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How Do Correlation and Variance of Base-Experts
Affect Fusion in Biometric Authentication Tasks?

Norman Poh and Samy Bengio

Abstract— Combining multiple information sources such as
subbands, streams (with different features) and multi modal data
has been shown to be a very promising trend, both in experiments
and to some extents in real-life biometric authentication appli-
cations. Despite considerable efforts in fusions, there is a lack of
understanding on the roles and effects of correlation and variance
(of both the client and impostor scores of base-classifiers/experts).
Often, scores are assumed to be independent. In this paper,
we explicitly consider this factor using a theoretical model,
called Variance Reduction-Equal Error Rate (VR-EER) analysis.
Assuming that client and impostor scores are approximately
Gaussian distributed, we showed that Equal Error Rate (EER)
can be modeled as a function ofF-ratio, which itself is a function
of 1) correlation, 2) variance of base-experts and 3) difference
of client and impostor means. To achieve lower EER, smaller
correlation and average variance of base-experts, and larger
mean difference are desirable. Furthermore, analysing any of
these factors independently, e.g. focusing on correlation alone,
could be miss-leading. Experimental results on the BANCA mul-
timodal database confirm our findings using VR-EER analysis.
We analysed four commonly encountered scenarios in biometric
authentication which include fusing correlated/uncorrelated base-
experts of similar/different performances. The analysis explains
and shows that fusing systems of different performances isnot
alwaysbeneficial. One of the most important findings is that posi-
tive correlation “hurts” fusion while negative correlation (greater
“diversity”, which measures the spread of prediction score with
respect to the fused score), improves fusion. However, by linking
the concept of ambiguity decomposition to classification problem,
it is found that diversity is not sufficient to be an evaluation
criterion (to compare several fusion systems), unless measures are
taken to normalise the (class-dependent) variance. Moreover, by
linking the concept of bias-variance-covariance decomposition to
classification using EER, it is found that if the inherent mismatch
(between training and test sessions) can be learned from the data,
such mismatch can be incorporated into the fusion system as a
part of training parameters.

Index Terms— Biometric authentication, variance reduction,
bias-variance-covariance decomposition, ambiguity decomposi-
tion, pattern recognition, classification

I. I NTRODUCTION

B IOMETRIC authentication (BA) is the problem of veri-
fying an identity claim using a person’s behavioural and

physiological characteristics. Examples of biometric modal-
ities are fingerprint, face, voice, hand-geometry and retina
scans [1]. Biometric data is often noisy because of deformable
nature of biometric traits, corruption by environmental noise,
variability over time and occlusion by the user’s accessories.
This affects the accuracy and the reliability of a BA system.
One popular trend to improve accuracy is to use multiple
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modalities of biometric traits, or multiple features (of the
same biometric traits), multiple classifiers or multiple samples.
Scores are then fused using a COmbination Mechanism (COM,
also called a supervisor, a fusion expert/classifier).

Although fusion in the context of BA has been discussed
elsewhere, in the authors’ opinion, there is still a lack of
theoretical analysis and understanding, particularly with re-
spect to correlation. Hong et al [2] shed some light on this
subject by demonstrating that combining the expert opinions
using AND and OR will result in improved performance.
Unfortunately they assumed that the baseline expert opinions
are not correlated. Sanchez et al [3] showed both theoretically
and empirically that fusing multiple instances of biometric
trait can indeed reduce the system error by as much as
40%. The theoretical analysis, unfortunately, again did not
deal with the case where the expert opinions are correlated.
Since multiple instances of the same biometric traits are likely
to be correlated, it is not clear how correlation in expert
opinions can hamper the expected improvement, although
they observed that “saturation” may happen, i.e., using more
instances of the same biometric trait cannot help improve
the performance further. Using the XM2VTS database, Kittler
et al [4] examinedintramodal (i.e., different base-experts of
the samebiometric trait) andmultimodal (i.e., base-experts
of different biometric traits) expert fusion. According to this
empirical study, for multimodal fusion, there is no strong
evidence that trainable fusion strategies (based on Decision
Template [5] and Behaviour Knowledge Space [6]) offer better
performance than simple rules (based on sum and vote). They
remarked that although adding more experts can reduce vari-
ance, such gain is downplayed by the increased ambiguity due
to the weak experts. For intramodal fusion, where the expert
scores are highly correlated, increasing the number of experts
improve monotonically with fusion results. Unfortunately, the
issue of correlation is not examined in details. Vermuulen et
al [7] studied empirically the case of combining two systems’
hypotheses. Specifically, they examined the combination of
two systems with equal performance, with unequal perfor-
mance and with one system outperforming the other under
certain conditions. They observed that fusing two systems is
advantageous when the errors committed by both systems are
not correlated, i.e., the combined system may benefit from the
case where, for the same access, one system commits an error
and the other makes the right decision and vice-versa. Again,
the correlation of these errors are not explored further.

The goal of this study is to apply the VR-EER analysis
(the first part is Variance Reduction (VR) and the second part
is Equal Error Rate (EER) analysis) that we have proposed
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in [8] on the fusion using a non-trainable COM, namely
the mean operator. Different from our previous work, this
study takes into account the effect of score normalisation such
that the resultant scores have zero-mean and unit-variance.
The VR-EER analysis provides a very simple framework to
analyse what happens when the scores are correlated, or when
the variances of the base-expert are high/low. Since these
factors are actually inter-related, attempts to analyse one or
the other often fail. Using the proposed framework tested
on the BANCA database, we were able to identify different
contributing factors that determine the success and failure of
fusion, in the context of BA. Based on the VR-EER analysis,
four commonly encountered scenarios of fusion in biometric
authentication are discussed and analysed.

In this paper, we also linked the concepts of ambiguity
decomposition [9] and bias-variance-covariance decomposi-
tion [10] that are important analysis tools in regression prob-
lems to specific classification problems (using Equal Error
Rate evaluation criterion). To the best of our knowledge, the
link between these concepts and classification problems have
not been shown elsewhere in the literature, as also pointed out
by Brown [11].

In the literature, fusion in BA often relies on one or two
reported experiments. It should be stressed that our approach
to fusion is different in that, we tried to conduct as many
experiments as available to us, such that some meaningful
statistics can be derived and generalised to other fusion using
the same technique.

Section II presents briefly the BANCA experiment setup
whereby 1186 experiments were used to study EER and
another 70 experiments were used to study fusion. Section III
discusses the preliminary findings of the VR-EER analysis
and notations used. Section IV presents what happens to
fusion when scores are normalised. The effects of variance
and correlation are verified in Section V. Using these findings,
we analysed four commonly encountered scenarios of fusion
in Section VI. Two important analysis tools and concepts
that are well-studied in regression problems are linked to
a specific classification problem in Sections VII and VIII.
Future extensions and limitations of the study are discussed
in Section IX. This is followed by conclusions in Section X.

II. EXPERIMENT SETUP

The BANCA database [12] is the principal database used
in this paper. It has a collection of face and voice prints of
up to 260 persons in 5 different languages. In this paper,
we only used the English subset, containing only a total of
52 persons; 26 females and 26 males. There are altogether
7 protocols, namely, Mc, Ma, Md, Ua, Ud, P and G, each
simulating matched control, matched adverse, matched de-
graded, uncontrolled adverse, uncontrolled degraded, pooled
and grant test, respectively. For protocols P and G, there
are 312 client accesses and 234 impostor accesses. For all
other protocols, there are 78 client accesses and 104 impostor
accesses. There are altogether 1186 score files containing
single modality experiments or fusion experiments, thanks to a

study conducted in [13]1. The classifiers involved are Gaussian
Mixture Models (GMMs), Multi-Layer Perceptrons (MLPs)
and Support Vector Machines (SVMs).All the score files are
used to test the Gaussian hypothesis as reported in Section III-
C.

A subset of single modality experiments were selected to
study fusion as reported in Section V. These experiments
were carried out by University of Surrey (2 face experiments),
IDIAP (1 speaker experiment), UC3M (1 speaker experiment)
and UCL (1 face experiment). The specific score files used are
as follow:
• IDIAP_voice_gmm_auto_scale_33_200
• SURREY_face_svm_auto
• SURREY_face_svm_man
• UC3M_voice_gmm_auto_scale_34_500
• UCL_face_lda_man

for each of the 7 protocols. Each of these files contains
the following columns of data: the true identity, the claimed
identity, a unique access tag and the associated expert score
for the access. Moreover, for each protocol, there are two
subgroups, called g1 and g2. In this paper, g1 is used as a
development set (calleddev) while g2 is used as an evaluation
set (calledeva). By combining each time two baseline experts
of a protocol, one can obtain 10 fusion experiments, given by
5C2 (5 “choose” 2). This results in a total of 70 experiments
for all 7 protocols.

III. PRELIMINARY AND RECENT FINDINGS ON VR-EER

Our proposed theoretical model [8] has two parts. The first
one deals with Variance Reduction (VR) and the second relates
F-ratio (which involves variance discussed in the first part) to
Equal Error Rate (EER).

A. Variance Reduction

The fundamental problem of BA can be viewed as a
classification task to decide if personx is a client or an
impostor. In a statistical framework, the probability thatx is a
client after a classifierfθ observes his/her scanned biometric
trait can be written as:

y ≡ fθ(fe(s(x))), (1)

where, s is a sensor,fe is a feature extractor,θ is a set
of classifier parameters associated to the classifierfθ. If the
classifier is associated to a unique client identityj, we can
replace θ by θ(j). Note that there exists several types of
classifiers in BA, all of which can be represented by Eqn. (1).
They can be categorized by their outputy, i.e., probability
(within the range[0, 1]), distance metric (more than or equal
to zero), or log-likelihood ratio (a real number). In the context
of multimodal BA, y is associated to the subscripti, which
takes on different meanings in different context of fusion, as
follows:

yi =





fθ(fe(s(xi))) if multi-sample
fθ(fe(si(x))) if multimodal
fθ(fe,i(s(x))) if multi-feature
fθ,i(fe(s(x))) if multi-classifier

(2)

1Available at “ftp://ftp.idiap.ch/pub/bengio/banca/bancascores”
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Note that i is the index to thei-th sample in the context
of multi-sample fusion.i can also mean thei-th biometric
modality in multimodal fusion, etc. In a general context,
we refer yi as thei-th responseand there are altogetherN
responses (i = 1, . . . , N ).

The analysis here, based on Equal Error Rate (EER), re-
quires that the class label of the claimant be known in advance.
EER is a commonly used performance evaluation criterion in
BA and will be defined in Section III-B. Suppose thatyk

i

is the i-th response (sample, modality, feature or classifier)
belonging to classk = {C, I}, i.e., either client or impostor.
We adopt the convention that the mean ofyk=C

i is greater than
that of yk=I

i .
Supposeyk

i,j is thej-th observed sample of thei-th response
of class k, recalling that i = 1, . . . , N and k = {C, I}.
We assume that this observed variable has a deterministic
component and a noise component and that their relation is
additive. The deterministic component is due to the fact that
the class is discrete in nature, i.e., during authentication, we
know that a user ineither a client or an impostor. The noise
component is due to some random processes during biometric
acquisition (e.g. degraded situation due to light change, miss-
alignment, etc) which in turn affects the quality of extracted
features. Indeed, it has a distribution governed by the extracted
feature setfe (s(x))) often in a non-linear way. By ignoring
the source of distortion in extracted biometric features, we
actually assume the noise component to be random (while
in fact they may be not if we were able to systematically
incorporate all possible variations into the base-expert model).

Let µk
i be the deterministic component. Note that its value

is only dependent onthe classk = {C, I} and independent of
j. We can now modelyk

i,j as a sum of this deterministic value
plus the noise termwk

i,j , as follows:

yk
i,j = µk

i + wk
i,j , (3)

for k ∈ {C, I} where wk
i,j follows an unknown distribu-

tion W k
i with zero mean and(σk

i )2 variance, i.e.,wk
i,j ∼

W k
i

(
0, (σk

i )2
)
. By adopting such a simple model, from the

fusion point of view, we effectively encode thei-th response
of a biometric system as the sum of a deterministic value and
another random variable, in a class-dependent way. Following
Eqn. (3), we can deduce thatyk

i,j ∼ Y k
i ≡ W k

i

(
µk

i , (σk
i )2

)
.

Hence, the expectation ofY k
i (over differentj samples) is:

E[Y k
i ] = E[µk

i ] + E[W k
i ] = µk

i . (4)

Note that different from [8], here we do not requireµk
i to take

on specific values such as−1 for k = I and 1 fork = C.
This assumption is true for discriminative training (i.e., using
Multi-Layer Perceptrons (MLPs) or Support Vector Machines
(SVMs)), but not applicable for distance-based scores or log-
likelihood ratios. Hence, removal of such assumption makes
the analysis applicable to a wider context.

Let us consider two cases here. In the first case, for each
access,N responses are available and are used independently
of each other. Theaverage of varianceof Y k

i over all i =

1, . . . , N , denoted as(σk
AV )2 is, according to [8]:

(
σk

AV

)2
=

1
N

N∑

i=1

Cov(Y k
i , Y k

i )

=
1
N

N∑

i=1

E[W k
i W k

i ]

≡ 1
N

N∑

i=1

(
σk

i

)2
, (5)

where we adopted the following notation:Cov(Y k
i , Y k

j ) as the
covariance betweenY k

i and Y k
j , for any i, j ∈ {1, . . . , N}.

By definition, Cov(Y k
i , Y k

j ) ≡ E[W k
i W k

j ]. When i = j, we
obtain the variance ofY k

i , which is denoted as(σk
i )2.

In the second case, allN responses are used together and
are combined using the mean operator; the resultant score can
be written as:

Y k
COM =

1
N

N∑

i=1

Y k
i , (6)

for any k ∈ {C, I}. The variance ofY k
COM (over many

accesses), denoted as(σk
COM )2, is called thevariance of

average, and can be calculated as follows (see [8] for details
of this derivation):

(
σk

COM

)2
= Cov(Y k

COM , Y k
COM )

=
1

N2

N∑

j=1

(
σk

j

)2
+

2
N2

N∑
m=1,m<n

ρk
m,nσk

mσk
n,

=
1
N

(
σk

AV

)2

︸ ︷︷ ︸
+

2
N2

N∑
m=1,m<n

ρk
m,nσk

mσk
n

︸ ︷︷ ︸
, (7)

whereρk
m,n is the correlation coefficient betweenY k

m andY k
n

for k ∈ {C, I}. The first underbrace term is theaverage
varianceof the base-experts while the second underbrace term
is the covariancebetweenY k

m and Y k
n for m 6= n. This is

because the termρk
m,nσk

mσk
n is by definition equivalent to

correlation, i.e.,

ρk
m,nσk

mσk
n = E[W k

mW k
n ], (8)

Note thatρk
n,n = 1 for k ∈ {C, I}. The VR analysis shows

that [8]:
(
σk

COM

)2 ≤ (
σk

AV

)2
. (9)

When0 ≤ ρk
m,n ≤ 1, it can be shown that:

1
N

(
σk

AV

)2 ≤ (
σk

COM

)2
. (10)

In other words, the upper bound of
(
σk

COM

)2
is shown in

Eqn. (9) and its lower bound is shown in Eqn. (10). They are
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attained in perfect correlation in the former case and uncor-
related case in the latter case. Any other positive correlation
values will cause

(
σk

COM

)2
to take on values between these

bounds. Hence, by combiningN responses using the mean
operator, the resultant variance is assured to be smaller than
the average (not the minimum) variance.

B. Equal Error Rate Analysis

Let µk=C
p and µk=I

p be the means of client and impostor
access scores of a given experimentp. Without loss of gen-
erality, we assume thatµk=C

p > µk=I
p . Let σk=C

p and σk=I
p

be the standard deviation of the client and impostor scores. In
BA, there are two types of errors committed by the system,
often measured by False Acceptance Rates (FARs) and False
Rejection Rates (FRRs). FAR(∆) is calculated by integrating
the impostor score distribution from a given threshold∆ in the
score space to+∞ while FRR(∆) is calculated by integrating
the client distribution from−∞ to ∆. Equal Error Rate (EER)
is a unique point where FAR equals FRR. By assuming that
the client and impostor scores follow Gaussian distributions,
one can derive the EER of a given experimentp as (see [8]
for details of this derivation) :

EERp =
1
2
− 1

2
erf

(
F-ratiop√

2

)
, (11)

where

F-ratiop =
µk=C

p − µk=I
p

σk=C
p + σk=I

p

, (12)

and

erf(z) =
2√
π

∫ z

0

exp
[−t2

]
dt. (13)

It should be noted that the term F-ratio is used here because
this value is somewhatsimilar to the standard Fisher ratio, but
not defined exactly in the same way. In a two-class problem,
the Fisher ratio [14, pg. 107] is defined as

µk=C
p − µk=I

p

(σk=C
p )2 + (σk=I

p )2
(14)

F-ratio is used here just to underpin the idea that the degree of
separability of the class distribution affects the authentication
performance measured by EER. There exists similar measures
such as thed-prime metric proposed by Daugman [15]. It
measures how separable the client distribution is from its
impostor counterpart. It is defined as:

d′ =
|µk=C

p − µk=I
p |√

1
2 (σk=C

p )2 + 1
2 (σk=I

p )2.
(15)

In our opinion, F-ratio should be used instead since it is
directly related to EER by Eqn. (11)).

We call the EER based on Gaussian assumption thetheo-
retical EER, to distinguish it from theempirical EER, which
is calculated by direct minimisation of the following criterion:

∆∗ = argmin
∆
|FAR(∆)− FRR(∆)|, (16)

where∆ is the threshold, and approximated by the commonly
used Half Total Error Rate:

HTERmin =
FAR(∆∗) + FRR(∆∗)

2
. (17)

HTERmin is minimum at ∆∗. This is because FRR is an
increasing function (a cumulative density function;cdf) and
FAR is a decreasing function (one minuscdf). ∆∗ is the point
where these two functions intersect. Let EERCOM be the EER
of the combined scores and EERAV be the EER of the average
of scores ofN responses. Using Eqns. (11 and 12), their
corresponding F-ratios can be defined as follow:

F-ratioCOM =
µk=C

COM − µk=I
COM

σk=C
COM + σk=I

COM

(18)

F-ratioAV =
µk=C

AV − µk=I
AV

σk=C
AV + σk=I

AV

. (19)

In order to show the hypothesis that the EER of the combined
scores is less than the EER of the the average ofN responses,
i.e.,

EERCOM ≤ EERAV , (20)

we first need to calculateµk
p andσk

p for k = {C, I} andp =
{COM, AV }. σk

p |p = {COM, AV } were defined by Eqns. (5
and 7), respectively.µk

AV is the average ofN responses when
used separately. It is defined as:

µk
AV ≡ 1

N

N∑

i=1

µk
i , (21)

µk
COM is the mean of the combined scores ofN responses

(used simultaneously). It is defined as:

E[Y k
COM ] ≡ µk

COM =
1
N

N∑

i=1

E[Y k
i ]

=
1
N

N∑

i=1

µk
i = µk

AV . (22)

Hence, µk
COM = µk

AV . Since F-ratio is non-linearly and
inversely proportional to EER as shown in Eqn. (11), the
inequality of Eqn. (20) can be rewritten as:

F-ratioCOM ≥ F-ratioAV , (23)

Replacing the two F-ratio terms using Eqns. (22 and 21) into
Eqn. (23) and using the relationµk

COM = µk
AV , we obtain:

µk=C
COM − µk=I

COM

σk=C
COM + σk=I

COM

≥ µk=C
AV − µk=I

AV

σk=C
AV + σk=I

AV

σk=C
COM + σk=I

COM ≤ σk=C
AV + σk=I

AV∑

k={C,I}
σk

COM ≤
∑

k={C,I}
σk

AV (24)

This inequality confirms the upper bound already found in
Eqn. (9). Hence, the inequality of Eqn. (20) is true, i.e., fusing
scores can reduce variance which results in reduction of EER
(with respect to the case where scores are used separately).
This formed the argument in [8] for why fusion using multiple
modalities, features, and classifiers works for BA tasks.
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C. Validity of the Gaussian Assumption

To check how accurate the EER function is as compared
to its empirical counterpart, we conducted as many as 1186
experiments on the BANCA database as described in Sec-
tion II. There are 490 experiments from the output of Multi-
Layer Perceptrons (MLPs), 182 experiments from the output
of Support Vector machines (SVMs) and 514 experiments
from the output of Gaussian Mixture Models (GMMs). Two
approaches are adopted here. The first approach is to test
whether for each of the 1186 experiments, the respective
client and impostor scores are normally distributed or not. The
second approach is to directly compare the empirical EER
against its theoretical counterpart (assuming that client and
impostor distributions are normally distributed).

For the first approach, we applied the Lillie-test [16]. It
evaluates the hypothesis that a set of (client or impostor)
scores has a normal distribution with unspecified mean and
variance against the alternative that the set of scores does not
have a normal distribution. This test is similar to Kolmogorov-
Smirnov (KS) test, but it adjusts for the fact that the parameters
of the normal distribution are estimated from the set of scores
rather than specified in advance. Using this test, we found that
22.85% of impostor scores and 25.89% of client scores (out
of 1186 experiments) supported the hypothesis that they are
Gaussian distributed. Hence, only approximately a quarter of
the distributions are Gaussian according to the Lillie-test.

The results of the second approach are shown in Figure 1.
From Figure 1(a), it can be seen that both the theoretical and
empirical EERs are non-linearly and inversely proportional
to their F-ratio. Removing the F-ratio, we compared the
theoretical EER directly with its empirical counterpart in Fig-
ure 1(b). Here the output of different classifiers are plotted with
different symbols. If the theoretical EER matches exactly its
empirical EER, the points (each one corresponding to a single
experiment) should be on the diagonal line. One measure of
agreement is to use correlation. Its value is evaluated to be
0.9573, indicating the the variables arestrongly correlated.
In other words, knowing theoretical EER, one can use the
correlation toapproximatelyestimate the empirical EER.

Figure 1(c) plots the absolute EER difference (between
theoretical EER and empirical EER) versus the average KS-
statistics of their respective client and impostor distributions
(note that from each experiment, we will have two KS-
statistics values, one for each distribution). The KS-statistics
measures the degree of divergence from normal distribution.
As can be seen, the output of MLPs (trained using sigmoid
output function) gives high KS-statistics whereas the outputs
of SVMs and GMMs conform better to the Gaussian assump-
tion.

Prior to this experiment, we thought that deviation from
Gaussian would mean large absolute EER difference. If this
was the case, absolute EER difference would have been
increasing proportionally with respect to the KS-statistics. It
turns out that this is not the case. In Figure 1(c), despite high
KS-statistics of MLP outputs, their corresponding absolute
EER differences are spread below 0.06; some are even near 0!
Hence, deviation from Gaussian does not mean large absolute
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Fig. 1. Results of experiments carried out using all the available 1186
experiments on the BANCA score database: (a) Theoretical EER and empirical
EER (HTER) versus their common F-ratio (b) Theoretical EER versus
empirical EER (HTER) using output of different classifiers – 490 MLPs, 182
SVMs and 514 GMMs; the correlation coefficient between the two variables
is 0.9573. (c) Absolute EER difference between theoretical EER and empirical
EER versus the average KS-statistics between the corresponding client and
impostor distributions. KS-statistics measures the degree of deviation from
Gaussian assumption.

EER difference. In other words,the theoretical EER is fairly
robust to deviation from the Gaussian assumption.

It should be noted that a more interesting issue to investigate
is the relative values of EER, i.e., if the empirical EER of
experimenta is more than the empirical EER of experiment
b, does the theoretical EER of these experiments also follow
the same trend? Using the data at hand, we calculated all the
possible combinations of two EER experiments. This turns
out to be1186C2 = 702, 705 combinations. The number of
“disagreement”,d, can be calculated as follows:

d =
∣∣(EERemp

a > EERemp
b )− (EERtheo

a > EERtheo
b )

∣∣ (25)

for (a, b) ∈ {(1, 2), (1, 3), . . . , (1185, 1186)} and

(z1 > z2) =
{

1 if true
0 otherwise.

(26)

The percentage of disagreement turns out to be 11%. If
the 1186 experiments are representative of biometric authen-
tication tasks, we can conclude that to compare any two
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experiments, 89% of the time, the theoretical EER (calculated
from the F-ratio) can give a correct answer as compared to
using the empirical EER as the ground-truth. Of course, a
mixture of Gaussians or non-parametric Parzen window with
Gaussian kernel could have been used to accurately model the
underlying client and impostor distributions. In so doing, we
may not be able to further perform the analysis in sections
that follow.

The VR-EER analysis presented here is not simply theoret-
ical. In the following section, we propose to put this analysis
to test.

IV. SCORENORMALISATION

To begin with, we would like to fuse the scores of two
systems using the simple mean operator (trainable weighted
sum and non-linear functions could be included in this analysis
in the future).

Before fusing the scores, it is necessary to normalise them
so that the scores of a given base-expert with high variance
will not dominate the fused decision. We used thezero-mean
unit-varianceapproach. This is done by subtracting an input
score from itsglobal mean(estimated from a training set)
and divide it by its standard deviation. Letyk

i be a raw output
score which follows the distributionY k

i . The normalised score
distribution,Y norm,k

i , can be written as follows:

Y norm,k
i =

Y k
i − E[Y all

i ]√
Cov(Y all

i , Y all
i )

≡ Y k
i − µall

i

σall
i

, (27)

for k ∈ {C, I} and Y all
i = 1/2(Y k=C

i + Y k=I
i ), i.e, the

union of the two distributions. When combining the scores
using mean, we obtain:

Y norm,k
COM =

1
N

N∑

i=1

Y norm,k
i . (28)

The expected value ofY norm,k
COM , for k = {C, I}, is:

µnorm,k
COM ≡ E[Y norm,k

COM ]

=
1
N

N∑

i=1

E[Y norm,k
i ]

=
1
N

N∑

i=1

E[Y k
i ]− µall

i

σall
i

=
1
N

N∑

i=1

µk
i − µall

i

σall
i

. (29)

Using Eqns. (4), (27) and (28), the variance ofY norm,k
COM is:

(σnorm,k
COM )2 = Cov(Y norm,k

COM , Y norm,k
COM )

= E

[(
Y norm,k

COM − E[Y norm,k
COM ]

)2
]

= E




(
1
N

N∑

i=1

Y k
i − µall

i

σall
i

1
N

N∑
m=1

µk
i − µall

i

σall
i

)2



= E




(
1
N

N∑

i=1

Y k
i − µk

i

σall
i

)2



= E




(
1
N

N∑

i=1

W k
i

σall
i

)2

 . (30)

To expand Eqn. (30), one should take care of possible corre-
lation between differentW k

m andW k
n , similar to Eqn. (7), as

follows:

(σnorm,k
COM )2 = E

[
1

N2

(
N∑

m=1

N∑
n=1

W k
mW k

n

σall
m σall

n

)]

=
1

N2

N∑

j=1

E[W k
j W k

j ]
σall

j

+
2

N2

N∑
m=1,m<n

E[W k
mW k

n ]
σall

m σall
n

.

≡ (V k
AV )2 + (V k

COV )2, (31)

for any k ∈ {C, I}. The term(V k
AV )2 is the averagenor-

malisedvariance of the base-expert scores while the second
term (V k

COV )2 is thenormalisedcovariance betweenY norm,k
m

andY norm,k
n for m 6= n.

The F-ratio is:

F-rationorm
COM =

µnorm,k=C
COM − µnorm,k=I

COM

σnorm,k=C
COM + σnorm,k=I

COM

. (32)

V. EFFECTS OFCORRELATION, VARIANCE OF BASE

EXPERT SCORES ONFUSION

Having derived all the parameters in the VR-EER analy-
sis in the previous section, namely,µnorm,k

COM , σnorm,k
COM , and

F-rationorm
COM , we carried out experiments on the BANCA

fusion database, each timecombining only twoexperts. These
experiments can be divided into two types: multimodal fusion
(fusion of two different modalities, i.e, face and speech ex-
perts) and intramodal expert fusion (of two face expertsor
two speech experts). We expect multimodal fusion to be less
correlated while intramodal fusion to be more correlated. This
is an important aspect so that both sets of experiments will
cover a large range of correlation values.

A naive approach to analyse fusion is to find empirically
the relationship between minimuma posteriori HTER and
the sum of correlation of client and impostor distributions.
Let the client and impostor-dependent correlations between
two baseline systems (to be fused) be the scalarsρC andρI ,
respectively2. The results are shown in Figure. 2. From this

2In general, the correlation of scores ofN responses are a matrix ofN by N
with elementsρm,n. It has the property thatρm,m = 1 andρm,n = ρn,m.
In the case of two responses, we simply writeρ in place ofρ1,2.
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Fig. 2. Empirical EER of combining 2 baseline experts versusρC + ρI

using the BANCA database. The crosses represent experiments combining 2
modalities while the circles represent those combining 2 features of thesame
modality. The correlation between the two variables is 0.38.

figure, it can be observed that multimodal fusion experiments
have less correlated scores while multi-feature fusion experi-
ments have high correlated scores. One would have expected
that the minimuma posterioriHTER is somewhat proportional
to ρC +ρI . This is actually partially true because the variance
of base-experts are not taken into account. As a result, there
is no clear trend in this graph and one cannot conclude that
HTER is proportional to correlation.

By making use of the enhanced VR-EER analysis with
zero-mean unit-variance normalisation, we propose to evaluate
the theoretical versusempirical parameters in the VR-EER
analysis. For each of the parameters tested here,theoretical
means that the respective parameter is directly estimated using
the unnormalised input score set. This score set is of dimension
two, since only two expert scores are fused at a time.Empirical
means that the respective parameter is estimated using the
resultant fused score.

Figure 3(a) shows empirical F-ratio versus its theoretical
counterpart calculated uniquely on the development set. As
can be seen both empirical and theoretical F-ratio are exactly
the same. Their equivalence can be shown mathematically (see
Appendix I). Hence, the performance of fusion is determined
by F-ratio, assuming that the scores are normally distributed,
as defined in Eqn. (32). The fused and normalised mean and
variance is defined in Eqn. (29) and Eqn. (31), respectively.
From Eqn. (31), we know that the fused and normalised
variance has two components: variance and covariance. Based
on the Gaussian assumption, fusion performance consists of
three factors: (1) mean difference (the nominator of Eqn. (32)),
(2) variance and (3) covariance of baseline experts. The first
component measures how far the client mean of the fused
score is from its impostor counterpart. The second component
corresponds to the sum of square-root of the diagonal terms
of covariance matrix of the fused scores (for both client and
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(a) Empirical F-ratio vs. theo-
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(b) F-ratio (dev) vs F-ratio (eva)
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(c) Correlation of client vs impostor scores

Fig. 3. Experiments carried out on fusion of5C2 × 7 = 70 experiments,
i.e., combining2 expert systems each time out of five available systems,
for all the 7 BANCA protocols: (a) Empirical F-ratio versus theoretical
F-ratio on the development set. (b) F-ratio of development set versus its
evaluation set counterpart. The correlation between the two variables is 0.90.
(c) Correlation of client scores versus correlation of impostor scores. The
correlations between the two variables (class-dependent correlations) on the
development and evaluation sets are 0.85 and 0.80, respectively.

impostor scores). This term measures, in average, how good
the base-experts are, when acting alone. The last component
corresponds to the sum of square-root of the non-diagonal
terms of covariance matrix of the fused scores (for both
client and impostor scores). Note that the last two factors
cannotbe separated due to the square-root of variance in the
denominator of F-ratio. Understanding how these three factors
are related (by F-ratio) can guide us to understand how EER
should be minimised or how F-ratio should be maximised,
i.e., maximising the mean difference and minimising the
variance and covariance components. Because of these three
interrelated factors, analysing any one of them alone, as done
in Figure 2 or in Figure 3(c), does not lead to any convincing
conclusion.

The above analysis was performed by combining two base-
line experts. It is natural to ask if the analysis would work
by combining more than two experts. We repeated the above
experiments for combining three and four experts and were
able to predict the F-ratio accurately. The results are similar
to those presented in Figure 3(a) (not shown here). This
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is somewhat expected because the VR-EER analysis is not
limited to two experts. Similarly, the analytical proof showing
the equivalence between empirical F-ratio and theoretical F-
ratio in Appendix I is a general framework that, of course,
includes fusion ofN experts.

Figure 3(b) plots the F-ratio found on the development set
versus the F-ratio found on the evaluation set. They are not
exactly the same this time because there is a mismatch between
these two data sets. Nevertheless, their correlation is 0.90,
indicating that knowing F-ratio from the development set, it
is possible to predict reasonably F-ratio of the evaluation set.
A follow-up study using weighted sum [17], instead of mean
as done here, also showed that using weighted sum operator,
where weights are found on adevelopment set, empirical F-
ratios of fusion experiments (using all possible combination
of base-experts) matchapproximatelythe F-ratio on the eval-
uation set. The plot of F-ratio between the development and
the evaluation sets is similar to Figure 3(b) (not shown here),
i.e., strong correlation is also observed. More details on how
to derive the F-ratio of weighted-sum fusion (instead of mean
as done here) can be found in [17].

Figure 3(c) shows a 2D plot of the following two vari-
ables: correlation of client and that of impostor scores. The
overall correlation between these two variables is 0.83. This
indicates that knowing the covariance (or correlation; since
one is proportional to the other as shown in Eqn. (8)) of
the impostor scores, one can approximate the covariance of
the client scores. Note that all intramodal fusion experiments
have high correlation values. Figure 3(c) thus has two clusters.
The cluster in the upper right corner belongs to intramodal
fusion experiments whereas the cluster in the lower left corner
belongs to multimodal fusion experiments.

VI. A NALYSIS OF COMMONLY ENCOUNTEREDSCENARIOS

IN BIOMETRIC AUTHENTICATION

Suppose we have the following scenarios:

1) Combining 2 uncorrelated experts with very different
performances

2) Combining 2 highly correlated experts with very differ-
ent performances

3) Combining 2 uncorrelated experts with very similar
performances

4) Combining 2 highly correlated experts with very similar
performances

The first and third cases are often encountered in multimodal
fusions while the second and fourth cases are encountered in
intra-modal (multi-feature) fusions. Fusing experts of similar
and different performances are encountered in almost all
biometric authentication problems. It should be noted that em-
pirical evidences of these scenarios have been examined in [7]
but unfortunately there was a lack of theoretical explanation.

To make analysis simple, let us assume that (i) the two
base-experts have the same numerator of F-ratio and that (ii)
for each base-expert, the variance and covariance of client and
impostor distributions are proportional. The first assumption is
actually reasonable because scores can be normalised to have
canonical client and impostor means. For instance, we can

map σk
i to σk,′

i by constraining that they have the same F-
ratio while assuming thatµk

i of the resultant conversion takes
on −1 for impostor distribution and1 for client distribution,
as follows:

F-ratio=
µk=C

i − µk=I
i

σk=C
i + σk=I

i

=
1− (−1)

σk=C,′
i + σk=I,′

i

. (33)

The solution is:
σk,′

i = αiσ
k
i , (34)

where,

αi =
2

µk=C
i − µk=I

i

,

for k = {C, I}.
By taking the square of Eqn. (34) and applying the definition

of variance ofyi, we obtain

(σk,′
i )2 = (αi)2E

[
(yk

i − E[yk
i ])2

]

= E
[(

αi(yk
i − E[yk

i ])
)2

]
(35)

Sinceαi is not dependent on the class labelk, Eqn. (35) is also
valid when applying toyi, instead ofyk

i . Therefore, to map
the client and impostor means to canonical values, one needs
to modify the variancewithout affectingthe F-ratio and the
corresponding EER. This simply translates into multiplying
scoreyi with αi.

The second assumption implies thatσk=C
i ∝ σk=I

i for
systemi ∈ {1, 2} as well as their covariance

ρk=Iσk=C
1 σk=C

2 ∝ ρk=Cσk=I
1 σk=I

2 .

It is rather intuitive and actually not necessary. It just simplifies
the analysis so that one considers only one class at a time. The
variance of the two classes can be merged by using the relation
found in the denominator of Eqn. (32). Hence, the class label
k can be dropped.

For the first case, without loss of generality, we assume
σ1 ≤ σ2 (i.e., system 1 is better than system 2) andρ ' 0.
Hence, for the combination to bebetter than the best system,
i.e., system 1, it is required that:

σ2
COM < σ2

1

σ2
1 + σ2

2 + 2ρσ1σ2

4
< σ2

1 (36)

σ2
COM is calculated using Eqn. (7) with N=2.
We see that:

σ2
2 < 3σ2

1 − 2ρσ1σ2.

Note that in general, the covarianceρ ≥ 0. For instance, in
multimodal fusion,c is around zero while in multi-feature
fusion, ρ is positive.

Hence, the combined system will benefit from the fusion
whenσ2

2 is at mostless than 3 times ofσ2
1 sinceρ ' 0.

Furthermore, correlation (or equivalently covariance; one
is proportional to the other; See Eqn. (8)) between the two
systems penalises this margin of3σ2

1 . This is particularly true
for the second case sinceρ > 0. Also, it should be noted that
ρ ≤ 0 (which implies negative correlation) could allow for
largerσ2

2 . As a result, adding another system that is negatively
correlated, but with large variance (hence large EER)will
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improve fusion. Unfortunately, in biometric authentication,
2 systems are either positively correlated or not correlated,
unless these systems arejointly trained together by algorithms
such as negative correlation learning [11].

For the third and fourth cases, we haveσ2
1 ' σ2

2 . Hence,
Eqn. (36) becomes

ρσ2
2 < σ2

1 . (37)

Note that for the third case,ρ ' 0 which will satisfy the
constraint of Eqn. (37). Therefore, fusion willdefinitely lead
to better performance. On the other hand, for the fourth
case whereρ ' 1, according to Eqn. (37), fusion may not
necessarily lead to better performance.

VII. R ELATION TO AMBIGUITY DECOMPOSITION

We would like to link our findings with those of Krogh and
Vedelsby [9] (see also [14, pages 368]), who showed that, in
our context:

E[Y k
COM − µk

COM ]2 =
∑

i

αiE
(
Y k

i − µk
COM

)2

−
∑

i

αiE
(
Y k

i − Y k
COM

)2

(σk
COM )2 ≡ acck − divk, (38)

whereαi are the weights in weighted sum combination. This
equation is also true for the normalised version ofY k

COM , i.e.,
Y norm,k

COM . Note thatαi = 1/N because we are using the mean
operator instead of weighted sum. The first term, denoted as
acc (or “accuracy”), measures how accurate each base-expert
is with respect to the mean score of the combined mechanism.
It depends only on the individual base-experts. The second
term, denoted as div (or “divergence”), measures the spread of
prediction of the base-experts relative to the score of combined
mechanism.

Based on the definition of accuracy in Eqn. (38), the
accuracy ofY norm,k

COM as discussed in section IV is:

acck =
1
N

∑

i

E[Y norm,k
COM − µnorm,k

COM ]

=
1
N

∑

i

E


Y k

i − µall
i

σall
i

− 1
N

∑

j

µk
j − µall

i

σall
j




2

=
1
N

∑

i

E[W k
i W k

i ]
(σall

i )2
= (V k

AV )2. (39)

From Eqns. (38) and (31), it is obvious that divergence is
simply:

divk = −(V k
COV )2. (40)

The negative sign in this term shows that the divergence is
indeed negatively proportional to the covariance component.
Hence, conclusions drawn in Section V also apply here:
divergence (negative covariance) is not a sufficient metric for
measuring classification error diversity. This explains why a
number of heuristics to define classification error diversity
have been proposed in the literature [18], all based on zero-
one loss function where a threshold has already been applied.

What we really want to do is in fact measuring the diversity
without fixing the thresholdin advance. For a specific case
in biometric authentication, this can be done via EER as
proposed in Section III-B and [8]. By so doing, one assumes
that the client and impostor scores can be modeled by Gaussian
distributions, and that the prior class distributions and cost of
two types of errors are equal.

VIII. R ELATION TO BIAS-VARIANCE-COVARIANCE

DECOMPOSITION

Ueda and Nakano [10] presented the bias-variance-
covariance decomposition while Brown [11] provided the
link between this concept and the ambiguity decomposition.
However, both discussions were limited to the context of
regression, as clearly pointed out by Brown [11, Sec. 3.1.2]. So
far, we have not discussed about mismatch between training
and test conditions. The introduction of bias in classification
can actually be very useful for countering such a problem, as
will become clear later.

Suppose that the noise model in Eqn. (3) can only be
calculated from a training set. During testing, the noise model
deviates from the one observed during training, i.e., there is a
mismatchbetween training and testing. Suppose that the new
noise model now is:

yk,′
i = µk,′

i + wk
i , (41)

where

µk,′
i = µk

i + hk
i . (42)

In other words,hk
i is a bias. By using the new noise model,

we also assume that the noise termwk
i |∀i do not changein

both training and test sessions. By rewriting Eqn. (41) using
Eqn. (42), we obtain:

yk,′
i = µk

i + hk
i + wk

i . (43)

Note that Eqn. (43) is also true forY k
COM and their normalised

counterparts (i.e.,Y k,norm
COM andY k,norm

i ). Therefore, it is also
valid to write:

ynorm,k,′
COM = µnorm,k

COM + hnorm,k
COM + wnorm,k

COM , (44)

By definition of ynorm,k
COM , it follows that:

hnorm,k
COM =

1
N

N∑

i=1

hk
i

σi
, (45)

andwnorm,k
COM is defined similarly.

With the noise model in Eqn. (44), the mean ofY norm,k,′
COM

is:

µnorm,k,′
COM = E

[
Y norm,k,′

COM

]
=

1
N

N∑

i=1

E
[
µnorm,k,′

i

]

=
1
N

N∑

i=1

µk
i + hk

i − µall
i

σall
i

= µnorm,k
COM +

1
N

∑

i

hk
i

σall
i

≡ µnorm,k
COM + hnorm,k

COM . (46)
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Using Eqn. (46), the class-dependent Mean-Squared Error
(MSE) due to this mismatch can be calculated as follows:

E

[(
Y norm,k

COM − µnorm,k,′
COM ]

)2
]

= E

[(
Y norm,k

COM − µnorm,k
COM − hnorm,k

COM

)2
]

=
(
hnorm,k

COM

)2

+ E

[(
Y norm,k

COM − µnorm,k
COM

)2
]

=
(
hnorm,k

COM

)2

︸ ︷︷ ︸
+ (V norm,k

AV )2 + (V norm,k
COV )2︸ ︷︷ ︸ . (47)

where the first underbraced term is bias2 and the second
underbraced term is variance of the fused score (found in
the training set). As defined in Eqn. (31), the second term
can be further decomposed into(V norm,k

AV )2 (i.e., the average
variance of all experts when used separately) and(V norm,k

COV )2

(i.e., the spread of prediction; negative divergence as found in
Eqn. (40)). Eqn. (47) is the so-calledbias-variance-covariance
decomposition. Note that this is a decomposition of MSE. In
the context of classification, MSE is not relevant; Half Total
Error Rate (HTER) is. HTER has already been defined in
Eqn. (17) as a function of threshold∆ (note that HTERmin is
only aspecificcase where the threshold gives minimum EER).

The variance ofY norm,k,′
COM is:

(σnorm,k,′
COM )2 ≡ E

[(
Y norm,k,′

COM − E
[
Y norm,k,′

COM

])2
]

= E







(
Y norm,k

COM + hnorm,k
COM

)
−(

µnorm,k
COM + hnorm,k

COM

)



2



= E

[(
Y norm,k

COM − µnorm,k
COM

)2
]

= (σnorm,k
COM )2 (48)

Under the new noise model, it is interesting to note that
the class-dependent variance of the fused score is indeed
not affected by the bias, whereas the MSE is. However, the
paragraphs that follow will show that the presence of bias can
adversely affect the classification error measured by HTER.

When one knows the amount of mismatch (i.e, one has
access to the test data), thea posterioriF-ratio is:

F-rationorm
COM,apost

=
µnorm,k=C,′

COM − µnorm,k=I,′
COM

σnorm,k=C,′
COM + σnorm,k=I,′

COM

=

(
(µnorm,k=C

COM + hnorm,k=C
COM )−

(µnorm,k=I,′
COM + hnorm,k=I

COM )

)

σnorm,k=C
COM + σnorm,k=I

COM

. (49)

Note that at thea posteriori F-ratio and its correspondinga
posteriori EER, their corresponding threshold is at:

∆apost =

(
(µk=I,norm

COM + hk=I,norm
COM )σC

i +
(µk=C,norm

COM + hk=C,norm
COM )σI

i

)

σI
i + σC

i

. (50)

The corresponding Half Total Error Rate (HTER) will be:

HTERnorm
COM,apost ≡ EERnorm

COM,apost

=
1
2
− 1

2
erf

(
F-rationorm

COM,apost√
2

)
.(51)

When one does not know the amount of mismatch, thea priori
threshold that will be used is the one that is estimated from
the training set, i.e.,

∆apri =
µk=I,norm

COM σC
i + µk=C,norm

COM σI
i

σI
i + σC

i

. (52)

This threshold is then applied to the mismatched test set. As
a result, thea priori HTER (on the test set) will be:

HTERnorm
COM,apost ≡ HTERnorm

COM (∆apost) (53)

where, in a general context, for any given∆, the corresponding
HTER is:

HTERnorm
COM (∆) =

1
2

(FARnorm
COM (∆) + FRRnorm

COM (∆)) , (54)

where

FARnorm
COM (∆) =

1
2
− 1

2
erf

(
∆− µk=I,norm

COM − hk=I,norm
COM

σk=I,norm
COM

√
2

)
,

(55)
and

FRRnorm
COM (∆) =

1
2

+
1
2

erf

(
∆− µk=C,norm

COM − hk=C,norm
COM

σk=C,norm
COM

√
2

)
.

(56)
It is possible to show that

HTERnorm
COM,apost < HTERnorm

COM,apri.

This can be done by showing that HTERnorm
COM,apost is the

global minimum, i.e.,

∆apost = arg min
∆

HTERnorm
COM (∆). (57)

Hence any∆ 6= ∆apost will not be optimal, including∆apri.
In fact this global minimum happens at EER where FAR=FRR
because FRR is an increasing function of the threshold and
FAR is a decreasing function of the threshold.

In summary, this section shows that the bias-variance-
covariance decomposition (of MSE) is not relevant for clas-
sification problems. Specifically, in a two-class problem such
as biometric authentication, the concepts ofa priori and a
posteriori threshold play an important role in decision-making
because these thresholds directly affect a specific classification
error called EER3. Under mismatch between training and test
data sets (due to the bias parameterhi), the optimal threshold
will not be the one found on the training data. This section
actually provides a realistic theoretical framework that can be
used to measure the amount of error due to this mismatch
(in terms of HTER) by using Eqns. (54–56). Under such
mismatch, the best decision one can make, supposing that one
has access to the test data, is to use thea posteriorithreshold.

3This idea can be extended to the general classification error but this is not
the focus of this paper. The last paragraph of Section IX drafts a procedure
to do so.
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Of course in reality, the mismatch is unknown in advance. One
possible solution will be toestimatethe probable mismatch
and then to pick the corresponding biashk

i . This bias can
then be used to calculate the new threshold using Eqn. (50).

IX. L IMITATIONS AND FUTURE EXTENSIONS

It should be noted that the present theoretical study is
limited to themeanoperator. An extension to the weighted sum
was investigated in [17]. To decide whether to perform fusion
or not, the best way is perhaps to directly perform the fusion
experiments. However, a more efficient way to achieve the
same goal is topredict the fusion performance based on F-ratio
(without explicitly running the experiments) as done in [17].
Performance estimation is particularly useful to select a subset
of experts that will provide the best fusion performance in a
more efficient way as compared to direct experimentation. This
is our current research direction.

This study is also limited to the assumption that the client
and impostor score distributions areGaussian. However, as
shown in this study, deviation from such assumptiondid not
severelyimpact the predicted EER performance. This may be
due to the unimodal nature of the class-dependent distribution.
To make the analysis more general, one obvious way is
to avoid the Gaussian assumption. One possible research
direction is to use different distributions to fit the nature of
the scores (e.g., Poisson distribution for distance scores,X 2

distribution for log-likelihood ratios, etc) or by an emprical
procedure thatfinds the most suitableand existing distribution
using the KS-statistics. Another direction is to use a mixture
of Gaussians. In this case, an analytical study such as the one
done here may not be possible. Yet another direction is to
make the client-dependent scores more normally distributed.
This will maintain the analytical solution while tolerating for
imprecision due to non-confirmity of the Gaussian assumption.

Although this study considers only zero-mean unit-variance
normalisation (or z-score), one can replace the global mean
and standard deviation parameters to any bias and scaling
values estimated by different procedure. Suppose that these
two parameters are calledB andA. Any linear transformation
will necessarily make use of these two parameters. As a result,
our analysis can bedirectly extended to anylinear score
transformation (or normalisation), such as those proposed
in [19]. However, the same analysis cannot be proceeded for
non-linear score transformation. One way to get around this
issue is to estimate the VR-EER analysis parameters on the
transformed (or normalised) scores by the respective non-
linear function instead of working on the unnnormalised score
space.

Lastly, although only the EER value is studied here (as in
Section III-B), one can extend the present finding to a more
general case, whereby the EER constraint by its definition,
i.e, EER(∆) = FAR(∆) = FRR(∆), does not hold anymore.
Given the mean and variance of client and impostor distribu-
tions, the following procedure can be used to find FAR and
FRR for an arbritary threshold∆:

FAR(∆) = 1−
∫ ∆

−∞
Y k=Idy (58)

and

FRR(∆) =
∫ ∞

∆

Y k=Cdy (59)

When they are assumed to be Gaussian distributed, they have
the following parametric forms:

FAR(∆) =
1
2
− 1

2
erf

(
∆− µk=I

σk=I
√

2

)
, (60)

and

FRR(∆) =
1
2

+
1
2

erf

(
∆− µk=C

σk=C
√

2

)
(61)

where the erf function is defined in Eqn. (13). When applying
the constraint FAR(∆) = FRR(∆), one obtains Eqn. (11).
For any other values of∆, there is unfortunately no simple
expression, without further introducing simplication to the
erf function. However, they can be computednumerically
for each of the∆ values, using Eqns. (58) and (59), or
Eqns. (60) and (61) when assuming that the class-dependent
scores are normally distributed. Because of the need of using
numerical calculation, analysis from Section VI onwards is
cumbersome, although not impossible. Note that the plot of
(FAR(∆), FRR(∆)) for all ∆ values is called the Receiver’s
Operating Curve (ROC) or the DET curve when plotted on
a non-linear scale. When derived using Eqns. (60) and (61),
they are truely Gaussians and will show up as straight lines on
the Decision Errror Trade-off (DET) curve. Hence, as can be
seen, extending the finding from EER to the more general case
is possible. However, numerical simulation is unavoidable4.

X. CONCLUSION

Combining multiple information sources such as subbands,
streams (with different features) and multi modal data has
shown to be a very promising trend, both in experiments and to
some extent in real-life biometric authentication applications.
Despite considerable efforts in fusion, there is a lack of
understanding on the roles and effects of correlation and
variance (of both the client and impostor scores of base-
experts). In this paper, we proposed a theoretical model of
Equal Error Rate as a function of F-ratio, which itself is
a function of correlation, variance of base-expert and the
difference of mean of both client and impostor distributions.
The fundamental assumption is that the underlying client
and impostor scores distributions are Gaussian. Although this
assumption is not always true, based on 1186 experiments
taken from the BANCA multimodal database, it was found that
the predicted theoretical EER points based on the Gaussian
assumption match approximately the EER points computed
empirically from the scores directly. This is a strong indication
the Gaussian assumption is acceptable in practice.

This analysis takes into account the effect of score normal-
isation. While there exists a lot of literature on fusion, scores
are often assumed to be independent. Here, we explicitly
considered this factor and verified the proposed theoretical
model using the BANCA multimodal database. Experimental

4Due to limited space, we only describe the procedure to do so here, even
though the DET curve could have been plotted as an illustration
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results show that the higher the variance of base-experts and
its covariance counterpart, the lower the F-ratio will be and
consequently the higher Equal Error Rate (EER) will be. This
is because F-ratio is inversely proportional to EER. Variance
of base-experts determines how good their average quality
is when each base-expert acts individually. Lower variance
means better performance. Covariance among base-experts
measures how dependent they are (note that by definition,
correlation is a“normalised covariance”, hence correlation is
proportional to covariance). The more dependent they are, the
lesser the gain one can benefit out of fusion.

Furthermore, through the VR-EER analysis, it is discovered
that variance and covariance of base-experts are not the
only criterion that determine fusion performance, the mean
difference between fused client and impostor scores is another.
The bigger it is, the better F-ratio and hence the lower EER
will be.

Using a mean operator as fusion, we analysed four
commonly encountered scenarios in biometric authentica-
tion which include fusing correlated/uncorrelated base-experts
of similar/different performances. The analysis explains and
shows that fusing two systems of different performances is
not alwaysbeneficial. The theoretical analysis shows that if
the weaker base-expert has (class-dependent) variance three
times larger that of the best base-expert, the gain due to
fusion breaks down. This is even more true for correlated
base-experts as correlation penalises this limit further. We also
showed that fusing two uncorrelated base-experts of similar
performancealwaysresult in improved performance. Finally,
fusing two correlated base-experts of similar performance will
be beneficial only when the covariance of the two base-experts
are less than the variance of the best expert. In any case,
positive correlation “hurts” fusion.

We also linked the concepts of ambiguity decomposition
and bias-variance-covariance decomposition to classification
problems using EER evaluation criterion. The result of anal-
ysis shows that “diversity”, which measures the spread of
prediction score with respect to the fused score, is actually
negative of covariance. As a result, analysing diversity alone
is necessarybut not sufficientto estimate good fusion, unless
measures are taken to normalise the variance against a “canon-
ical” mean (Section VI). This somewhat confirms the findings
in [11]. By linking bias-variance-covariance decomposition
to classification problems, we showed that bias or mismatch
between training and test sets of scores of the base-experts can
affect the mean and variance components of the fused scores.
It is found that if the bias of base-experts can be learned from
the data, such bias can be incorporated into the fusion system.

Finally, several limitations of our analysis were presented
in Section IX. Future research directions will concentrate on
removing the Gaussian assumption, extending the analysis to
the more general linear combination of scores (instead of
mean). Although zero-mean unit-variance normalisation was
used here, we also showed that the analysis can be generalised
easily toany linear score transformationor normalisation (on
a per base-expert basis). Although EER is studied here, the
more general case of error whereby the constraint FAR=FRR
does not hold any more can be extended easily. Unfortunately,

in this case, numerical analysis (instead of analytical analysis
as done here) would have been required.
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APPENDIX I
PROOF OFEQUIVALENCE BETWEEN EMPIRICAL F-RATIO

AND THEORETICAL F-RATIO

The estimated theoretical and empirical parameters can be
shown to be exactly the same mathematically. Suppose there
are Mk accesses, whereMk=C are the number of client
accesses andMk=I are the number of impostor accesses.
Suppose also thatY k

i,u is the output of thei-expert andu-
th access given that the class label isk = {C, I}, and
i = 1, . . . , N andu = 1, . . . ,Mk. µk

i can be estimated by:

µ̂k
i ≡

1
M

k Mk∑
u=1

Y k
i,u ≡ Ȳ k

i,·. (62)

For theu-th access, the combined score is:

1
N

N∑

i=1

Y k
·,u ≡ Ȳ k

·,u. (63)

The empirical estimate ofµk
COM , µ̂k

COM,emp is given by:

1
M

Mk∑
u=1

Ȳ k
·,u ≡ Ȳ k

·,·. (64)

Note that:

µ̂k
COM,emp =

1
M

Mk∑
u=1

Ȳ·,u

=
1
N

N∑

i=1

Ȳi,·

(
interchange the

i andu summations

)

=
1
N

N∑

i=1

µ̂k
i

= µ̂k
COM,theo. (65)

Hence, they are the same. The empirical variance can be
calculated as follows:

(
σ̂k

COM,emp

)2
=

1
M

M∑
u=1

(
Ȳ·,u − Ȳ·,·

)
(66)

The theoretical variance is obtained by estimating the terms
(σk

i )2 andρk
i,jσ

k
i σk

j in the expression of(σk
COM )2, as shown

in Eqn. (7). The estimate of(σk
i )2 is given by:

1
M

M∑
u=1

(
Y k

i,u − Ȳ k
i,·

)2
. (67)
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The estimate ofρk
i,jσ

k
i σk

j is given by:

1
M

M∑
u=1

(
Y k

i,u − Ȳ k
i,·

) (
Y k

j,u − Ȳ k
j,·

)2
. (68)

Plugging in these two estimates into the expression for
(σk

COM )2, we get the theoretical estimate of the variance of
the fused scores as:

(
σ̂k

COM,theo

)2

=
1
N

N∑

i=1

[
1
M

M∑
u=1

(
Y k

i,u − Ȳ k
i,·

)
]

+
2
N

N∑

i=1,j>i

[(
Y k

i,u − Ȳ k
i,·

) (
Y k

j,u − Ȳ k
j,·

)]

=
1
M

M∑
u=1


 1

N2

N∑

i,j=1

(
Y k

i,u − Ȳ k
i,·

) (
Y k

j,u − Ȳ k
j,·

)



=
1
M

M∑
u=1

(
Ȳ·,u − Ȳ·,·

)

=
(
σ̂k

COM,emp

)2
. (69)

Because the empirical and theoreticalµk
COM and σk

COM are
thesame, the empirical and theoretical F-ratios will be exactly
the same. Using the definition of F-ratio in Eqn. (12), the
theoretical F-ratio of the combined score can be defined as:

F-ratioCOM,theo ≡ µ̂k=C
COM,theo + µ̂k=I

COM,theo

σ̂k=C
COM,theo + σ̂k=I

COM,theo

. (70)

The empirical F-ratio is:

F-ratioCOM,emp ≡ µ̂k=C
COM,emp + µ̂k=I

COM,emp

σ̂k=C
COM,emp + σ̂k=I

COM,emp

=
µ̂k=C

COM,theo + µ̂k=I
COM,theo

σ̂k=C
COM,theo + σ̂k=I

COM,theo

= F-ratioCOM,theo (71)

Hence, the theoretical F-ratio is exactly the same as the
empirical F-ratio. This applies also for normalised version of
Y . ¤
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