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Abstract

Fusing the scores of several biometric systems is a very promising approach to

improve the overall system’s accuracy. Despite many works in the literature, it is

surprising that there is no coordinate d effort in making a benchmark database

available. It should be noted that fusion in this context consists not only of multi-

modal fusion, but also intramodal fusion, i.e., fusing systems using the same bio-

metric modality but different features, or same features but using different classi-

fiers. Building baseline systems from scratch often prevents researchers from putting

more efforts in understanding the fusion problem. This paper describes a database

of scores taken from experiments carried out on the XM2VTS face and speaker

verification database. It then proposes several fusion protocols and provides some

state-of-the-art tools to evaluate the fusion performance.
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1 Motivation

Biometric authentication (BA) is a process of verifying an identity claim using

a person’s behavioral and physiological characteristics. BA is becoming an im-

portant alternative to traditional authentication methods such as keys (“some-

thing one has”, i.e., by possession) or PIN numbers (“something one knows”,

i.e., by knowledge) because it is essentially “who one is”, i.e., by biometric

information. Therefore, it is not susceptible to misplacement or forgetfulness.

Examples of biometric modalities are fingerprint, face, voice, hand-geometry

and retina scans [1]. However, today, biometric-based security systems (de-

vices, algorithms, architectures) still have room for improvement, particularly

in their accuracy, tolerance to various noisy environments and scalability as

the number of individuals increases. Biometric data is often noisy because

of deformable nature of biometric traits, corruption by environmental noise,

variability over time and occlusion by the user’s accessories. The higher the

noise, the less reliable the biometric system becomes.

One very promising approach to improve the overall system’s accuracy is to

fuse the scores of several biometric systems [2]. Despite many works in the lit-

erature, e.g. [3,4], it is surprising that there is no coordinated effort in making

a benchmark database available for such task. This work is one step towards

better sharing of scores to focus on better understanding of the fusion mech-
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anism.

In the literature, there are several approaches towards studying fusion. One

practice is to used virtual identities whereby a biometric modality from one

person is paired with the biometric modality of another person. From the ex-

periment point of view, these biometric modalities belong to the same person.

The resultant user is known as a chimeric user. While this practice is some-

what accepted in the literature, it was questioned that whether this was a

right thing to do or not during the 2003 Workshop on Multimodal User Au-

thentication [5]. The fundamental issue here is the independence assumption

that two or more biometric traits of a single person are independent from each

other. To the best of our knowledge, there is no work in the literature that

approves or disapproves such assumption. A pioneer study [?] showed that

performance measured with experiments carried on chimeric users do not nec-

essarily reflect the performance with true multimodal users. Another practice

is more reasonable: use off-the-shelf biometric systems [6] and quickly acquire

scores. While this is definitely a better solution, committing to acquire the

systems and to collect the data is admittedly a very time-consuming process.

None of the mentioned approaches prevails over the others in understanding

the problem of fusion. There are currently on-going but independent projects

in the biometric community to acquire multimodal biometric databases. They

are listed below 1

• BANCA [7] – face and speech modalities 2 .

1 This list is by no means exhaustive. An updated list is being maintained at

http://www.idiap.ch/∼norman/fusion/main.php?bodyfile=bmark db.html
2 http://www.ee.surrey.ac.uk/banca
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• XM2VTS [8] – face and speech modalities 3 .

• BIOMET [9] – contains face, speech, fingerprint, hand and signature modal-

ities

• MYCT [10] – ten-print fingerprint and signature modalities 4 .

• University of Notre Dame Biometrics multimodal databases – face, ear pro-

file and hand modalities acquired using visible, Infrared-Red and range sen-

sors at different angles 5 .

• the FRGC database – face modality captured using camera at different

angles and range sensors in different controlled or uncontrolled settings 6 .

Other benchmarking efforts can be found in [11] 7 involving signature modal-

ity and [12] 8 fingerprint modality. As a matter of fact, most reported works

in the literature about fusion often concentrates on treatment of the baseline

systems. While baseline systems are definitely important, the subject of fu-

sion is unfortunately downplayed. Hence, we propose here not only to publish

scores, but also to provide a clear documentation of the baseline systems, well-

defined fusion protocols and provide a common set of evaluation tools so that

experimental results can be compared. The scores are taken from the pub-

licly available XM2VTS face and speech database 9 . It should be mentioned

here that there exists another software tool that analyses biometric error rate

called PRESS[13] 10 . However, it does not include the DET curve. The tools

3 http://www.ee.surrey.ac.uk/Research/VSSP/xm2vtsdb
4 http://turing.ii.uam.es/bbdd EN.html
5 (http://www.nd.edu/∼cvrl/UNDBiometricsDatabase.html
6 http://www.frvt.org/FRGC
7 http://www.cs.ust.hk/svc2004
8 http://bias.csr.unibo.it/fvc2004
9 The database and tools are available in http://www.idiap.ch/∼norman/fusion
10 Available in. http://it.stlawu.edu/∼msch/biometrics/downloads.htm
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proposed here, together with the database, provide a new plot called Expected

Performance Curve (EPC) [14] and a significant test specially designed to test

the Half Total Error Rate (HTER) [15].

Section 2 explains the XM2VTS database, the Lausanne Protocols and the

proposed Fusion Protocols. Section 3 documents the 8 baseline systems that

can be used for fusion. Section 4 presents the evaluation criteria, i.e., how

experiments should be reported and compared. A set of evaluation tools to

facilitate experimentation are presented in Section 5. Some experiments using

the proposed fusion protocol are reported in Section 6. This is followed by

conclusions in Section 7. Together with the evaluation tool, a recommended

cross-validation procedure is also given and is presented in the appendix.

2 Database and Protocols

2.1 The XM2VTS database and the Lausanne Protocols

The XM2VTS database [16] contains synchronised video and speech data from

295 subjects, recorded during four sessions taken at one month intervals. On

each session, two recordings were made, each consisting of a speech shot and

a head shot. The speech shot consisted of frontal face and speech recordings

of each subject during the recital of a sentence.

The database is divided into three sets: a training set, an evaluation set and

a test set. The training set (LP Train) was used to build client models, while

the evaluation set (LP Eval) was used to compute the decision thresholds (as

well as other hyper-parameters) used by classifiers. Finally, the test set (LP
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Test) was used to estimate the performance.

The 295 subjects were divided into a set of 200 clients, 25 evaluation impos-

tors and 70 test impostors. There exists two configurations or two different

partitioning approaches of the training and evaluation sets. They are called

Lausanne Protocol I and II, denoted as LP1 and LP2 in this paper. In both

configurations, the test set remains the same. Their difference is that there

are three training shots per client for LP1 and four training shots per client

for LP2. Table 1 is the summary of the data. The last column of Table 1 is

explained in Section 2.2.

Note that LP Eval’s of LP1 and LP2 are used to calculate the optimal thresh-

olds that will be used in LP Test. Results are reported only for the test sets,

in order to be as unbiased as possible (using an a priori selected threshold).

More details can be found in [8].

2.2 The Fusion Protocols

The fusion protocols are built upon the Lausanne Protocols. Before the dis-

cussion, it is important to distinguish two categories of approaches: client-

independent and client-dependent fusion approaches. The former approach

has only a global fusion function that is common to all identities in the

database. The latter approach has a different fusion function for a different

identity. It has been reported that client-dependent fusion is better than client-

independent fusion, given that there are “enough” client-dependent score data.

Examples of client-dependent fusion approach are client-dependent thresh-

old [17], client-dependent score normalisation [18] or different weighing of ex-
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pert opinions using linear [19] or non-linear combination [20]. The fusion pro-

tocols that are described here can be client-dependent or client-independent.

It should be noted that one can fuse any of the 8 baseline experiments in

LP1 and 5 baseline experiments in LP2 (to be detailed in Section 3). We

propose a full combination of all these systems. This protocol is called FP-

full. Hence, there are altogether 28 − 8 − 1 = 248 possible combinations for

LP1 and 25 − 5 − 1 = 26 for LP2. The reasons for minus one and minus the

number of experts are that using zero expert and using a single expert are

not valid options. However, some constraints are useful. For instance, in some

situations, one is constrained to using a single biometric modality. In this case,

we propose an intramodal fusion (FP-intramodal) . When no constraint is

imposed, we propose a full combination (FP-multimodal). FP-intramodal

contains 25−5−1 = 26 face-expert fusion experiments for LP1, 23−3−1 = 4

speech-expert fusion experiments for LP1, 1 face-expert fusion experiment for

LP2 and 23 − 3 − 1 = 4 speech expert-fusion experiments for LP2. Hence,

FP-intramodal contains 35 fusion experiments. The second protocol contains

∑5
m=1

∑3
n=1(

5Cm
3Cn) = 217 combinations, where nCk is “n choose k”. As can

be seen, the first three fusion protocols contain an exponential number of

combinations. For some specific study, it is also useful to introduce a smaller

set of combinations, each time using only two baseline experts, according to

the nature of the base-expert. This protocol is called FP-2. Three categories

of fusion types have been identified under FP-2, namely multimodal fusion

(using different biometric traits), intramodal fusion with different feature sets

and intramodal fusion with the same feature set but different classifiers. There

are altogether 32 such combinations. The pairings of base-experts for fusion

are shown in Table 2 for LP1 and LP2.
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Note that there are 8 biometric samples in the XM2VTS database on a per

client basis. They are used in the following decomposition: 3 samples are used

to train the baseline experts in LP1 (and 4 in LP2) on LP Train. There are

remaining 3 samples in the in LP1 Eval (and only 2 in LP2 Eval). Finally,

for both protocols, 2 client accesses for testing in the test set. Because fusion

classifiers cannot be trained using scores from the training set, or they are

simply not available in the current settings, we are effectively using the LP

Eval to train the fusion classifiers and then LP Test to test the fusion classifiers’

performance on the LP Test. To avoid confusion in terminology used, we call

LP Eval as the fusion development set and LP Test as the fusion evaluation

set.

Because we are left with two sets of scores (fusion development and evaluation

sets), we propose to use Algorithm 1 detailed in Appendix A, so that we can

still obtain two sets of fused scores: one on the fusion development set and one

on the fusion evaluation set. This is important because a threshold will have

to be chosen from the development set and the same threshold will be fixed a

priori on the evaluation set. In this way, the final reported fusion performance

will be unbiased with respect to the threshold parameter.

The use of Algorithm 1 is only highly recommended but not obligatory. One

can also train a fusion classifier using the evaluation set and also using the

same set to output fused scores. Although these scores are biased since they

are used to optimise the classifier parameters, we found that, in practice, the

threshold calculated this way is often surprisingly acceptable for the test set.
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3 Baseline System Description

There are altogether 8 baseline systems 11 . All the 8 baseline systems were used

in LP1. On the other hand, 5 out of 8 were used in LP2. This results in 13

baseline experiments (for LP1 and LP2). The following explanation describe

these systems in terms of their features, classifiers, and the complete system

which is made up of the pair (feature type, classifier).

3.1 Face and Speech Features

The face baseline experts are based on the following features:

(1) FH: normalised face image concatenated with its RGB Histogram (thus

the abbreviation FH) [21].

(2) DCTs: DCTmod2 features [22] extracted from face images with a size of

40× 32 (rows × columns) pixels. The Discrete Cosine Transform (DCT)

coefficients are calculated from an 8 × 8 window with horizontal and

vertical overlaps of 50%, i.e., 4 pixels in each direction. Neighbouring

windows are used to calculate the “delta” features. The result is a set

of 35 feature vectors, each having a dimensionality of 18. (s indicates

the use of this small image compared to the bigger size image with the

abbreviation b.)

(3) DCTb: Similar to DCTs except that the input face image has 80 × 64

pixels. The result is a set of 221 feature vectors, each having a dimen-

11 In our website, we also accept public contribution of score files. Each contributor

will have to explain clearly their baseline system. Hence, more fusion protocols may

be incorporated in the future.
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sionality of 18.

The speech baseline experts are based on the following features:

(1) LFCC: The Linear Filter-bank Cepstral Coefficient (LFCC) [23] speech

features were computed with 24 linearly-spaced filters on each frame of

Fourier coefficients sampled with a window length of 20 milliseconds and

each window moved at a rate of 10 milliseconds. 16 DCT coefficients

are computed to decorrelate the 24 coefficients (log of power spectrum)

obtained from the linear filter-bank. The first temporal derivatives are

added to the feature set.

(2) PAC: The Phase Auto-Correlation Mel Filter-bank Cepstral Coefficient

(PAC-MFCC) features [24] are derived with a window length of 20 mil-

liseconds and each window moves at a rate of 10 milliseconds. 20 DCT

coefficients are computed to decorrelate the 30 coefficients obtained from

the Mel-scale filter-bank. The first temporal derivatives are added to the

feature set.

(3) SSC: Spectral Subband Centroid (SSC) features, originally proposed for

speech recognition [25], were used for speaker authentication in [26]. It

was found that mean-subtraction could improve these features signifi-

cantly. The mean-subtracted SSCs are obtained from 16 coefficients. The

γ parameter, which is a parameter that raises the power spectrum and

controls how much influence the centroid, is set to 0.7 [27]. Also, the first

temporal derivatives are added to the feature set.
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3.2 Classifiers

Two different types of classifiers were used for these experiments: Multi-Layer

Perceptrons (MLPs) and a Bayes Classifier using Gaussian Mixture Models

(GMMs) [28]. While in theory both classifiers could be trained using any of

the previously defined feature sets, in practice MLPs are better at matching

feature vectors of fixed-size while GMMs are better at matching sequences (fea-

ture vectors of unequal size). Whatever the classifier is, the hyper-parameters

(e.g. the number of hidden units for MLPs or the number of Gaussian com-

ponents for GMMs) are tuned on the evaluation set LP1 Eval. The same

set of hyper-parameters are used in both LP1 and LP2 configurations of the

XM2VTS database.

For each client-specific MLP, the feature vectors associated to the client are

treated as positive patterns while all other feature vectors not associated to

the client are treated as negative patterns. All MLPs reported here were

trained using the stochastic version of the error-back-propagation training

algorithm [28].

For the GMMs, two competing models are often needed: a world and a client-

dependent model. Initially, a world model is first trained from an external

database (or a sufficiently large data set) using the standard Expectation-

Maximisation algorithm [28]. The world model is then adapted for each client

to the corresponding client data using the Maximum-A-Posteriori adapta-

tion [29] algorithm.
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3.3 Baseline Systems

The baseline experiments based on DCTmod2 feature extraction were reported

in [30] while those based on normalised face images and RGB histograms (FH

features) were reported in [21]. Details of the experiments, coded in the pair

(feature, classifier), for the face experts, are as follows:

(1) (FH, MLP) Features are normalised Face concatenated with Histogram

features. The client-dependent classifier used is an MLP with 20 hidden

units. The MLP is trained with geometrically transformed images [21].

(2) (DCTs, GMM) The face features are the DCTmod2 features calculated

from an input face image of 40× 32 pixels, hence, resulting in a sequence

of 35 feature vectors each having 18 dimensions. There are 64 Gaussian

components in the GMM. The world model is trained using all the clients

in the training set [30].

(3) (DCTb, GMM) Similar to (DCTs,GMM), except that the features used

are DCTmod2 features calculated from an input face image of 80 × 64

pixels. This produces in a sequence of 221 feature vectors each having 18

dimensions. The corresponding GMM has 512 Gaussian components [30].

(4) (DCTs, MLP) Features are the same as those in (DCTs,GMM) ex-

cept that an MLP is used in place of a GMM. The MLP has 32 hidden

units [30]. Note that in this case a training example consists of a big single

feature vector with a dimensionality of 35 × 18. This is done by simply

concatenating 35 feature vectors each having 18 dimensions 12 .

12 This may explain why MLP, an inherently discriminative classifier, has worse

performance compared to GMM, a generative classifier. With high dimensionality

yet having only a few training examples, the MLP cannot be trained optimally.
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(5) (DCTb, MLP) The features are the same as those in (DCTb,GMM)

except that an MLP with 128 hidden units is used. Note that in this case

the MLP in trained on a single feature vector with a dimensionality of

221 × 18 [30].

and for the speech experts:

(1) (LFCC, GMM) This is the Linear Filter-bank Cepstral Coefficients

(LFCC) obtained from the speech data of the XM2VTS database. The

GMM has 200 Gaussian components, with the minimum relative variance

of each Gaussian fixed to 0.5, and the MAP adaptation weight equals

0.1. This is the best known model currently available [31] under clean

conditions.

(2) (PAC, GMM) The same GMM configuration as in LFCC is used. Note

that in general, 200-300 Gaussian components would give about 1% of

difference of HTER [31]. This system is particularly robust to very noisy

conditions (less than 6 dBs, as tested on the NIST2001 one-speaker de-

tection task).

(3) (SSC, GMM) The same GMM configuration as in LFCC is used [27].

This system is known to provide an optimal performance under moder-

ately noisy conditions (18-12 dBs, as tested on NIST2001 one-speaker

detection task).

This may affect its generalisation on unseen examples. By treating the features as

a sequence, GMM was able to generalise better and hence is more adapted to this

feature set.
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4 Evaluation Criteria

There are three important concepts about evaluation of a biometric system:

types of errors in biometric authentication, threshold criterion and evaluation

criterion. The types of errors are false acceptance and false rejection (see

Section 4.1). A threshold criterion refers to a strategy to choose a threshold

which is necessarily tuned on a development set. An evaluation criterion is

used to measure the final performance and is necessarily calculated on an

evaluation set. Both are discussed in Sections 4.2 and 4.3. Section 4.4 addresses

the issue of measuring the gain due to fusion as compared to individual baseline

expert systems. Section 4.5 discusses how to visualise the evaluation criterion.

It also deals with the case of visualising the performance of several systems

using one single curve. Finally, Section 4.6 presents a significance test that

can be used to compare the performance of two systems using the evaluation

criterion.

4.1 Types of Errors

A fully operational biometric system makes a decision using the following

decision function:

F (x) =































accept if y(x) > ∆

reject otherwise,

(1)

where y(x) is the output of the underlying expert supporting the hypothesis

that the biometric sample received x belongs to a client. The variables that

15



follow will be derived from y(x). For simplicity, we write y instead of y(x). The

same convention applies to variables that follow. Because of the accept-reject

outcomes, the system may make two types of errors, i.e., false acceptance (FA)

and false rejection (FR). Normalised versions of FA and FR are often used and

called false acceptance rate (FAR) and false rejection rate (FRR), respectively.

They are defined as:

FAR(∆) =
FA(∆)

NI
, (2)

FRR(∆) =
FR(∆)

NC
. (3)

where FA and FR count the number of FA and FR accesses, respectively; and

NI and NC are the total number of impostor and client accesses, respectively.

4.2 Threshold Criterion

To choose an “optimal threshold” ∆, it is necessary to define a threshold

criterion. This has to be done on a development set. Two commonly used

criteria are the Weighted Error Rate (WER) and Equal Error Rate (EER).

WER is defined as:

WER(α, ∆) = αFAR(∆) + (1 − α) FRR(∆), (4)

where α ∈ [0, 1] balances between FAR and FRR. A special case of WER is

EER, which assumes that the costs of FA and FR are equal. It further assumes

that the class prior distributions of client and impostor accesses are equal. As

a result α = 0.5. In this case, Eqn. (4) becomes:

EER(∆) =
1

2
(FAR(∆) + FRR(∆)) . (5)
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Let ∆∗
α be the optimal threshold that minimises WER on a development set.

It can be calculated as follows:

∆∗ = arg min
∆

|αFAR(∆) − (1 − α) FRR(∆)|. (6)

Note that one could have also used a second minimisation criterion:

∆∗ = arg min
∆

WER(α, ∆). (7)

In theory, these two minimisation criteria should give identical results. In

practice however, they do not, because FAR and FRR are empirical functions

and are not smooth. Eqn. (6) ensures that the difference between weighted

FAR and weighted FRR are as small as possible while Eqn. (7) ensures that

the sum of the two weighted terms are minimised. Because FAR is a decreasing

function while FRR is an increasing function of threshold, the first criterion

takes advantage of this additional information while the second criterion does

not. Hence, the first criterion can more accurately estimate the threshold and is

used for evaluation in this study. Note that the EER criterion can be calculated

similarly by fixing α = 0.5.

4.3 Evaluation Criterion

Having chosen an optimal threshold using the WER threshold criterion dis-

cussed previously, the final performance is measured using Half Total Error

Rate (HTER). Note that the threshold is found with respect to a given α. It

is defined as:

HTER(∆∗
α) =

FAR(∆∗
α) + FRR(∆∗

α)

2
. (8)
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It is important to note that the FAR and FRR do not have the same res-

olution. Because there are more simulated impostor accesses than the client

accesses, FRR changes more drastically when falsely rejecting a client access

whereas FAR changes less drastically when falsely accepting an impostor ac-

cess. Hence, when comparing the performance using HTER(∆∗
α) from two

systems (at the same ∆∗
α), the question of whether the HTER difference is

significant or not has to take into account the imbalanced numbers of client

and impostor accesses. This is discussed in Section 4.6.

Finally, it is important to note that HTER in Eqn. (8) is identical to EER in

Eqn. (5) except that HTER is a performance measure (calculated on an eval-

uation set whereas EER is a threshold criterion optimised on a development

set. Because of their usage in different context, EER should not be interpreted

as a performance measure (in place of HTER) to compare the performance of

different systems. Such practice, to our opinion, leads to an unrealistic com-

parison. The argument is that in an actual operating system, the threshold

has to be fixed a priori. This subject is further discussed in Section 4.5. To

distinguish these two concepts, when discussing HTER calculated on a devel-

opment set using a threshold criterion also calculated on the same set, the

HTER should be called a posteriori HTER. When discussing HTER calcu-

lated on an evaluation set with a threshold optimised on a development set,

the HTER should be called a priori HTER.

4.4 Measuring the Gain

This section presents the “gain ratio” to answer the question: “how much gain

can one obtain out of a given fusion experiment as compared to the base-
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line systems?”. Suppose that there are i = 1, . . . , N baseline expert systems.

HTERi is the HTER evaluation criterion (measured on an evaluation set) as-

sociated to expert i and HTERCOM is the HTER associated to the combined

system. The “gain ratio” β has two definitions, as follow:

βmean =
meani(HTERi)

HTERCOM

(9)

βmin =
mini(HTERi)

HTERCOM

, (10)

where βmean and βmin are the proportion of the HTER of the combined (fused)

expert with respect to the mean and the minimum HTER of the underlying

experts i = 1, . . . , N . According to our previous work, it is found theoretically

and empirically that βmean ≥ 1 [32]. βmin, on the other hand, is a more re-

alistic criterion, i.e., one wishes to obtain better performance than the best

underlying expert, but there is no analytical proof that βmin ≥ 1.

4.5 Visualising the Performance

Perhaps the most commonly used performance visualising tool in the literature

is the Decision Error Trade-off (DET) curve [33], which is actually a Receiver

Operator Curve (ROC) curve plotted on a non-linear scale. It has been pointed

out [14] that two DET curves resulted from two systems are not comparable

because such comparison does not take into account how the thresholds are

selected. In fact, this holds down to compare two DET curves at a given

common threshold chosen a posteriori. It was argued [14] that such threshold

should be chosen a priori as well, based on a given criterion. This is because

when a biometric system is operational, the threshold parameter has to be

fixed a priori. As a result, the Expected Performance Curve (EPC) [14] was
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proposed. We will adopt this evaluation method, which is also in coherence

with the original Lausanne Protocols defined for the XM2VTS database.

The EPC curve simply plots HTER (in Eqn. (8)) versus α (as found in

Eqn. (4)), since different values of α give rise to different values of HTERs.

The EPC curve can be interpreted in the same manner as the DET curve,

i.e., the lower the curve is, the better the performance but for the EPC curve,

the comparison is done at a given cost (controlled by α). An example of EPC

Curve is shown in Figure 1(a).

One advantage of EPC curve is that it can plot a pooled curve from several

experiments (although this could also be done with DET curves, but in this

case, it would not take the threshold selection into account). For instance, to

compare two methods over M experiments, only one pooled curve is necessary.

This is done by calculating HTER at a given α point by taking into account all

the false acceptance and false rejection accesses over all M experiments. The

pooled FAR and FRR across j = 1, . . . , M experiments for a given α ∈ [0, 1]

is defined as follow:

FARpooled(∆∗
α) =

∑M
j=1 FA(∆∗

α(j))

NI × M
, (11)

and

FRRpooled(∆∗
α) =

∑M
j=1 FR(∆∗

α(j))

NC × M
, (12)

where ∆∗
α(j) is the optimised threshold at a given α for expert j, NI is the

number of impostor accesses and NC is the number of client accesses. FA and

FR count the number of false acceptance and the number of false rejection at

a given threshold ∆∗
α(j). The pooled HTER is defined similarly as in Eqn. (8)
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by using the pooled versions of FAR and FRR.

4.6 HTER Significance Test

Although there exists several statistical significance tests in the literature such

as McNemar’s Test [34] and Asymptotic Performance, it has been shown that

HTER significance test [15] better reflects the imbalance nature of precision

in FAR and FRR.

When comparing two EPC curves that are very close to each other, with possi-

ble overlaps, it is interesting to know if the difference between the two HTERs,

at any given point of α, is significant or not. In this case, it is recommended to

employ a two-sided significance test as proposed in [15]. Under some reason-

able assumptions, it has been shown [15] that the difference of HTER of two

systems (say A and B) is normally distributed with the following variance:

σ2
HTER =

FARA(1−FARA)+FARB(1−FARB)

4·NI +

FRRA(1−FRRA)+FRRB(1−FRRB)

4·NC

, (13)

where HTERA, FARA and FRRA are HTER, FAR and FRR of the first system

labeled A and similarly for the second system labeled B. NI and NC are the

total number of impostor accesses and client accesses, respectively. One can

then compute the following z-statistics:

z =
HTERA − HTERB

σHTER
. (14)

Let us define D(z) as the cumulative density of a normal distribution. The
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significance of z is calculated as D−1(z). In a standard two-sided test, |z|

is used. In Eqn. (14), the sign of z is retained so that z > 0 implies that

HTERA > HTERB. Consequently, D−1(z) > 0.5 and vice-versa for z < 0. An

example of plot of significance test is shown in Figure 1(b). This significance

test is performed on EPC curves shown in Figure 1(a). (DCTs,GMM) is system

A whereas (PAC,GMM) is system B. Whenever the EPC curve of system

B is lower than that of system A (B is better than A), the corresponding

significance curve is more than 50%. Below 10% of confidence (or above 90%

of confidence) indicates that system B is significantly worse than A (or system

A is significantly worse than B).

5 Evaluation Tools

There are several (software) tools provided:

• The main program. This program handles loading and fusion of all the 32

fusion experiments in FP-2. There is also a sample program showing how

the fusion can be done using the mean operator. The output of the main

program is shown in Table 2.

• Visualisation tool. This program plots two-dimensional scatter plot of

scores with Gaussian fittings for each class of scores. An example of scatter

plot is shown in Figure 2. Gaussian fittings can be very useful to predict

fusion [35] especially when the Gaussian hypothesis is true.

• Score diagnostic tool. This program takes as input fused scores and cal-

culate HTERs, plots class-dependent distributions, FAR and FRR versus

threshold and DET curve. An example of output of this program is shown

in Figure 3.
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• EPC curves. Last but not least, there is also a program that plots Ex-

pected Performance Curve or EPC curve [14] (see Figure 1(a)). A detailed

explanation of EPC can be found in Section 4.5. Furthermore, another ac-

companying program actually compares two EPC curves to see if the differ-

ence of two systems under comparison is significant or not using a two-sided

test [15], at various operating costs (see Figure 1(b)). A detailed explanation

of this test can be found in Sec 4.6.

6 Example of Fusion Experiments

Some experiments have been carried out in client-independent fusion set-

ting (e.g. [32]) and client-dependent fusion setting (e.g. [?]). In [32] client-

independent FP-2 was performed using the mean operator, Multi-Layer Per-

ceptrons, Support Vector Machines [32]. Here, we show only fusion experi-

ments using the mean operator (see Table 2). For multimodal fusion, there

are a total of 21 experiments from both LP1 and LP2 protocols. Similarly

for fusion with different feature sets (same modality), there are a total of 9

experiments (6 from LP1 and 3 from LP2). Finally, for fusion with different

classifiers (same feature set), there are only 2 experiments.

7 Conclusions

In this study, we presented a database, several fusion protocols in different

scenarios and a set of evaluation tools to encourage researchers to focus on

the problem of biometric authentication score-level fusion. To the best of our

knowledge, there has been no work in the literature that provides a benchmark

23



database for score-level fusion. Several practical and state-of-the-art tools are

also provided so that experiments can be compared in a realistic and unbiased

way.

A Cross-Validation Procedure

Algorithm 1 [36] shows how K-fold cross-validation can be used to estimate

the correct value of the hyper-parameters of our fusion model, as well as the

decision threshold used in the case of authentication. The basic framework

of the algorithm is as follows: first perform K-fold cross-validation on the

training set by varying the hyper-parameter, and for each hyper-parameter,

select the corresponding decision threshold that minimises Half Total Error

Rate (HTER); then choose the best hyper-parameter according to this crite-

rion and perform normal training with the best hyper-parameter on the whole

training set; finally test the resultant classifier on the test set with HTER

evaluated on the previously found decision threshold.

There are several points to note concerning Algorithm 1: Z is a set of labeled

examples of the form (X ,Y), where the first term is a set of patterns and

the second term is a set of corresponding labels. The “train” function receives

a hyper-parameter θ and a training set, and outputs an optimal classifier F̂

by minimising the HTER on the training set. The “test” function receives

a classifier F̂ and a set of examples, and outputs a set of scores for each

associated example. The “thrdHTER” function returns a decision threshold

that minimises HTER by minimising |FAR(∆)−FRR(∆)| with respect to the

threshold ∆ (FAR(∆) and FRR(∆) are false acceptance and false rejection

rates, as a function of ∆) while LHTER returns the HTER value for a particular
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Algorithm 1 Risk Estimation (Θ, K,Z train,Z test)

REM: Risk Estimation with K-fold Validation. See [36].

Θ : a set of values for a given hyper-parameter

Z i : a tuple (X i,Y i), for i ∈ {train, test} where

X : a set of patterns. Each pattern contains scores/hypothesis from base

experts

Y : a set of labels ∈ {client, impostor}

Let ∪K
k=1Z

k = Z train and Z i ∩ Zj = ∅∀i,j

for each hyper-parameter θ ∈ Θ do

for each k = 1, . . . , K do

F̂θ = train(θ, ∪K
j=1,j 6=kZ

j)

Ŷk
θ = test(F̂θ, X

k)

end for

∆θ = thrdHTER

(

{Ŷk
θ }

K
k=1, {Y

k}K
k=1

)

end for

θ∗ = arg minθ

(

LHTER

(

∆θ, {Ŷ
k
θ }

K
k=1, {Y

k}K
k=1

))

F̂θ∗ = train(θ∗, Z train)

Ŷ test
θ∗ = test(F̂θ∗ , X

test)

return LHTER(∆θ∗, Ŷ
test
θ∗ ,Y test)

decision threshold. What makes this cross-validation different from classical

cross-validation is that there is only one single decision threshold and the

corresponding HTER value for all the held-out folds and for a given hyper-

parameter θ. This is because it is logical to union scores of all held-out folds

into one single set of scores to select the decision threshold (and obtain the

corresponding HTER).
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[14] S. Bengio, J. Mariéthoz, The Expected Performance Curve: a New Assessment

Measure for Person Authentication, in: The Speaker and Language Recognition

Workshop (Odyssey), Toledo, 2004, pp. 279–284.
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Table 1

The Lausanne Protocols of XM2VTS database. The last column shows the terms

used in the fusion protocols presented in Section 2.2. LP Eval corresponds to the Fu-

sion protocols’ development set while LP Test corresponds to the Fusion Protocols’

evaluation set.

Data sets Lausanne Protocols Fusion

LP1 LP2 Protocols

LP Train client accesses 3 4 NIL

LP Eval client accesses 600 (3 × 200) 400 (2 × 200) Fusion dev

LP Eval impostor accesses 40,000 (25 × 8 × 200) Fusion dev

LP Test client accesses 400 (2 × 200) Fusion eva

LP Test impostor accesses 112,000 (70 × 8 × 200) Fusion eva
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Fig. 1. (a): Expected Performance Curves (EPCs) of two experiments: one is a

face system (DCTs,GMM) and the other is speech system (PAC,GMM). (b) HTER

significance test of the two EPC curves. Confidence more than 50% implies that the

speech expert is better and vice-versa. This is a two-tailed test so two HTERs of

a given cost α are considered significantly different when the level of confidence is

below 10% or above 90% (for a significance level of 20%, in this case for illustration).
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Fig. 2. Scatter plot of two experts. Only 1% of data points are plotted here. Circles

overlaid on each cluster of scores is a Gaussian approximation of the respective class

(client or impostor).
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Fig. 3. A score diagnostic plot of two experts. (a): Probabilistic density function

of client (right, darker curve) and impostor classs (left, lighter curve). (b): False

Rejection Rate (FRR, darker curve) and False Acceptance Rate (FAR, lighter curve)

versus the scores (different threshold positions). (c): Weighted Error Rate with

α = 0.5. (d): Decision Error Trade-off (DET) curve.
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Table 2

Results of combining two baseline experts using the mean operator according to

FP-2.

(a) Fusion with different modalities for LP1

No. Fusion candidates HTER

1 ((FH,MLP)(LFCC,GMM)) 0.782

2 ((FH,MLP)(PAC,GMM)) 1.120

3 ((FH,MLP)(SSC,GMM)) 0.871

4 ((DCTs,GMM)(LFCC,GMM)) 0.543

5 ((DCTs,GMM)(PAC,GMM)) 1.436

6 ((DCTs,GMM)(SSC,GMM)) 1.149

7 ((DCTb,GMM)(LFCC,GMM)) 0.511

8 ((DCTb,GMM)(PAC,GMM)) 1.021

9 ((DCTb,GMM)(SSC,GMM)) 0.752

10 ((DCTs,MLP)(LFCC,GMM)) 0.840

11 ((DCTs,MLP)(PAC,GMM)) 1.138

12 ((DCTs,MLP)(SSC,GMM)) 1.333

13 ((DCTb,MLP)(LFCC,GMM)) 1.523

14 ((DCTb,MLP)(PAC,GMM)) 3.664

15 ((DCTb,MLP)(SSC,GMM)) 3.108

(b) Fusion with different feature sets for LP1

No. Fusion candidates HTER

1 ((FH,MLP)(DCTs,GMM)) 1.280

2 ((FH,MLP)(DCTb,GMM)) 1.122

3 ((FH,MLP)(DCTs,MLP)) 1.513

4 ((FH,MLP)(DCTb,MLP)) 1.960

5 ((LFCC,GMM)(SSC,GMM)) 1.595

6 ((PAC,GMM)(SSC,GMM)) 4.225

(c) Fusion with different classifiers for LP1

No. Fusion candidates HTER

1 ((DCTs,GMM)(DCTs,MLP)) 2.388

2 ((DCTb,GMM)(DCTb,MLP)) 3.063

(d) Fusion with different modalities for LP2

No. Fusion candidates HTER

1 ((FH,MLP)(LFCC,GMM)) 1.122

2 ((FH,MLP)(PAC,GMM)) 1.513

3 ((FH,MLP)(SSC,GMM)) 1.960

4 ((DCTb,GMM)(LFCC,GMM)) 1.836

5 ((DCTb,GMM)(PAC,GMM)) 2.388

6 ((DCTb,GMM)(SSC,GMM)) 3.672

(e) Fusion with different feature sets for LP2

No. Fusion candidates HTER

1 ((FH,MLP)(DCTb,GMM)) 1.280

2 ((LFCC,GMM)(SSC,GMM)) 3.063

3 ((PAC,GMM)(SSC,GMM)) 2.934
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