} =1 for k € {C,I}. The VR analysis shows
on specific values such asl for k = I and 1 fork = ¢. that[8]:
This assumption is true for discriminative training (i.e., using (Jk )2 < (O_k )2 9)
Multi-Layer Perceptrons (MLPs) or Support Vector Machines coMm AV/
(SVMs)), but not applicable for distance-based scores or logthen0 < pk . <1, it can be shown that:
likelihood ratios. Hence, removal of such assumption makes ’ 1 ) )
the analysis applicable to a wider context. ¥ (o5v)" < (0&om) - (10)

Let us consider two cases here. In the first case, for each

access)N responses are available and are used independemtlyother words, the upper bound (éerOMf is shown in
of each other. Thaverage of variancef Y}* over alli = Eqgn. (9) and its lower bound is shown in Eqn. (10). They are



attained in perfect correlation in the former case and uncavhereA is the threshold, and approximated by the commonly
related case in the latter case. Any other positive correlatiased Half Total Error Rate:

values will cause(JQOM)2 to take on values between these FAR(A*) + FRR(A*)

bounds. Hence, by combiningy responses using the mean HTERwin = 5 : (17)

rator, the r [tant variance i red t maller th . . L .
?hpee::/grégee(n’(a)fl:h: min?min?)evaslria':lﬁ:ueed 0 be smalle I—?’PERmin is minimum at A*. This is because FRR is an

increasing function (a cumulative density functiadf and
FAR is a decreasing function (one mincdf). A* is the point
B. Equal Error Rate Analysis where these two functions intersect. Let ElzR; be the EER

Let uﬁzc and u'fl be the means of client and impostorOf the combined scores and EER be the EER of the average

. . , of scores of N responses. Using Eqns. (11 and 12), their

access scores of a given experimentWithout loss of gen- . . ' )

; e kT P +—; corresponding F-ratios can be defined as follow:
erality, we assume that;=" > p;=". Let 0,=% and o,
be the standard deviation of the client and impostor scores. In E-rati
BA, there are two types of errors committed by the system, @om okl +okTh,
often measured by False Acceptance Rates (FARs) and False _ k=0 — k=T
Rejection Rates (FRRs). FAR] is calculated by integrating F-ratiogy = —2Y——41. (19)
the impostor score distribution from a given threshalih the Tav. T oav
score space te-co while FRR(A) is calculated by integrating In order to show the hypothesis that the EER of the combined
the client distribution from-co to A. Equal Error Rate (EER) scores is less than the EER of the the averagh oésponses,
is a unique point where FAR equals FRR. By assuming thiag.,
the client and impostor scores follow Gaussian distributions, EER-om < EER4y, (20)
one can derive the EER of a given experimprais (see [8]
for details of this derivation) :

we first need to calculatg) ando? for k = {C, I} andp =
{COM, AV}. ok|p = {COM, AV} were defined by Eqns. (5

- 1 . k .
EER, — % _ %erf (F ratl0p> 7 (11) and 7), respectivelyu’y, is the average olV responses when

V2 used separately. It is defined as:
where e . 1 i\’: )
. =S = pav =~ 2 His (21)
F-ratio, = 7(;:0 - JZ:N (12) N &~
p p
and uEoar is the mean of the combined scores /§f responses
9 [z (used simultaneously). It is defined as:
erf(z) = —/ exp[—t?] dt. (13) N
v ElVbor] = nbou = D0 VY]
It should be noted that the term F-ratio is used here because coml = Heom =7y Pl !
this value is somewhatimilar to the standard Fisher ratio, but L&
not defined exactly in the same way. In a two-class problem, = — Z“f = k. (22)
the Fisher ratio [14, pg. 107] is defined as N i—1
ph=c — k=t Hence, uf.ny; = p4y. Since F-ratio is non-linearly and
(oF=C)2 + (gk=T)2 (14) inversely proportional to EER as shown in Eqn. (11), the
p p

inequality of Eqn. (20) can be rewritten as:
F-ratio is used here just to underpin the idea that the degree of . .
separability of the class distribution affects the authentication F-raticcon > F-ratioay, (23)

performance measured by EER. There exists similar measuigs|acing the two F-ratio terms using Eqns. (22 and 21) into

such as thed-prime metric proposed by Daugman [15]. 'tEqn. (23) and using the relatigif,,,, = 4%, we obtain:
measures how separable the client distribution is from its

impostor counterpart. It is defined as: 1Eon — Béom - Wi — 1
d = —— — (15) ocom T 0com = 0ay t0oay
\/5(0570)2+§(0£J)2‘ Z otom < Z ohy (24)
In our opinion, F-ratio should be used instead since it is h={C 1} =101}
directly related to EER by Eqn. (11)). This inequality confirms the upper bound already found in

We call the EER based on Gaussian assumptiorttthe- Eqn. (9). Hence, the inequality of Egn. (20) is true, i.e., fusing
retical EER to distinguish it from theempirical EER which scores can reduce variance which results in reduction of EER
is calculated by direct minimisation of the following criterion:(with respect to the case where scores are used separately).

. ] This formed the argument in [8] for why fusion using multiple
AT = argmin IFAR(A) — FRR(A)], (16) modalities, features, and classifiers works for BA tasks.



C. Validity of the Gaussian Assumption

Empirical EER
Theoretical EER

To check how accurate the EER function is as compare&i N o
to its empirical counterpart, we conducted as many as 1186 g ﬁjgi
experiments on the BANCA database as described in Seg; !
tion 1l. There are 490 experiments from the output of Multi-" ﬁo?@

Layer Perceptrons (MLPs), 182 experiments from the output Y
of Support Vector machines (SVMs) and 514 experiments,
from the output of Gaussian Mixture Models (GMMs). Two <
approaches are adopted here. The first approach is to test

whether for each of the 1186 experiments, the I‘eSpeCtive(a) Empirical and theoretical (b) Empirical vs. theoretical
client and impostor scores are normally distributed or not. The EER vs. F-ratio EER

second approach is to directly compare the empirical EER
against its theoretical counterpart (assuming that client and

10 15 40 50

20 30
Empirical EER (%)

0.09

impostor distributions are normally distributed). | | | | | me.
For the first approach, we applied the Lillie-test [16]. It oo gmm |
evaluates the hypothesis that a set of (client or impostor) o.07r ' ' i

scores has a normal distribution with unspecified mean and
variance against the alternative that the set of scores does not
have a normal distribution. This test is similar to Kolmogorov-
Smirnov (KS) test, but it adjusts for the fact that the parameters
of the normal distribution are estimated from the set of scores
rather than specified in advance. Using this test, we found that 0.02L
22.85% of impostor scores and 25.89% of client scores (out
of 1186 experiments) supported the hypothesis that they are
Gaussian distributed. Hence, only approximately a quarter of °
the distributions are Gaussian according to the Lillie-test.

The results of the second approach are shown in Figure 1.
From Figure 1(a), it can be seen that both the theoretical and
empirical EERs are non-linearly and inversely prOportlon?—"g. 1. Results of experiments carried out using all the available 1186

to their F-ratio. Removing the F-ratio, we compared thgperiments on the BANCA score database: (a) Theoretical EER and empirical
theoretical EER directly with its empirical counterpart in FigEER (HTER) versus their common F-ratio (b) Theoretical EER versus

; e -ampirical EER (HTER) using output of different classifiers — 490 MLPs, 182
ure 1(b)' Here the output of different classifiers are plOtted W!@i[/]Ms and 514 GMMs; the correlation coefficient between the two variables

different symbols. If the theoretical EER matches exactly it§0.9573. (c) Absolute EER difference between theoretical EER and empirical
empirical EER, the points (each one corresponding to a singleR versus the average KS-statistics between the corresponding client and
experiment). should be on th(? diagonal "ne-. One measure@u()ssstgndalsstsrhbnﬂg%gi KS-statistics measures the degree of deviation from
agreement is to use correlation. Its value is evaluated to be
0.9573, indicating the the variables asgongly correlated
In other words, knowing theoretical EER, one can use the
correlation toapproximatelyestimate the empirical EER. ~ EER difference. In other wordghe theoretical EER is fairly
Figure 1(c) plots the absolute EER difference (betwedRPUSt to deviation from the Gaussian assumption _
theoretical EER and empirical EER) versus the average K.S_Itshould_be noted that a more |ntgrestlng issue to investigate
statistics of their respective client and impostor distributiorl§ the relative values of EER, i.e., if the empirical EER of
(note that from each experiment, we will have two Ksexperimenta is more than the empirical EE.R of experiment
statistics values, one for each distribution). The KS-statistits d0€s the theoretical EER of these experiments also follow
measures the degree of divergence from normal distributidf€ Same trend? Using the data at hand, we calculated all the
As can be seen, the output of MLPs (trained using sigmo‘ﬂ?ss'b'e combinations of two EE_R e_xperlments. This turns
output function) gives high KS-statistics whereas the outpufst t© be!'*6C; = 702,705 combinations. The number of
of SVMs and GMMs conform better to the Gaussian assumglisagreement’d, can be calculated as follows:
tion. — (EERg™" EE empy EE heo EE heo 2
Prior to this experiment, we thought that deviation from a K R > BER™) ~ R > EER, )| (3)
Gaussian would mean large absolute EER difference. If tH®y (a,b) € {(1,2),(1,3),...,(1185,1186)} and
was the case, absolute EER difference would have been
increasing proportionally with respect to the KS-statistics. It (21 > 2z9) = {
turns out that this is not the case. In Figure 1(c), despite high
KS-statistics of MLP outputs, their corresponding absolufEhe percentage of disagreement turns out to be 11%. If
EER differences are spread below 0.06; some are even neath@! 1186 experiments are representative of biometric authen-
Hence, deviation from Gaussian does not mean large absotfitation tasks, we can conclude that to compare any two
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(c) Absolute EER difference vs. KS-statistics

1 if true

0 otherwise (26)



experiments, 89% of the time, the theoretical EER (calculatétsing Eqns. (4), (27) and (28), the variancegf)}}” * is:
from the F-ratio) can give a correct answer as compared (tonorm k) _ COU(Ynorch Ynorm,lc)

using the empirical EER as the ground-truth. Of course, ‘aCOM coMm »-coM
mixture of Gaussians or non-parametric Parzen window with - E (ygg]&" *_ plygorm ’f]) }
Gaussian kernel could have been used to accurately model the

underlying client and impostor distributions. In so doing, we Yk — polt 1 . — 2
may not be able to further perform the analysis in sections = Flly Z ol — Z : a”l
that follow.

The VR-EER analysis presented here is not simply theoret- Yk — Mz 2
N Z all

ml

ical. In the following section, we propose to put this analysis = F

to test.
s -

To expand Eqgn. (30), one should take care of possible corre-
lation between differentV* and Wk, similar to Eqn. (7), as

IV. SCORENORMALISATION

To begin with, we would like to fuse the scores of tchOHOWS:

systems using the simple mean operator (trainable weighted normkg Wkwk
sum and non-linear functions could be included in this analysis (ocon™)” = <Z Z gl gall )]
in the future). N 1k" lk
. o . E[W; W]

Before fusing the scores, it is necessary to normalise them = — Z y
so that the scores of a given base-expert with high variance N oj
will not dominate the fused decision. We used #ego-mean 9 N E[WEWH
unit-varianceapproach. This is done by subtracting an input +W Z W'
score from itsglobal mean(estimated from a training set) m=lm<n ‘m n
and divide it by its standard deviation. Lglt be a raw output = (VE)2+ (VEo)?, (31)

score which follows the d|str|but|ol’(’f The normalised score

k \2 i
distribution, Y™™ k can be written as follows: for any k € {C,I}. The term(V},,)? is the averagenor-

malisedvariance of the base-expert scores while the second
term (V)2 is thenormalisedcovariance betweel e %

m

Ynorm,k _ }/zk - E[)/iall] and anlw'r‘m k- for m 7& n.
g Cov(Yall yall) The F-ratio is:
Y ,u“” i orm :LLTCL'O(;;ZJC:C 7 ﬂgg;&’kz}
= Tllv (27) F-rat oM = norm,k=C norm,k=I" (32)
g; Tcom +tocom
V. EFFECTS OFCORRELATION, VARIANCE OF BASE

for k € {C,I} and Yol = 1/2(Y}=C + Y}=1), i.e, the EXPERT SCORES ONFUSION
union of the two dlstrlbutlons When combining the scores Having derived all the parameters in the VR-EER analy-
using mean, we obtain: sis in the previous section, namelyjoyi", oror . and

F-ratighs, 1y, we carried out experiments on the BANCA
N fusion database, each tinsembining only twaexperts. These
normk 1 norm,k experiments can be divided into two types: multimodal fusion
Yoo Yoy, (28) SXPS . 0 tWo
(fusion of two different modalities, i.e, face and speech ex-
perts) and intramodal expert fusion (of two face expents
two speech experts). We expect multimodal fusion to be less

The expected value df;5 ", for k = {C, T}, is: correlated while intramodal fusion to be more correlated. This
is an important aspect so that both sets of experiments will
Mé%}&’k _ E[Ygg]\}” k] cover a large range of correlation vglueg. . B
A naive approach to analyse fusion is to find empirically
norm.k the relationship between minimum posteriori HTER and
- N ZE Y ] the sum of correlation of client and impostor distributions.
2;1 Let the client and impostor-dependent correlations between
_ 1 Z B[V} — pg" two baseline systems (to be fused) be the scalarand p;,
N Pt odll respectively. The results are shown in Figure. 2. From this
1 N M]'C _ ,u‘»l” 2In general, the correlation of scoresNfresponses are a matrix 8f by N
= ¥ Z ZJTZZ' (29) with elementsps,,». It has the property that, m = 1 and pm.n = pn,m-

=1 i In the case of two responses, we simply wijtén place ofp; 2.
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figure, it can be observed that multimodal fusion experiments v "
. ; ) ; “08 ‘ ‘ ‘ ‘ ‘ ‘
have less correlated scores while multi-feature fusion experi- 04 -02 0 02 04 06 08 1

ments have high correlated scores. One would have expected
that the minimuna posterioriHTER is somewhat proportional

to pc + pr. This is actually partially true because the variance
of base-experts are not taken into account. As a result, there

is no clear trend in this graph and one cannot conclude th@&jf. 3. Experiments carried out on fusion > x 7 = 70 experiments,

HTER is proportional to correlation. i.e., combining2 expert systems each time out of five available systems,
B Ki f th h d VR-EER Vsi for all the 7 BANCA protocols: (a) Empirical F-ratio versus theoretical
y making use of the enhance - analysis W”ﬁratio on the development set. (b) F-ratio of development set versus its

zero-mean unit-variance normalisation, we propose to evaluateluation set counterpart. The correlation between the two variables is 0.90.
the theoretical versusempirical parameters in the VR-EER (c) Correlation of client scores versus correlation of impostor scores. The
. . correlations between the two variables (class-dependent correlations) on the
analysis. For each of the parameters tested ftbemretical development and evaluation sets are 0.85 and 0.80, respectively.
means that the respective parameter is directly estimated using
the unnormalised input score set. This score set is of dimension
two, since only two expert scores are fused at a tiemapirical impostor scores). This term measures, in average, how good
means that the respective parameter is estimated using tife base-experts are, when acting alone. The last component
resultant fused score. corresponds to the sum of square-root of the non-diagonal
Figure 3(a) shows empirical F-ratio versus its theoreticedrms of covariance matrix of the fused scores (for both
counterpart calculated uniquely on the development set. Alient and impostor scores). Note that the last two factors
can be seen both empirical and theoretical F-ratio are exaatnnotbe separated due to the square-root of variance in the
the same. Their equivalence can be shown mathematically (se@aominator of F-ratio. Understanding how these three factors
Appendix 1). Hence, the performance of fusion is determinexte related (by F-ratio) can guide us to understand how EER
by F-ratio, assuming that the scores are normally distributeshould be minimised or how F-ratio should be maximised,
as defined in Eqgn. (32). The fused and normalised mean ared, maximising the mean difference and minimising the
variance is defined in Egn. (29) and Egn. (31), respectivelyariance and covariance components. Because of these three
From Eqgn. (31), we know that the fused and normalisedterrelated factors, analysing any one of them alone, as done
variance has two components: variance and covariance. BaseBigure 2 or in Figure 3(c), does not lead to any convincing
on the Gaussian assumption, fusion performance consistscofclusion.
three factors: (1) mean difference (the nominator of Eqn. (32)), The above analysis was performed by combining two base-
(2) variance and (3) covariance of baseline experts. The filiste experts. It is natural to ask if the analysis would work
component measures how far the client mean of the fuslkeg combining more than two experts. We repeated the above
score is from its impostor counterpart. The second componexperiments for combining three and four experts and were
corresponds to the sum of square-root of the diagonal terafde to predict the F-ratio accurately. The results are similar
of covariance matrix of the fused scores (for both client artd those presented in Figure 3(a) (not shown here). This

(c) Correlation of client vs impostor scores



is somewhat expected because the VR-EER analysis is n@p o to af” by constraining that they have the same F-
limited to two experts. Similarly, the analytical proof showingatio while assuming that? of the resultant conversion takes
the equivalence between empirical F-ratio and theoretical & —1 for impostor distribution and for client distribution,
ratio in Appendix | is a general framework that, of coursegs follows:

includes fusion ofN experts. _ pk=C — k=1 1-(-1)
Figure 3(b) plots the F-ratio found on the development set F-ratio= ——5 m =T = i=cr =r;- (33
versus the F-ratio found on the evaluation set. They are not 7i 7 i to;
exactly the same this time because there is a mismatch betw&Bg solution is:
these two data sets. Nevertheless, their correlation is 0.90, Jf" = oo}, (34)
indicating that knowing F-ratio from the development set, Ui/h
is possible to predict reasonably F-ratio of the evaluation set. ' 2
A follow-up study using weighted sum [17], instead of mean Qi = W’

as done here, also showed that using weighted sum operator,

where weights are found on development seempirical F- 107 ¥ = {C, I} _ -~
ratios of fusion experiments (using all possible combination By taking the square of Eqn. (34) and applying the definition

of base-experts) matcipproximatelythe F-ratio on the eval- O variance ofy;, we obtain

uation set. The plot of F-ratio between the development and (gfa’)2 = (w)*E [(yf — E[yf])Q]
the evaluation sets is similar to Figure 3(b) (not shown here), X i 2
i.e., strong correlation is also observed. More details on how = E [(@i(%‘ - Ely;1)) ] (35)

to derive the F-ratio of weighted-sum fusion (instead of meag)ce,,.
7

as done here) can be found in [17]. , _valid when applying toy;, instead ofy*. Therefore, to map
Figure 3(c) shows a 2D plot of the following two vari-the client and impostor means to canonical values, one needs
ables: correlation of client and that of impostor scores. Tq_g modify the variancavithout affectingthe F-ratio and the

overall correlation between these two variables is 0.83. Thi§esponding EER. This simply translates into multiplying
indicates that knowing the covariance (or correlation; SiN&orey; with a;.

one is proportional to the other as shown in Eqn. (8)) of The second assumption implies that=C o« oI for
the impostor scores, one can approximate the covariances%temi € {1,2} as well as their covariance !

the client scores. Note that all intramodal fusion experiments

have high correlation values. Figure 3(c) thus has two clusters. P
The cluster in the upper right corner belongs to intramodﬁl
fusion experiments whereas the cluster in the lower left cor
belongs to multimodal fusion experiments.

is not dependent on the class labgEqn. (35) is also

k=1 k=C _k=C k=C _k=I _k=I
oy 0y oy o5 .

x p
is rather intuitive and actually not necessatry. It just simplifies
e analysis so that one considers only one class at a time. The
variance of the two classes can be merged by using the relation
found in the denominator of Eqn. (32). Hence, the class label
VI. ANALYSIS OF COMMONLY ENCOUNTEREDSCENARIOS [ can be dropped.

IN BIOMETRIC AUTHENTICATION For the first case, without loss of generality, we assume

Suppose we have the following scenarios: o1 < o2 (i.e., system 1 is better than system 2) and 0.

1) Combining 2 uncorrelated experts with very differen,lt"ence' for the .cc.)mbinaFion to Hmetter than the best system
I.e., system 1, it is required that:

performances

2) Combining 2 highly correlated experts with very differ- cioy < 0F
ent performances 02 + 02 + 2po109 )

3) Combining 2 uncorrelated experts with very similar 1 01 (36)
performances ) , ) , _

4) Combining 2 highly correlated experts with very similafcon 1S c@lculated using Eqn. (7) with N=2.
performances We see that:

2 2
. . . . -2 .
The first and third cases are often encountered in multimodal 03 < 307 po102

fusions while the second and fourth cases are encountered\ote that in general, the covariange> 0. For instance, in
intra-modal (multi-feature) fusions. Fusing experts of similanultimodal fusion,c is around zero while in multi-feature
and different performances are encountered in almost flkion, p is positive.
biometric authentication problems. It should be noted that em-Hence, the combined system will benefit from the fusion
pirical evidences of these scenarios have been examined inffien o3 is at mostless than 3 times of? sincep ~ 0.
but unfortunately there was a lack of theoretical explanation. Furthermore, correlation (or equivalently covariance; one
To make analysis simple, let us assume that (i) the tvi® proportional to the other; See Eqgn. (8)) between the two
base-experts have the same numerator of F-ratio and that iistems penalises this margin3f?. This is particularly true
for each base-expert, the variance and covariance of client dodthe second case singe> 0. Also, it should be noted that
impostor distributions are proportional. The first assumption js < 0 (which implies negative correlation) could allow for
actually reasonable because scores can be normalised to hargerc?. As a result, adding another system that is negatively
canonical client and impostor means. For instance, we cemrrelated, but with large variance (hence large EER)



improve fusion. Unfortunately, in biometric authenticationyWhat we really want to do is in fact measuring the diversity
2 systems are either positively correlated or not correlatasithout fixing the thresholdn advance. For a specific case
unless these systems gointly trained together by algorithms in biometric authentication, this can be done via EER as

such as negative correlation learning [11]. proposed in Section 1lI-B and [8]. By so doing, one assumes
For the third and fourth cases, we havg ~ o¢3. Hence, that the client and impostor scores can be modeled by Gaussian
Eqn. (36) becomes distributions, and that the prior class distributions and cost of
pos < ol (37) two types of errors are equal.

Note that for the third casey ~ 0 which will satisfy the
constraint of Egn. (37). Therefore, fusion wilkfinitelylead

DECOMPOSITION
to better performance. On the other hand, for the fourth ) )
case where ~ 1, according to Egn. (37), fusion may not Ueda and Nakano [10] presented the bias-variance-
necessarily lead to better performance. covariance decomposition while Brown [11] provided the

link between this concept and the ambiguity decomposition.
VII. RELATION TO AMBIGUITY DECOMPOSITION Howevgr, both discussipns were limited to the context of
' regression, as clearly pointed out by Brown [11, Sec. 3.1.2]. So
We would like to link our findings with those of Krogh andfar, we have not discussed about mismatch between training
Vedelsby [9] (see also [14, pages 368]), who showed that, dAd test conditions. The introduction of bias in classification
our context: can actually be very useful for countering such a problem, as

ElVE . k12 B (YF — b 2 will become clear later. _
Yo = ncou] Za (Y = ncou) Suppose that the noise model in Egn. (3) can only be

VIIl. RELATION TO BIAS-VARIANCE-COVARIANCE

' X A 2 calculated from a training set. During testing, the noise model
- ZO‘ZE (Yi - YCOM) deviates from the one observed during training, i.e., there is a
. , L . mismatchbetween training and testing. Suppose that the new
(0tom)? = acc —div", (38)  noise model now is:
whereq; are the weights in weighted sum combination. This ye = Mf" + wk, (41)
equation is also true for the normalised versioi’gt, ,, i.e., ’
yzormok  Note thatn; = 1/N because we are using the meaihere
operator instead of weighted sum. The first term, denoted as ul =k nk (42)

acc (or “accuracy”), measures how accurate each base-expert

is with respect to the mean score of the combined mechanidf Other words,2 is a bias. By using the new noise model,
It depends only on the individual base-experts. The secowg also assume that the noise teafilV; do not changein
term, denoted as div (or “divergence”), measures the spreadPgth training and test sessions. By rewriting Eqn. (41) using

prediction of the base-experts relative to the score of combinEén- (42), we obtain:

mechanism. o _ yf“' = if + B 4wk, (43)
Based on the definition of accuracy in Eqgn. (38), the _ N . _
accuracy oﬂ/ggﬁ%’f as discussed in section IV is: Note that Eqn. (43) is also true fof5,,, and their normalised

) counterparts (i.eY55 ™ andY;"""™). Therefore, it is also
ac = v Y ENES - neonr] valid to write:
i norm,k, norm,k norm,k norm,k
k a2 Yoor' = keont Fheon Fwions  (44)
1 )C;k — ,u?” 1 Mj — ;'1 . ee norm,k .
= ¥ Z E S N By definition of y/.5 ", it follows that:
i T J J 1 N h,k
X norm,k i
1 EW}WE] kN2 hcon'™ = Z — (45)
= N Z (Uqll)g = (VAV) : (39) N i=1 0i

L . . andw?2"™* is defined similarly.
From Egns. (38) and (31), it is obvious that divergence is , c¢OM ™ )
ans. (38) (1) g With the noise model in Eqn. (44), the meangf "

simply: :
4 is:
dvd = — (V& )2 (40) N
Mnorm,k,/ - E |:Yn07'm,k-,/:| — l ZE |:M'(wmn,k,/:|

The negative sign in this term shows that the divergence is ' ¢9M com N ‘
indeed negatively proportional to the covariance component. N -

. . . . 1 k + hk _ ,,all
Hence, conclusions drawn in Section V also apply here: _ 72% i i
divergence (negative covariance) is not a sufficient metric for N &~ oot

measuring classification error diversity. This explains why a 1
number of heuristics to define classification error diversity = Ngoc;ﬁ’k + Nz
have been proposed in the literature [18], all based on zero- i
one loss function where a threshold has already been applied.

hk

all
o

norm,k norm,k
tcor +hoom” (46)
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Using Egn. (46), the class-dependent Mean-Squared Erfidre corresponding Half Total Error Rate (HTER) will be:
(MSE) due to this mismatch can be calculated as follows:

2
norm,k norm,k,/
E |:<YCOM — Hcoom ]) }
norm,k norm,k norm,k 2
=L (YCOM’ — o — hcons )

_ hnorm,k 2 E Ynorm,k norm,k 2
=\lcor ) T com’ — Hcom

HTE nOCS’JTCI,apost = EE%%ﬁ,apost
1 1 F-ratigwr™ wvos
— - _ Zerf F-ratigio T, apost (51)
2 2 V2

When one does not know the amount of mismatch atpeiori
threshold that will be used is the one that is estimated from
the training set, i.e.,

k=I,norm _C

+ k=C,norm _J

A Koo 95 T Hcom g

(47) apre 0._] + U.C ’
i i

2
= (neeii®) + (VA + eyt ©2)

This threshold is then applied to the mismatched test set. As
where the first underbraced term is Biaand the second a result, thea priori HTER (on the test set) will be:
underbraced term is variance of the fused score (found in -
the training set). As defined in Eqn. (31), the second term 011 (Bapost) (53)
can be further decomposed into}7"™"*)? (i.e., the average where, in a general context, for any givanthe corresponding
variance of all experts when used separately) 2}””“)2 HTER is:

(i.e., the spread of prediction; negative divergence as found in

Eqn. (40)). Eqn. (47) is the so-callétas-variance-covariance HTEREGH (A) =
decomposition. Note that this is a decomposition of MSE. In

the context of classification, MSE is not relevant; Half Tota\1vhere
Error Rate (HTER) is. HTER has already been defined
Eqn. (17) as a function of threshol (note that HTER;,, is
only aspecificcase where the threshold gives minimum EER).

nLoT M

HTERGO M apost = HTE

(FAREG (A) + FRREG (A)) » (54)

N =

- norm 1 1
EARCOM(A) =5 8

k=I,norm 2 ’

k=I,norm k=I,norm
£ <A — Mcom — hoom
Scom

(55)

The variance of 27" is: and
k=C, k=C,
norm,k,/\2 _ E Ynorm,k,l E Ynorm,k,/ 2 FR orm A _ 1 1 f A - MCOMnOTm - hCO]WnOTm
(ccor ' )° = com =~ coMm RO (A) = §+§er k=C.morm
OcoMm V2
Ynorm,k+hnorm,k 2 . . ( 6)
_ coM coM It is possible to show that
- norm,k + hnormﬁk)
Heom com HTE n(g}r&,apost < HTE ncgﬁ,apri'
= E [(Yé‘&}””“ _Nrct'oorjr\n/[,k)Q] This can be done by showing that HTER}; ;. iS the
global minimum, i.e.,
k
(0con )’ (48)

con(A).
o oo, 52 1 0% o a8 il ot b ptmaliniuding 5.
P ‘E act this global minimum happens at EER where FARR

. . N
n ff he bias, wher he MSE is. However : . : .
ot affected by the basz ereas the MSE is. Ho ever, t gcause FRR is an increasing function of the threshold and
paragraphs that follow will show that the presence of bias ¢ : . .
e R is a decreasing function of the threshold.
adversely affect the classification error measured by HTER. : . . .
In summary, this section shows that the bias-variance-

When one knows the amount of mismatch (i.e, one has _ . i .
o T Covariance decomposition (of MSE) is not relevant for clas-
access to the test data), thgosteriori F-ratio is:

sification problems. Specifically, in a two-class problem such
F-ratiofss as biometric authentication, the conceptseaopriori and a
OM,apost L . . .. .
norm k=C. morm,k=I posteriorithreshold play an important role in de_c_|5|on-m§1_k|ng
_ Hoom — ”CQJVT — because these thresholds directly affect a specific classification
gk grosn k=1 error called EER Under mismatch between training and test
(ug"g’;}”“zc + hgtgﬁk:c), data sets (due to the bias paramétgr the optimal threshold
( ( norm, k=1, | hnorm,k:I) ) will not be the one found on the training data. This section
= T T e g B e - (49) actually provides a realistic theoretical framework that can be
Tcom T ocom used to measure the amount of error due to this mismatch
(in terms of HTER) by using Egns. (54-56). Under such
mismatch, the best decision one can make, supposing that one
has access to the test data, is to useatipesteriorithreshold.

Agpost = arg mAin HTE (57)

Note that at thea posteriori F-ratio and its corresponding
posteriori EER, their corresponding threshold is at:

k=I,norm k=I,norm
< (/ikcogf ‘*‘hck*ogf )Uz‘CI—"_ )
= 7norm + ph= normy ]
(Lconr )o; . (50)

3This idea can be extended to the general classification error but this is not
the focus of this paper. The last paragraph of Section IX drafts a procedure
to do so.

COM
O‘Z-I + O‘Z-C

Aapost =
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Of course in reality, the mismatch is unknown in advance. Omaad -
possible solution will be teestimatethe probable mismatch FRR(A) :/ Y*=Cqy (59)
and then to pick the corresponding bia§. This bias can A

then be used to calculate the new threshold using Eqn. (5QVhen they are assumed to be Gaussian distributed, they have
the following parametric forms:
IX. LIMITATIONS AND FUTURE EXTENSIONS

1 1 A — pkF=t
It should be noted that the present theoretical study is FARA) = 5-— 2erf<ak:l\/§>7 (60)
limited to themeanoperator. An extension to the weighted sum
was investigated in [17]. To decide whether to perform fusicid
or not, the best way is perhaps to directly perform the fusion FRRA) — 1 1erf A — pk=¢
experiments. However, a more efficient way to achieve the (A) = 5+3

2 2
same goal is tpredictthe fusion performance based on F-ratio L . . .
. L : : : here the erf function is defined in Eqn. (13). When applying
thout explicitly running the experiments) as done in [17]V q
(without explicitly running xper ) in § constraint FARA) = FRR(A), one obtains Eqn. (11).

Performance estimation is particularly useful to select a sub h | oh th ) fortunatel ol
of experts that will provide the best fusion performance in 0! any other values of, there Is uniortunately no simple

more efficient way as compared to direct experimentation.Trﬁépress'qn’ without further introducing S|mpI|cat|or! to the
is our current research direction erf function. However, they can be computedmerically

This study is also limited to the assumption that the clieﬁr each of theA values, using _Eqns. (58) and (59), or
and impostor score distributions a@aussian However, as —a">: (60) and (61) when assuming that the class-dependent

shown in this study, deviation from such assumptitid not scores are normally distributed. Because of the need of using

severelyimpact the predicted EER performance. This may %umerical calculation, analysis from Section VI onwards is
due to the unimodal nature of the class-dependent distributi?H.mbersome’ although not |mp055|ple. Note that the.plo,t of
To make the analysis more general, one obvious way £§A‘R(A)’ FRRQA)) for all A values is called the Receivers

to avoid the Gaussian assumption. One possible resea Rerat;_ng Curvel (RV(\)/E) o:jth_e IgET_cur\[/Ee whegoplottzd gf
direction is to use different distributions to fit the nature of "on-'\n€ar scale. en derived using Eqgns. (60) and (61),

the scores (e.g., Poisson distribution for distance scot@s, they are truely Gaussians and will show up as straight lines on

distribution for log-likelihood ratios, etc) or by an empricafhe Decision Errror Trade-off (DET) curve. Hence, as can be

procedure thatinds the most suitablend existing distribution seen, extending the finding from EER to the more general case

using the KS-statistics. Another direction is to use a mixtufd possible. However, numerical simulation is unavoidéble
of Gaussians. In this case, an analytical study such as the one
done here may not be possible. Yet another direction is to X. CONCLUSION
make the client-dependent scores more normally distributed Combining multiple information sources such as subbands,
This will maintain the analytical solution while tolerating forstreams (with different features) and multi modal data has
imprecision due to non-confirmity of the Gaussian assumptioshown to be a very promising trend, both in experiments and to
Although this study considers only zero-mean unit-variang@me extent in real-life biometric authentication applications.
normalisation (or z-score), one can replace the global mepaspite considerable efforts in fusion, there is a lack of
and standard deviation parameters to any bias and scalinglerstanding on the roles and effects of correlation and
values estimated by different procedure. Suppose that thgagiance (of both the client and impostor scores of base-
two parameters are calldgd and A. Any linear transformation experts). In this paper, we proposed a theoretical model of
will necessarily make use of these two parameters. As a resgljual Error Rate as a function of F-ratio, which itself is
our analysis can baelirectly extended to anyinear score a function of correlation, variance of base-expert and the
transformation (or normalisation), such as those proposeifference of mean of both client and impostor distributions.
in [19]. However, the same analysis cannot be proceeded fthe fundamental assumption is that the underlying client
non-linear score transformation. One way to get around thisd impostor scores distributions are Gaussian. Although this
issue is to estimate the VR-EER analysis parameters on tigumption is not always true, based on 1186 experiments
transformed (or normalised) scores by the respective nonaken from the BANCA multimodal database, it was found that
linear function instead of working on the unnnormalised scotRe predicted theoretical EER points based on the Gaussian
space. assumption match approximately the EER points computed
Lastly, although only the EER value is studied here (as #mpirically from the scores directly. This is a strong indication
Section I1I-B), one can extend the present finding to a motRe Gaussian assumption is acceptable in practice.
general case, whereby the EER constraint by its definition, This analysis takes into account the effect of score normal-
i.e, EERA) = FAR(A) = FRR(A), does not hold anymore. isation. While there exists a lot of literature on fusion, scores
Given the mean and variance of client and impostor distribere often assumed to be independent. Here, we explicitly
tions, the following procedure can be used to find FAR ansbnsidered this factor and verified the proposed theoretical
FRR for an arbritary thresholdh: model using the BANCA multimodal database. Experimental

(61)

A
FAR(A) -1 Yk:Idy (58) 4Due to limited space, we only describe the procedure to do so here, even
oo though the DET curve could have been plotted as an illustration
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results show that the higher the variance of base-experts amdhis case, numerical analysis (instead of analytical analysis

its covariance counterpart, the lower the F-ratio will be aras done here) would have been required.

consequently the higher Equal Error Rate (EER) will be. This

is because F-ratio is inversely proportional to EER. Variance ACKNOWLEDGMENTS
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that variance and covariance of base-experts are not the

only criterion that determine fusion performance, the mean APPENDIXI

difference between fused client and impostor scores is anothd’ROOF OFEQUIVALENCE BETWEEN EMPIRICAL F-RATIO

The bigger it is, the better F-ratio and hence the lower EER AND THEORETICAL F-RATIO

will be. The estimated theoretical and empirical parameters can be
Using a mean operator as fusion, we analysed foghown to be exactly the same mathematically. Suppose there

commonly encountered scenarios in biometric authenticge M* accesses, wherda/*=¢ are the number of client

tion which include fusing correlated/uncorrelated base-expefiscesses and/*=! are the number of impostor accesses.

of similar/different performances. The analysis explains ar8Lippose also that*, is the output of thei-expert andu-

shows that fusing two systems of different performances ti$ access given that the class label is= {C,I}, and

not alwaysbeneficial. The theoretical analysis shows that if=1, ... N andu =1,..., M*. ¥ can be estimated by:
the weaker base-expert has (class-dependent) variance three "

times larger that of the best base-expert, the gain due to e 1 L ko ok 62
fusion breaks down. This is even more true for correlated Hi =" D> Yiu=Yl (62)
base-experts as correlation penalises this limit further. We also S .

showed that fusing two uncorrelated base-experts of simifg?r theu-th access, the combined score is:
performancealwaysresult in improved performance. Finally, 1 Y , .

fusing two correlated base-experts of similar performance will N Z Y=Yl (63)
be beneficial only when the covariance of the two base-experts i=1

are less than the variance of the best expert. In any ca®bg empirical estimate ofé.o s, fiGonr.emp 1S given by:
positive correlation “hurts” fusion.

We also linked the concepts of ambiguity decomposition 7%171@ _yk (64)
and bias-variance-covariance decomposition to classification M o
problems using EER evaluation criterion. The result of angl-

: oy . : te that:
ysis shows that “diversity”, which measures the spread o .
prediction score with respect to the fused score, is actually , 1 M
negative of covariance. As a result, analysing diversity alone/coM.emp = 77 Yiu
is necessaryput not sufficiento estimate good fusion, unless u=1
measures are taken to normalise the variance against a “canon- 1 al v interchange the
ical” mean (Section VI). This somewhat confirms the findings - N Z b < i andu summations)
in [11]. By linking bias-variance-covariance decomposition ’;1
to classification problems, we showed that bias or mismatch _ 1 Zﬂk
between training and test sets of scores of the base-experts can N pt !
affect the mean and variance components of the fused scores. ok

= HcoM,theo* (65)

It is found that if the bias of base-experts can be learned from
the data, such bias can be incorporated into the fusion systétence, they are the same. The empirical variance can be
Finally, several limitations of our analysis were presenteghlculated as follows:

in Section IX. Future research directions will concentrate on 1 M

. . . . . ~k 2 3 S
removing the Gaussian assumption, extending the analysis to (6Eor.emp) = 17 E (Y..—Y.) (66)
the more general linear combination of scores (instead of u=1

mean). Although zero-mean unit-variance normalisation wae theoretical variance is obtained by estimating the terms
used here, we also showed that the analysis can be generalig¢d* and p} ;oF o in the expression ofo¢,,)?, as shown
easily toany linear score transformatioar normalisation (on in Eqgn. (7). The estimate dfz¥)? is given by:

a per base-expert basis). Although EER is studied here, the M

more general case of error whereby the constraint FAR=FRR 1 Z (YE, - Yk)Q. (67)
does not hold any more can be extended easily. Unfortunately, M=t o
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The estimate Ofoi-cjcrfcr;-c is given by: [7] S. Sharma, H. Hermansky, and P. Vermuulen, “Combining Information
’ from Multiple Classifiers for Speaker Verification,” iRroc. Speaker
1 M ) Recogniton and Its Commercial and Forestic Applications Workshop
_ k _ vk k _ vk (RLA2C) Avignon, 1998, pp. 115-119.
M Z (Yuu Yu) (Yj,u YJ;) : (68) [8] N. Poh and S. Bengio, “Why Do Multi-Stream, Multi-Band and Multi-
u=1 Modal Approaches Work on Biometric User Authentication Tasks?” in

; ; ; ; ; IEEE Int'l Conf. Acoustics, Speech, and Signal Processing (ICASSP)
Plugging in these two estimates into the expression for Montreal, 2004. pp. vol. V. 893.896.

k 2 ; ; ;
(0&oar)? we get the theoretical estimate of the variance Ofo] A. Krogh and J. Vedelsby, “Neural Network Ensembles, Cross-

the fused scores as: Validation and Active-Learning,Advances in Neural Information Pro-
cessing Systemsol. 7, 1995.
((}k )2 [10] N. Ueda and R. Nakano, “Generalisation Error of Ensemble Estimators,”
COM ,theo

in Proc. Int'l conf. on Neural Networks1990, pp. 90-95.
1 N 1 M 3 [11] G. Brown, “Diversity in neural network ensembles,” Ph.D. dissertation,
= — = Z (Y,k — Y,k_) School of Computer Science, Uni. of Birmingham, 2003.
’ [12] E. Bailly-Bailliere, S. Bengio, F. Bimbot, M. Hamouz, J. Kittler,
J. Mariethoz, J. Matas, K. Messer, V. Popovici, F. @arB. Ruiz, and J.-
& i & — L P. Thiran, “The BANCA Database and Evaluation Protocol Springer
Z [(Yz)u - Yz)) (Ymu -Y )] LNCS-2688, 4th Int. Conf. Audio- and Video-Based Biometric Person
i=1,j>i Authentication, AVBPA'Q3 Springer-Verlag, 2003.
[13] C. Marcel, “Multimodal Identity Verification at IDIAP,” IDIAP, Mar-
1 M1 X B B tigny, Switzerland, Communication Report 03-04, 2003.
—— Z — Z (Y.k — Yk) (Y.k _ Y.’?) [14] C. Bishop,Neural Networks for Pattern RecognitiorOxford University
M 2 Press, 1999.
[15] J. Daugman, “Biometric decision landscapes,” University of Cambridge
M Computer Laboratory, Tech. Rep. TR482, 2000.
= Z (}7_ w—Y ) [16] W. J. ConoverPractical Nonparametric Statistics Wiley, 1980.
’ [17] N. Poh and S. Bengio, “Towards Predicting Optimal Subsets of Base-
Experts in Biometric Authentication Task,” ifDIAP Research Re-
(69) port 04-17, Martigny, SwitzerlandAccepted for publication inJoint
AMI/PASCAL/IM2/M4 Workshop on Multimodal Interaction and Related

iri i k Machine Learning Algorithms2004.
Because the emplrlcal and theoretl@OM and Icom are [18] C. Shipp and L. Kuncheva, “Realtionships Between Combination Meth-

the same the empirical and theoretical F-ratios will be exactly ~ ods and Measures of Diversity in Combining Classifiefsformation
the same. Using the definition of F-ratio in Eqn. (12), the Fusion vol. 3, pp. 135-148, 2002.

theoretical F-ratio of the combined score can be defined aélg] A. Jain, K. Nandakumar, and A. Ross, “Score Normalisation in Multi-
" modal Biometric SystemsPattern Recognition (to appear2005.

B theo T FECM 41

. _ ,theo ,theo
F-raticcons theo = =g =T . (70)
TE0M,theo T TCOM theo

The empirical F-ratio is:

ﬂk:C —l—ﬂk:I Norman Poh Hoon Thian obtained his M.Sc.
F-raticconr,emp = Affg’emp COM,emp degree from the University of Science, Penang,

Malaysia and obtained DEA (Diplome Efude Ap-
profondie) from Universé& Louis Pasteur, Stras-
bourg, France. He is currently a Ph.D. student and
research assistant at the IDIAP Research Institute,
Switzerland. His research interest is in biometric au-
thentication and various pattern recognition-related
algorithms, particularly in fusion based on classifiers
and different features.

~k=1
JC’OM,ern,p + UCOM,emp

~k=C k=T
BEOM theo T HCOM theo

py— =1
OCOM,theo T TCOM theo
= F-ratiacons,theo (71)

Hence, the theoretical F-ratio is exactly the same as tj
empirical F-ratio. This applies also for normalised version of
Y. O
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