
1

The Vehicle Routing Problem with Time Windows - Part II:
Genetic Search

Jean-Yves Potvinab

Samy Bengiob

a Centre de recherche sur les transports, Université de Montréal,
C.P. 6128, Succ. Centre-Ville, Montréal (Québec), Canada H3C 3J7

b Département d'informatique et de recherche opérationnelle,
Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal
(Québec), Canada H3C 3J7

potvin@iro.umontreal.ca
bengio@iro.umontreal.ca

Abstract. This paper is the second part of a work on the application
of new search techniques for the vehicle routing problem with time
windows. It describes GENEROUS, the GENEtic ROUting System, which
is based on the natural evolution paradigm. Under this paradigm, a
population of solutions evolves from one generation to the next by
"mating" parent solutions to form new offspring solutions that exhibit
characteristics inherited from their parents. For this vehicle routing
application, a specialized methodology is devised for merging two
vehicle routing solutions into a single solution that is likely to be
feasible with respect to the time window constraints. Computational
results on a standard set of test problems are reported, and
comparisons are provided with other heuristics.

KeyWords . Genetic algorithm, Vehicle routing, Time windows.

Section 0. Introduction

The vehicle routing problem with time windows (VRPTW) has
already been defined in the first part of this work.[7] However, for
the sake of completeness, we will restate the problem here: given a
central depot, a homogeneous fleet of vehicles and a set of customers
with known demands (e.g., some quantity of goods to be delivered),
find a set of closed routes, originating and ending at the depot, that
service all customers at minimum cost.[4,10]

2

In addition, capacity and time window constraints must be
satisfied by each route. In the first case, the total quantity of goods
to be delivered cannot exceed the capacity of the vehicle servicing
the route. In the second case, a time window or time interval is
specified at each customer location in order to constrain the service
time. In the hard time window case, a vehicle cannot arrive at a
customer location after its time window's upper bound. However, the
vehicle can arrive at a customer location before the lower bound. In
this case, a waiting time is added to the route. Hence, the routing
costs to be minimized include the distance (or travel time), and the
waiting time. In this paper, the first objective is to service all
customers with the minimum number of routes and, for the same
number of routes, to minimize the total route time.

Many references to exact and heuristic algorithms for solving
this problem may be found in [7]. In this paper, we will rather focus
on two recent approaches based on genetic algorithms. In [11], a
genetic algorithm is designed to find good clusters of customers,
within a "cluster-first route-second" problem-solving strategy. Once
the clusters are identified by the genetic search, classical insertion
and post-optimization procedures are applied to produce the final
routes.

The genetic algorithm proposed in [2] is representative of a well-
know approach to combinatorial optimization problems with side
constraints. It is based on the hybridization of a genetic algorithm
with a greedy heuristic. The greedy heuristic inserts the customers
one by one into the routes, using a fixed a priori ordering of the
customers. Under this scheme, the genetic algorithm searches for a
good ordering of customers, while the construction of the feasible
solution (based on this ordering) is handled by the greedy heuristic.
Specialized genetic operators are defined by the authors to create
new orderings from old ones. These operators use a global
precedence relationship among the customers. For example, it is
generally desirable to insert customer i before customer j during the
greedy insertion phase, if the time window at customer i occurs
before the time window at customer j. Accordingly, this relationship
is used by the genetic operators to push customers with early time
windows at the front of the orderings.

Although the two above algorithms are based on the evolution
paradigm, they are very different from our problem-solving
approach. In the following, Section 1 first introduces the evolution

3

paradigm, and describes a very simple genetic algorithm. Then,
Section 2 introduces GENEROUS, the GENEtic ROUting System, and
explains how it solves the VRPTW. Finally, computational results on a
standard set of test problems are reported in Section 3.

Section 1. A Simple Genetic Algorithm

A genetic algorithm is a randomized search technique operating
on a population of individuals (solutions). The search is guided by the
fitness value of each individual. A simple genetic algorithm can be
summarized as follows.

(1) Representat ion . Encode the characteristics of each individual
in the initial population as a chromosome (typically, a
chromosome is a bit string). Set the current population to this
initial population.

(2) R e p r o d u c t i o n . Select two parent chromosomes from the
current population. The selection process is stochastic, and a
chromosome with high fitness is more likely to be selected.

(3) Recombinat ion . Generate two offspring from the two parents
by exchanging pieces of genetic material (crossover).

(4) Mutat ion . Apply a random mutation to each offspring with a
small probability.

(5) Repeat steps (2), (3) and (4), until the number of
chromosomes in the new population is the same as in the old
population.

(6) Set the current population to the new population of
chromosomes.

This procedure is repeated for a fixed number of generations, or
until convergence to a population of similar individuals is obtained.
Then, the best chromosome generated during the search is decoded
into the corresponding individual.

In the above procedure, the reproduction phase is aimed at
propagating good solution features from one generation to the next,
via a bias in the selection process towards the best chromosomes.
Then, the recombination phase combines the characteristics of the
two selected chromosomes on a single offspring, in the hope that this
offspring will be of higher fitness than both parents. An example of a

4

one-point crossover is shown in Figure 1, with a cross point
randomly chosen between the second and third bit.

1 0 | 1 0 0 (parent 1)
 0 0 | 1 1 1 (parent 2)

1 0 1 1 1 (offspring 1)
 0 0 1 0 0 (offspring 2)

Figure 1. One-point crossover on two bit strings

The mutation operator applies to a single chromosome, and is
aimed at maintaining a minimum level of diversity in the population.
If a chromosome is a bit string, the mutation operator flips a bit
value from 0 to 1, or from 1 to 0 within the string, with a very small
probability at each position. A good level of diversity in the
population is critical for a thorough exploration of the search space.
If a population is composed of similar chromosomes, the genetic
search cannot make any progress because the offspring look like
their parents.

Section 2. A Genetic Search for the VRPTW

Classical genetic algorithms work on a population of
chromosomes that encode the characteristics of the corresponding
individuals. Their robustness comes from their ability to evolve good
individuals, even if the reproduction, crossover and mutation
operators are applied at the level of the encoding (and do not exploit
any useful information about the individuals, apart from their fitness
value). In other words, classical genetic algorithms do not decode the
chromosomes as individuals in order to guide the search process.

In the work to be described here, the "representation" issue, or
the encoding of a solution within a chromosome, is not addressed.
This issue is avoided because it is very difficult to encode multiple
routes on a chromosome, and to design crossover operators that
would generate feasible offspring at the encoding level. Accordingly,
GENEROUS directly applies the genetic operators to the individuals
(solutions), and heuristic information about the problem is used to
guide the search. Hence, the system departs from the theoretically-
founded practice, and simply exploits the general problem-solving
methodology of genetic algorithms, namely, the evolution of a

5

population of solutions, and the generation of better solutions
through a recombination of good characteristics of two parent
solutions on a single offspring solution.

In the following sections, the reproduction, recombination and
mutation phases of GENEROUS are described.

2.1 Reproduction phase.

During the reproduction phase, parent solutions are selected
from the current population. The selection process is stochastic and
biased toward the best solutions. Here, the concept of fitness relates
to solution quality, and solution A is better than solution B if:

(a) Solution A has fewer routes than solution B

or

(b) Solutions A and B have the same number of routes, but the
total route time of solution A is smaller.

In order to bias the selection process towards the best solutions,
a linear ranking scheme is used.[13] First, all solutions in the current
population are ranked according to their quality, that is, the best
solution has rank 1, and the worst solution has rank P, where P is the
size of the population. A fitness value is associated to the solution of
rank i as follows:

fitnessi = MAX - [(MAX - MIN) (i-1)/(P-1)]

with MAX = 1.6, MIN = 0.4.

For example, when P=5, fitness1=1.6, fitness2=1.3, fitness3=1.0,
f i tness4=0.7 and fitness5=0.4. Then, a fitness-proportional selection
scheme is applied to these values. Namely, the selection probability
pi for a solution of rank i is:

f itnessi fitnessi
pi = _____________ = ___________ .

Σj=1,...,P fitnessj P

It is worth noting that the summation over all fitness values in
the population is equal to P, because MIN + MAX = 2, and the average
fitness is equal to 1. Since P different selections (with replacement)
must be performed on the current population in order to select P

6

parents and generate P new offspring, the expected number of
selections Ei for a solution of rank i is:

Ei = P pi = fitnessi .

Hence, fitnessi is also equal to the expected number of selections
for the solution of rank i. For example, the best solution with fitness
MAX=1.6, is expected to be selected 1.6 times on average over P
different trials.

In order to reduce the variance associated with pure
proportional selection (i.e., each solution can be selected between 0
and P times over P different trials), stochastic universal selection or
SUS was applied to the fitness values. This approach guarantees that
the number of selections for a given solution is at least the floor, and
at most the ceiling, of its expected number of selections.[1]

2.2 Recombination Phase

During the recombination phase, two parent solutions are
merged into a single one, so as to guarantee the feasibility of the new
solution. Two types of crossover operators are used, namely, a
"sequence-based" crossover and a "route-based" crossover. They are
described in the following sections.

2.2.1 Sequence-Based Crossover (SBX)

This crossover operator is illustrated in Figure 2. First, a link is
randomly selected and removed from each parent solution. Then, the
customers that are serviced before the break point on the route of
parent-solut ion1 are linked to the customers that are serviced after
the break point on the route of parent-solution2 (c.f. the black
nodes). Finally, the new route replaces the old one in parent-
solution1. A second offspring can be created by inverting the role of
the parents.

In a feasible solution, customers with early time windows are
typically scheduled at the beginning of a route. Conversely,
customers with late time windows are typically scheduled at the end
of the route. Hence, by linking the first customers on a route of
parent-solution1 to the last customers on a route of parent-solution2,
the time window constraints are likely to be satisfied.

Unfortunately, the new solution is rarely valid, because some
customers are duplicated or unrouted in the process. For example, in

7

Figure 2, two customers are now located on two different routes, and
two other customers are unrouted. Accordingly, a repair operator is
applied to the offspring to generate a new feasible solution. This
operator deals with the infeasible offspring in the following way:

(a) If a customer appears twice in the new route, one of the two
copies is removed from the route. If a customer appears once
in the new route, and once in an old route, the customer is
removed from the old route. Obviously, these situations are
easy to solve, because a feasible route remains feasible when
customers are removed (note that a vehicle can arrive at a
customer before the time window's lower bound).

(b) If a customer is unrouted, then this customer is inserted at
the feasible insertion place that minimizes the additional
detour.

Obviously, unrouted customers are more difficult to handle,
because there is no guarantee that there is a feasible insertion place
for each one of them. If this situation occurs, the offspring is
discarded, and a new selection round is initiated to select two new
parents. The failure to insert the unrouted customers is the main
source of infeasible offspring. On Solomon's test problems,[9] about
50% of the offspring are infeasible. Consequently, the crossover
operator must be applied about 2P times in order to generate a new
population of feasible offspring of size P.

2.2.2 Route-Based Crossover (RBX)

This operator creates an offspring by replacing a route of
parent-solution2 by a route of parent-solution1. As for the sequence-
based crossover, RBX is likely to generate offspring with unrouted
customers and customers that are duplicated. In Figure 3, the route
with black customers in parent-solution1, replaces the corresponding
route in parent-solution2. As we can see, a customer is now located
on two different routes, while another customer is unrouted. Hence,
the repair operator introduced in Section 2.2.1 is applied to the
offspring in order to generate a feasible solution.

8

parent solution 1 parent solution 2

final offspring solution

repair

Figure 2. The SBX crossover operator

9

parent solution 1 parent solution 2

final offspring solution

repair

Figure 3. The RBX crossover operator

10

2.3 Mutation Phase

The crossover operators of Section 2.2 can improve the total
route time, but they can hardly reduce the number of routes. Hence,
mutation operators are useful to empty routes with only a few
customers. In the following sections, we describe three different
types of mutation operators available in GENEROUS.

2.3.1 One-level exchange (1M)

This mutation operator first selects a route, and then, tries to
move the customers out of this route. This operator can be
summarized as follows.

Step 1. Select route1.

Step 2. For each customer1 in route1, do:

find the feasible insertion place for customer1 that
minimizes the detour (over all routes other than route1)

if there is such a feasible insertion place, then insert
customer1 at this place.

As we can see, the procedure is applied to each customer in the
selected route. Obviously, a route can be saved if a feasible insertion
place is found for each customer in the selected route. Figure 4a
illustrates a one-level exchange for a single customer (c.f. the black
node).

It is worth noting that the route selection procedure is
stochastic, and is biased towards smaller routes. Namely, the
selection probability of a route with n customers is twice as much as
the selection probability of a route with 2n customers. In this way,
the procedure focuses on small routes which are easier to empty.
Note also that the total route time can increase in the process.

2.3.2 Two-level exchange (2M)

In a one-level exchange, a customer is moved from one route to
another. However, it can be difficult to add a new customer in the
second route, due to the capacity and time window constraints.
Accordingly, a two-level exchange tries to make room for the new
customer by moving another customer out of the second route. The
two-level exchange can be summarized as follows.

11

Step 1. Select route1.

Step 2. For each customer1 in route1, do:

for each customer2 in the other routes, do:

if customer1 can be feasibly inserted at the
location of customer2, then:

2a. find the feasible insertion place for customer2
that minimizes the detour (over all routes other
than route1).

2b.if there is such a feasible insertion place for
cus tomer2, then perform the two-level exchange,
and go to Step 2.

Figure 4b illustrates a two-level exchange involving two
customers (c.f. the black nodes), and three different routes. As for
the one-level exchange, the selection of route1 is biased towards
smaller routes, and the total route time can increase after an
exchange.

2.3.3 Local search (LSM)

In order to provide a means to locally optimize a solution, a
mutation operator based on Or-opt exchanges is also available.[6] This
operator reduces the total route time via Or-opt exchanges until a
local optimum is found.

This local search mutation can be summarized as follows:

Step 1. Start with an initial feasible solution

Step 2. Try to improve the current solution by considering a
sequence of consecutive customers, and by moving this
sequence at another feasible location within the same
route or within another route.

Step 3. Repeat Step 2 until no additional improvement is
found.

In Step 2, all sequences of three consecutive customers, two
consecutive customers and a single customer are considered (in this
order), and a move is performed as soon as an improvement is found.
Then, the procedure is repeated with the new solution, until a local
optimum is found.

12

(a) One-Level Exchange

(b) Two-Level Exchange

Figure 4. The mutation operators 1M and 2M

Section 3. Computational Results

The algorithm of Section 2 was applied on a standard set of 100-
customer Euclidean VRPTWs.[9] In these problems, the travel times
are equal to the corresponding Euclidean distances. The geographical
data were either randomly generated using a uniform distribution
(problem sets R1 and R2), clustered (problem sets C1 and C2) or
mixed with both randomly distributed and clustered customers
(problem sets RC1 and RC2). Problem sets R1, C1 and RC1 have a
narrow scheduling horizon. Hence, only a few customers can be
serviced by the same vehicle. Conversely, problem sets R2, C2 and
RC2 have a large scheduling horizon, and more customers can be

13

serviced by the same vehicle. More details about these problems
may be found in [9].

3.1 Experiments on Solomon's problems

The results on Solomon's problems are summarized in Tables 1a,
1b, and 1c. The average number of routes, distance, waiting time,
route time and computation time (in minutes and seconds on a
SPARC10 workstation) are shown for each method and each set of
problems. Route time or schedule time refers to the sum of travel
time (or distance), waiting time and unload time. Note that a total
unload time value of 9,000 must be added to the sum of travel time
and waiting time for the problems in sets C1 and C2, and a value of
1,000 in the other sets.

In the Tables, I1 refers to the solutions reported in Solomon's
paper for the best insertion heuristic I1,[9] while GENEROUS refers to
the solutions produced with our algorithm, using the following
settings:

(a) The initial population is created by running Solomon's I1
heuristic with randomly generated parameter settings.

(b) The mutation and crossover rates are both equal to 0.6. Hence,
60% of the parents are modified by one of the two crossover
operators, which are equally likely to be applied. The
remaining parents are copied without any modification.
Finally, 60% of the offspring are modified by one of the three
mutation operators, which are equally likely to be applied.

(c) The population size is set to 150.

(d) The number of generations is set to 50.

(e) Generation replacement with elitism is applied. Hence, the
best solution at a given generation is preserved in the next
generation.

The Tables show the evolution of the solutions at generation 0,
20 and 50 (c.f. GENEROUS-00, GENEROUS-20 and GENEROUS-50). The
Tables show that GENEROUS significantly improves Solomon's
solutions with respect to the number of routes and route time. The
improvement with respect to the number of routes is particularly
meaningful, due to the acquisition and maintenance costs associated
with each vehicle. The genetic algorithm is computationally

14

expensive, but the additional computational requirements are easily
justified in terms of fleet reduction.

Note also that the number of generations was set to 50 in order
to save the maximum number of routes over the 56 test problems.
However, it is clear that this number can be reduced for many
problem sets. In particular, the results at generation 20 and at
generation 50 are almost the same for sets C1, C2, R2 and RC2. The
following generations slightly reduce the total route time, and only
one additional route is saved in problem set R2 (at generation 49).
This observation is interesting, because the problems of type 2,
namely C2, R2 and RC2, involve large routes with many customers
per route, and are more computationally expensive than the
problems of type 1. By setting the maximum number of generations
to 20 for these problems, it is possible to obtain solutions that
compare to the solutions obtained at generation 50, at only 40% of
the computation cost.

Finally, we observed that GENEROUS found the same solution in
set C1 for seven problems out of nine. The total route time of this
solution is 9828.9. The final sequence of customers was different on
the other two problems, and the total route time was slightly higher
at 9874.6 and 9865.0, respectively. However, the solution at 9828.9
is also feasible for these two problems. Hence, it seems that the same
sequence of customers is optimal for all problems in set C1, and that
the optimal route time is 9828.9. If this hypothesis is right,
GENEROUS found the optimum on seven problems in set C1, and
failed to find the optimum on the other two problems.

15

Table 1a. Results on problems of type R

Table 1b. Results on problems of type C

R1
12 problems

Number
of

Routes

Distance Waiting
Time

Route
Time

Computation
Time

(min:sec)

I 1 13.6 1436.7 258.8 2695.5 ---

GENEROUS-00
GENEROUS-20
GENEROUS-50

13.5
12.8
12.6

1424.4
1327.2
1296.8

238.7
131.2
110.6

2663.1
2458.4
2407.4

4:24
11:19

R2
11 problems

Number
of

Routes

Distance Waiting
Time

Route
Time

Computation
Time

(min:sec)

I 1 3.3 1402.4 175.6 2578.1 ---

GENEROUS-00
GENEROUS-20
GENEROUS-50

3.2
3.1
3.0

1321.6
1167.1
1117.7

159.3
49.7
65.3

2480.9
2216.8
2183.0

14:55
39:44

C1
9 problems

Number
of

Routes

Distance Waiting
Time

Route
Time

Computation
Time

(min:sec)

I 1 10.0 951.9 152.3 10104.2 ---

GENEROUS-00
GENEROUS-20
GENEROUS-50

10.0
10.0
10.0

947.1
846.4
838.0

99.9
0.0
0.0

10046.9
9846.4
9838.0

4:08
10:01

C2
8 problems

Number
of

Routes

Distance Waiting
Time

Route
Time

Computation
Time

(min:sec)

I 1 3.1 692.7 228.6 9921.4 ---

GENEROUS-00
GENEROUS-20
GENEROUS-50

3.3
3.0
3.0

784.2
596.9
589.9

212.0
0.0
0.0

9996.2
9596.9
9589.9

15:52
41:22

16

Table 1c. Results on problems of type RC

3.2 Alternative implementations

In the original implementation, a random choice is made among
the available crossover and mutation operators. In order to assess
the effectiveness of these operators, six different implementations
were tested by fixing the choice of the crossover and mutation
operators. Namely, six different genetic algorithms were obtained
through the cross-product {SBX, RBX} x {1M, 2M, LSM}. These
algorithms were applied to problem set RC1, and the results are
shown in Table 2. In this Table, the algorithms are referred to as
GEN-<crossover> -<mutation> , where < crossover> and <mutation>
refer to a particular genetic operator.

This Table shows that the local search mutation LSM provides
better solutions than 1M and 2M. In particular, LSM is quite effective
for minimizing the total route time. On the other hand, LSM alone
cannot save as many routes as the original implementation. In fact,
this operator can quickly reduce the diversity found in the initial
population if is applied too frequently, because it drives the solutions
towards the same local minima. This phenomenon is referred to as
"premature convergence". Accordingly, the diversity is better

RC1
8 problems

Number
of

Routes

Distance Waiting
Time

Route
Time

Computation
Time

(min:sec)

I 1 13.5 1596.5 178.5 2775.0 ---

GENEROUS-00
GENEROUS-20
GENEROUS-50

13.1
12.8
12.1

1589.5
1463.6
1446.2

129.4
83.2
63.7

2718.9
2546.8
2509.9

4:30
11:13

RC2
8 problems

Number
of

Routes

Distance Waiting
Time

Route
Time

Computation
Time

(min:sec)

I 1 3.9 1682.1 273.2 2955.4 ---

GENEROUS-00
GENEROUS-20
GENEROUS-50

3.9
3.4
3.4

1634.9
1402.4
1360.6

228.3
97.3
101.0

2863.2
2499.7
2461.6

13:12
35:34

17

preserved by intermixing LSM with other simple mutation operators
like 1M and 2M.

Table 2. Comparison of different genetic implementations
on set RC1

3.3 Comparison with other heuristics

Table 3 shows the average number of routes produced by
GENEROUS, and the best results obtained by other researchers on the
56 test problems of Solomon. The number of routes is the first
objective to be minimized in all cases. Consequently, this objective
provides a common basis to compare the methods. However, it is not
possible to compare the results on the basis of the secondary
objective, because it is not the same in all cases. Some authors use
the route time, while others use the distance, or even a weighted
sum of distance and route time.

The other reported heuristics include Solomon's I1 heuristic,[9]

the parallel insertion heuristic PARIS,[8] the greedy randomized
adaptive search procedure GRASP,[5] the cyclic transfer algorithm
CTA, [12] the genetic sectoring algorithm GIDEON,[11] and the tabu
search heuristic TABU.[7] In the case of CTA and TABU, the solutions
reported are the best solutions obtained with different parameter
settings.

The results in Table 3 show that GENEROUS outperforms nearly
all other heuristics on the 56 test problems, by minimizing the total
number of routes. However, many heuristics do as well as GENEROUS

RC1
8 problems

Number of
Routes

Route
Time

Computation
Time

(min:sec)

I 1 13.5 2775.0 ---

GENEROUS 12.1 2509.9 10:58

GEN-SBX-1M
GEN-SBX-2M
GEN-SBX-LSM

12.9
12.9
12.6

2731.5
2729.1
2521.7

1:59
2:45
22:32

GEN-RBX-1M
GEN-RBX-2M
GEN-RBX-LSM

12.9
12.8
12.5

2722.2
2732.2
2515.2

3:38
5:11
28:35

18

on sets C1, C2, and RC2, while TABU does better on set R1. Clearly,
GIDEON and TABU are the most competitive approaches. A Wilcoxon
signed-rank test showed a signif icative difference between
GENEROUS and GIDEON, as well as GENEROUS and TABU, on problem
set RC1 only (i.e., the hypothesis that the difference is not
significative can be rejected at a level of confidence of 90% in both
cases).

Set I1 PARIS GRASP CTA GIDEON TABU GENEROUS

R1 13.6 13.3 13.1 13.0 12.8 12.5 12.6

R2 3.3 3.1 3.1 3.1 3.2 3.1 3.0

C1 10.0 10.7 10.6 10.0 10.0 10.0 10.0

C2 3.1 3.4 3.4 3.0 3.0 3.0 3.0

RC1 13.5 13.4 12.8 13.0 12.5 12.6 12.1

RC2 3.9 3.6 3.6 3.7 3.4 3.4 3.4

Table 3. Average number of routes for different heuristics

With respect to computation time, it is very difficult to compare
the various approaches, due to different languages and hardware.
However, GRASP looks as the most efficient approach. The authors
report computation times under one second on problem set R1, using
a IBM RISC 6000. For the same problem set, GENEROUS is the more
computationally expensive, with 11 minutes of computation time on
a SPARC10 workstation. With respect to its closest competitors,
GIDEON takes an average of 99.9 seconds on a SOLBOURNE 5/802,
while each run of TABU requires between two and five minutes of
computation time on a SPARC10 workstation (depending on the
parameter settings).

3.4 Comparison with optimal solutions

 The results of GENEROUS were also compared to the optimal
solutions reported in [3]. The authors solved a few problems in
Solomon's test set, namely, problems R101 and R102 in set R1, and
problems C101, C102, C106, C107, C108 in set C1. The computational
results are shown in Table 4. These results were obtained by
truncating the distances at the first decimal place, as in [3]. The two
numbers in each cell are the number of routes and total distance,

19

respectively. The solutions produced by Solomon's I1 heuristic,[9]

TABU [7] and GENEROUS are shown in the first three columns. The
optimal solutions are reported in the last column.

Table 4 shows that the optimum was found by GENEROUS on
problems C101, C102, C106, C107 and C108. This observation is in
line with the results reported in the previous section for set C1 with
non truncated distances. As opposed to the tabu search heuristic,
GENEROUS found the minimum number of routes on problem R102
(but not the optimal distance). On problem R101, GENEROUS found
one more route than the optimum, like TABU. Hence, there is still
room for improvement on the two problems of type R, in particular
R101.

Problem I1 TABU GENEROUS OPTIMUM

R101
21

1867.1
19

1650.7
19

1669.4
18

1607.7

R102
19

1699.5
18

1471.8
17

1532.1
17

1434.0

C101
10

851.4
10

827.3
10

827.3
10

827.3

C102
10

966.7
10

827.3
10

827.3
10

827.3

C106
10

916.0
10

827.3
10

827.3
10

827.3

C107
10

902.4
10

827.3
10

827.3
10

827.3

C108
10

853.1
10

827.3
10

827.3
10

827.3

Table 4. Comparison between I1, TABU, GENEROUS
 and optimal solutions

Section 4. Conclusion

In this paper, a genetic approach to the VRPTW was described.
This approach has produced solutions that are competitive with the
best solutions reported thus far by other researchers. As for the tabu
search heuristic,[7] it is possible that better solutions will emerge by
allowing infeasible solutions during the genetic search. This line of
research will be explored in the near future.

20

A c k n o w l e d g m e n t s . We would like to thank François Guertin for his help
during the computational experiments. Also, this research was supported by
the Natural Sciences and Engineering Research Council of Canada (NSERC),
and by the Quebec Fonds pour la Formation de Chercheurs et l'Aide à la
Recherche (FCAR).

References

1. J.E. Baker, 1987. Reducing Bias and Inefficiency in the Selection
Algorithm, in Proceedings of the Second Int. Conf. on Genetic
Algorithms, Cambridge, MA, pp. 14-21.

2. J.L. Blanton and R.L. Wainwright, 1993. Multiple Vehicle Routing
with Time and Capacity Constraints using Genetic Algorithms, in
Proceedings of the Fifth International Conference on Genetic
Algorithms, Champaign, IL, pp. 452-459.

3. M. Desrochers, J. Desrosiers and M.M. Solomon, 1992. A New
Optimization Algorithm for the Vehicle Routing Problem with
Time Windows, Operations Research 40, 342-354.

4. J. Desrosiers, Y. Dumas, M.M. Solomon and F. Soumis, 1992. Time
Constrained Routing and Scheduling, Technical Report G-92-42,
Groupe d'études et de recherche en analyse des décisions,
Université de Montréal, Montréal, Canada.

5. G. Kontoravdis and J. Bard, 1992. Improved Heuristics for the
Vehicle Routing Problem with Time Windows, Working Paper,
Operations Research Group, The University of Texas at Austin,
Austin, TX.

6. I. Or, 1976. Traveling Salesman-type Combinatorial Problems
and their relation to the Logistics of Blood Banking, Ph.D. thesis,
Department of Industrial Engineering and Management Science,
Northwestern University, Evanston, IL.

7. J.Y. Potvin, T. Kervahut, B.L. Garcia and J.M. Rousseau, 1995. The
Vehicle Routing Problem with Time Windows - Part I: Tabu
Search, ORSA Journal on Computing (in this issue).

8. J.Y. Potvin and J.M. Rousseau, 1993. A Parallel Route Building
Algorithm for the Vehicle Routing and Scheduling Problem with
Time Windows, European Journal of Operational Research 66,
331-340.

21

9. M.M. Solomon, 1987. Algorithms for the Vehicle Routing and
Scheduling Problems with Time Window Constraints, Operations
Research 35, 254-265.

10. M.M. Solomon and J. Desrosiers, 1988. Time Window Constrained
Routing and Scheduling Problems, Transportation Science 22, 1-
13.

11. S.R. Thangiah, 1993. Vehicle Routing with Time Windows using
Genetic Algorithms, Technical Report SRU-CpSc-TR-93-23,
Computer Science Department, Slippery Rock University,
Slippery Rock, PA.

12. P. Thompson and H. Psaraftis, 1993. Cyclic Transfer Algorithms
for Multi-Vehicle Routing and Scheduling Problems, Operations
Research 41, 935-946.

13. D. Whitley, 1989. The Genitor Algorithm and Selection Pressure:
Why Rank-Based Allocation of Reproductive Trials is Best, in
Proceedings of the Third Int. Conf. on Genetic Algorithms,
Fairfax, VA, pp. 116-121.

