Kernel Matching Pursuit for Large Datasets

Vlad Popovici ** Samy Bengio® Jean-Philippe Thiran

2Fcole Polytechnique Fédérale de Lausanne (EPFL)
Signal Processing Institute
CH-1015 Lausanne, Switzerland

PIDIAP Research Institute
CP 592 rue du Simplon J
CH-1920 Martigny, Switzerland

Abstract

Kernel Matching Pursuit is a greedy algorithm for building an approximation of
a discriminant function as a linear combination of some basis functions selected
from a kernel-induced dictionary. Here we propose a modification of the Kernel
Matching Pursuit algorithm that aims at making the method practical for large
datasets. Starting from an approximating algorithm, the Weak Greedy Algorithm,
we introduce a stochastic method for reducing the search space at each iteration.
Then we study the implications of using an approximate algorithm and we show
how one can control the trade—off between the accuracy and the need for resources.
Finally we present some experiments performed on a large dataset that support our
approach and illustrate its applicability.

Key words:
kernel matching pursuit, greedy algorithm, sparse classifier

1 Introduction

Recently, a number of machine learning techniques that produce sparse clas-
sifiers have been proposed. We call a classifier sparse if it can be represented

*

Email addresses: V1ad.Popovici@epfl.ch (Vlad Popovici), bengio@idiap.ch
(Samy Bengio), JP.Thiran@epfl.ch (Jean-Philippe Thiran).

URLs: http://itswww.epfl.ch/"vlad (Vlad Popovici),
http://www.idiap.ch/ bengio (Samy Bengio),
http://itswww.epfl.ch/"thiran (Jean—Philippe Thiran).

Article published in Pattern Recognition (in press) (2005)

as a combination, usually linear, of some basis functions that depend only
on a small proportion of the training examples. Probably the most widely
used and well known are the Support Vector Machines (SVMs) [1], while al-
ternatives include the Relevance Vector Machine (RVM) [2] and the Kernel
Matching Pursuit (KMP) [3]. The sparsity is achieved either as a result of the
constraints imposed, like in the case of SVM, or as a consequence of explicit
search for the sparsest model, like in KMP or RVM.

However, when faced with large datasets (in the order of tens of thousands
or more examples) all these techniques become less practical, requiring huge
amounts of resources, both in memory and CPU time. The main focus of this
paper is to propose a modification of one of these algorithms — the Kernel
Matching Pursuit — so that it becomes tractable to train using large datasets
with a reasonable amount of resources. The basis of the proposed modification
are set by an approximation of the Matching Pursuit, known as the Weak
Greedy Algorithm. Using this framework, we introduce a stochastic method
for constructing the classification function. We then study the implications of
such a modification and, more importantly, the degradation of the accuracy,
which is inherent in any approximating algorithm.

The paper is organized as follows: after reviewing in Section 2 the KMP al-
gorithm and its approximated variant, we present the stochastic extension of
KMP and empirically study its behavior on a large dataset in Sections 3 and
4 respectively. Finally, we draw some conclusions in Section 5.

2 Basic and Weak KMP

KMP is a new algorithm that has recently been introduced as an application
of the Matching Pursuit method from signal processing domain to the case
of pattern classification [3]. Its main advantages stem from its conceptual
simplicity and the sparsity of the models it produces. Despite its deceiving
simplicity, it achieves performance comparable with that of more complex
classifiers, like SVMs [3], but using models that are much sparser.

The problem of learning classification functions from examples can be formally
stated as an estimation problem of a function f : X C R? — Y = {—1,1}
using the training set 7, = {z; = (x;,y;)|i = 1,...,l} C Z = X XY generated
by some unknown function f*, such that f will correctly classify unseen ex-
amples z = (x,y), i.e. f(x) = y for examples z that are drawn from the same
underlying probability distribution P(Z) as the training data. It is usually
convenient to consider firstly a more general problem, where the goal is to
find a function f : X — R such that a suitably chosen optimality criterion
is satisfied, and then to take f = sign(f). For simplicity, we will consider

only the case of square—error loss function, £5[f] = %(yl — f(x;))?, but the
discussion remains valid for other types of loss functions as well. Further-
more, it is well known that without any restriction on the class of functions
f can be chosen from, even if the performance on the training set is good
(e.g. f(xz) =y;, Vi =1,...,1) it does not mean f generalizes well to unseen
examples and regularization techniques must thus be used when searching for

f 4.

In the case of KMP, one builds an approximation of the classification function
as a linear combination of some basis functions selected from a dictionary D:

fn(X) = kzi: akgk(x)> (1>

where g; € D = {¢1,...,9m},; € R,¥Vi = 1,...,n and n is the number of
terms in the expansion. The generalization capabilities of the classifier are
controlled through the structure of the dictionary and the number of terms in
the summation of Eq. (1). This form of the classification function is not specific
to KMP but can be found in other methods like SVMs, additive models, Radial
Basis Functions, neural networks and so forth [5,6].

The general Matching Pursuit algorithm constructs the approximation in a
greedy manner, iteratively improving the current solution by minimizing the
norm of the residual |R,||* = ||f* — fal|?>. Then, for any n > 0 we define the
new approximation f, 1 to be

fn+1 = fo+ anp1gnt1, fo=0, (2>

where
2

(3)

"= (ﬁ: kg +a9>

k=1

(41, Gnt1) = arg oy
geD
In the space of functions, the value of ¢ that minimizes (3) is the one that
maximizes |(g, R,)|/||g]|, in other words it is the function that is most cor-
related with the current residual. The corresponding value for « is v, 1 =
(Gns1, RY/||gns1|*>. Note that for our case the functions are seen as vectors of
values representing the evaluation of the function on the training set, so the
true labeling function f* is merely the vector of training labels (y1, ...,)" and
fn should be seen as the vector (f,(x1),..., fu(x;))". Finally, when the dictio-
nary functions g are generated by some kernel-like function, gx(x) = k(x, X)
we obtain the basic Kernel Matching Pursuit algorithm [3]. Keeping this ob-
servation in mind, the KMP method is described in Algorithm 1.

We notice that the bottleneck of the algorithm is represented by the search
of the next element from the dictionary to be added in the function expan-
sion (line 4 of Algorithm 1). Usually, this requires a full search over the whole

Algorithm 1: Kernel Matching Pursuit [3]

input : a dataset Z; = {(x;,y;)|i = 1,...,}, a kernel function «(-,-) and
the number of iterations V.

output: fy(x) = 3L, akge(x)

build the dictionary matrix: [D;;] = g;(x;) = k(x;,%x;) Vi,j=1,...,0 and

let d; be the j—th column of D; t

2 initialize the residual: R «— (y1,...,Ym);
forn=1,...,N do

[{di, B)|
il

K, «— arg maxg=1,..,

an A — 2)
[, |
R «— R — aydy, ;

end

dictionary (with the computation of all inner products (d, R)) and may neces-
sitate a large number of floating point operations. An alternative is provided
by the so—called Weak Greedy Algorithms (WGA) [7] which provide an ap-
proximation of the MP and related greedy algorithms. WGA and its different
formulations have been analyzed in [7] and [8] and proofs of convergence of
the algorithm exist for various conditions. Basically, WGA generates an ap-
proximant sequence

fn—H = fn + 10 119n41 = fn + Qni19nt1, tog1 € [07 1]7 (4)

where a1 and g, are defined as before, and &;,+1 = t,4104,41. Clearly, for
t, = 1,V¥n, one retrieves the original algorithm. The sequence 7 = {t,|n > 1} is
called weakness sequence and it must obey some constraints for the algorithm
to converge. While different conditions on 7 result in different guaranteed con-
vergence rates, we will simply require that 3¢ > 0 such that ¢, > t,Vn > 1
8], which ensures the convergence. These modifications imply that we are no
longer forced to produce the global maximum at each iteration of the algo-
rithm, but just a value that represents a fraction of this maximum. It is obvious
that the closer we are to the global maximum, the smaller is the degradation of
the performance compared with the original algorithm. In the next section we
will describe a strategy for constructing the sequence fn (and, implicitly, the
weakness sequence 7) that exploits this approximate MP algorithm and which
greatly reduces the computation times. As a final observation, we note the
similarity between the term ¢, from (4) and other regularization terms, like
shrinkage or learning rate parameters, commonly found in machine learning
algorithms [9)].

3 Stochastic KMP

We start by showing that in order to find the approximate maximum of a
sequence of numbers one can restrict the search space to a limited subsample
of the sequence, and that the size of this subsample does not depend on the
size of the original set.

Let us assume that we are given a sample {z1, ..., z,} of real values generated
by a probability density function p(z), and let P(z) be the corresponding
cumulative distribution function. Let now z¥) denote the k—th order statistic.
Then the probability distribution function of z*) is given by [10], p. 22:

n) = g PO = PRI 0(2),)
for all K =1,...,s. We note that
max{zy,..., 2} = 2% (6)

and it follows that the distribution of the maximum is given by

Integrating, we obtain the cumulative distribution of 2(*) as
Py(z) = [P(2)]. (8)
This result justifies the following

Proposition 1 The distribution of the random variable (= max{z1, ..., zs}
is given by [P(C)]°, where z1,...,zs are s independent and identically dis-
tributed random variables and P is the cumulative distribution function.

Assuming a uniform distribution for z, we obtain the distribution of the max-
imum as being (°. In the case of the dictionary for KMP algorithms, if we
do not have any information about the distribution of the examples, we can
assume that the values of |(g, R)|/||g|| are uniformly distributed and we will
empirically show in the experimental section that this is a pessimistic approx-
imation. We are then interested in finding the number of elements that must
be considered from the full dictionary such that their maximum has a quantile
of at least, say, ¢, with a given probability. Using Proposition 1 and the fact
that the cumulative distribution of the maximum is (*, we can formulate the
answer as

Proposition 2 Assuming a uniform distribution of z, the maximum of a sam-
. 1 . ..
ple {z1,..., 25} has a quantile of at least €5 with probability 1 — €.

The practical consequence of this result is that we may take the maximum
of s = [loge/logq| randomly chosen elements from the full dictionary and
we still have 1 — ¢ probability of having a value that has a quantile of q.
For example, assume that we have 10000 examples in the training set and we
want a value that has a quantile ¢ = 0.95 (within the largest 5% values) with
probability 95%. Then we only need to take the maximum of a subsample of
[log 0.05/10g 0.95] = 59 elements, which means merely 0.59% of the original
set.

We can now define the stochastic version of KMP. Let I® c {1,...,I} be
a set of s < [indices, called active set at iteration n. I(*) is obtained by
randomly sampling (without replacement) from the full set of indices {1, ...}
and we restrict the search for the maximum to the set {|(gx, R)|/||lgx|l, k €
I}, Then the Stochastic KMP (SKMP) algorithm requires replacing line 4
of Algorithm 1 with

di, R
generate active set Ir(f); k, «— arg max M
kerl |ldll

It is clear that these modifications lead to a weak greedy algorithm which
is convergent, for the weakness sequence produced contains only positive el-
ements as long as Iff) # (). Moreover, by controlling the values of € and ¢
one can control the trade—off between the speed (the smaller s the faster the
algorithm) and the accuracy (the larger s the closer we are to the original
KMP) of the algorithm.

Finally, we note that a similar method was proposed in [11] for speeding up
the optimization of SVMs.

4 Experiments

The main goal of the experiments reported here is to investigate the behavior
of the approximate version of the KMP and to compare it with the original
KMP. In all our experiments we used the largest dataset available in the UCI
repository [12] — the Forest dataset. We transformed the original multi-class
problem into a binary classification task where the goal was to discriminate
class 2 from all the other six classes, this kind of partitioning making the two
new classes of roughly the same size. As we were also interested in analyzing
the performance of the algorithm on training sets having different cardinality,
we have created 4 different disjoint training sets of respectively 5000, 10000,
15000 and 50000 elements, by randomly selecting examples from the original
set. Finally, we have selected an independent test set of 30000 examples.

When using the stochastic KMP one has to select before starting the num-

ber of elements in the active set. In our experiments we used two different
settings, one with 59 elements and one with 228 elements, corresponding to
(e = 0.05,q = 0.95) and (¢ = 0.01,q = 0.98), respectively. In order to an-
alyze the influence of the randomness introduced in the algorithm, we have
repeated 10 times each of the experiments involving the Stochastic KMP. Fi-
nally, we have also trained an SVM for each of the four different training sets
(the dashed line in the plots) and use it as a baseline classifier for comparison.
The results are depicted in Figure 1 where the rows correspond to the four
different training sets, while the columns correspond to respectively 59 and
228 elements in the active set. On the horizontal axes are the iterations of
KMP (from 200 to 2400) and on the vertical the error rates. The continuous
line corresponds to the error rate of the classical KMP, while the dashed line
correspond to the error rate of a SVM. The error rates of the stochastic KMP
are given as boxplots.

The kernel used in all experiments was a Gaussian kernel, xk(x1,X3) = exp(—~||x;—
Xo][?), and we let v = 0.5 for (S)KMP and v = 0.03185 for SVM with the
parameter chosen by 10—fold cross—validation on a 5000 example set. As one
can notice from Figure 1, increasing the training set size results in signifi-
cantly better performance of all classifiers. What is also interesting to note
is that (S)KMP algorithms generally reach the same error rate as SVM but
using much sparser models: for the four datasets (in increasing order of their
cardinality) the SVMs had 2643, 5174, 7529 and 23048 support vectors re-
spectively, while the (S)KMP had the number of terms upper bounded by the
number of iterations (at most 2400). The case of the training set having 50000
examples requires more iterations for KMP to reach the same classification
error as SVM.

Comparing the two cases for SKMP, corresponding to the two different di-
mensions of the active set, we see that in the second case the degradation of
the performance is much less significant then in the first case, as predicted by
Proposition 2. Another important observation is that the behavior of SKMP
mimics the one of its deterministic counterpart. This means that an equivalent
level of performance can be reached given more iterations, but this increase
in the number of iterations is largely compensated by the reduced number of
floating—point operations needed to compute the inner products (di, R).

The main advantage of SKMP over KMP is due to the smaller number of float-
ing point operations needed: indeed, if one disregards the overhead caused by
the sampling process for building the active set, the only difference between
the two algorithms resides in the way they search for the next basis function:
while KMP performs a full search — and the number of inner products com-
puted equals the number of examples [— the SKMP computes just s inner
products. This means that while the complexity of KMP is linear, the one of
SKMP is constant. Moreover, if we approximate the gain of speed as a function

of s/l, the gain will be more significant with the increase of the cardinality of
the training set.

Finally, we have empirically observed that the distribution of the values |(dy, R)]|
is not uniform — as initially assumed — but rather exponential, for the particu-
lar type of kernel and training set used. This means that our initial hypothesis
gives a pessimistic approximation of the maximum: for an exponential density
of the form f(z) = exp(—z) the equivalent of Proposition 2 would guarantee
a quantile of at least —In(1 — /%) with probability 1 — ¢, which is a bet-
ter quantile than £'/¢ (¢ € [0,1)). Nevertheless, Proposition 2 gives a good
conservative estimate.

5 Conclusions

We have presented a stochastic version of the KMP algorithm that has the
advantage of greatly reducing the computational overhead. While being an
approximation of the original KMP, the approach described produces com-
parable results: for example, the decrease in accuracy, for 59 elements in the
active set, was around 0.5% — 1%, and this error became less significant with
the increase in the number of iterations. On the other hand, one can control
the trade—off between accuracy and speed by choosing a suitable value for
and ¢ parameters that determine the size of the active set.

Acknowledgements

This work has been performed with the financial support of the IM2-NCCR
project of the Swiss NSF.

References

[1] B. Boser, I. Guyon, V. Vapnik, An algorithm for optimal margin classifiers, Fifth
Annual Workshop on Computational Learning Theory, (1992), 144-152.

[2] Michael E. Tipping, Sparse Bayesian Learning and the Relevance Vector
Machine, Journal of Machine Learning Research 1 (2001) 211-244.

[3] P. Vincent, Y. Bengio, Kernel matching pursuit, Machine Learning Journal 48 (1)
(2002) 165-187.

[4] V. Vapnik, The Nature of Statistical Learning Theory, Springer, 1995.

[5] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press,
1995.

[6] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, John Wiley & Sons,
2001

[7] V. Temlyakov, Weak greedy algorithms, Advances in Computational
Mathematics 12 (2,3) (2000) 213-227.

[8] R. Gribonval, M. Nielsen, Approximate weak greedy algorithms, Advances in
Computational Mathematics 14 (4) (2001) 361-378.
URL http://www.math.sc.edu/"imip/00papers/0016.ps

[9] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning.
Data Mining, Inference and Prediction, Springer—Verlag, 2001

[10] K.V. Bury, Statistical distributions in engineering, Cambridge University Press,
1999.

[11] B. Scholkopf, A.J. Smola, Learning with Kernels—Support Vector Machines,
Regularization, Optimization and Beyond, MIT Press, 2002

[12] C. Blake and C. Merz. UCI repository of machine learning databases. Technical
report, University of California, Irvine, Dept. of Information and Computer
Sciences, 1998.

URL http://www.ics.uci.edu/"mlearn/MLRepository.html

erorates

enurates

et ates

erorates

02

019

024

o

019

o

023

02

02

0

019

024

02t

n 5000 examples.

Training on 10000 examples

200 400 600 80D 1000 1200 1400 1600 1800 2000 2200 2400

Trainin g on 10000 examples

024

Training on 15000 examples

el 5 ==
T Sen

——c =

==
Fee
T

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

10

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Fig. 1. Error rates on the testing set using models obtained by training on sets
different cardinality.

of

