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Abstract

We present here an approach for applying the technique
of modeling data transformation manifolds for invariant
learning with kernel methods. The approach is based on
building a kernel function on the graph modeling the in-
variant manifold. It provides a way for taking into ac-
count nearly arbitrary transformations of the input sam-
ples. The approach is verified experimentally on the task
of optical character recognition, providing state-of-the-art
performance on harder problem settings.

1. Introduction

The idea of using the inner geometric structure of the
data for better data processing algorithms is of increasing
attention in Machine Learning. This trend arises from un-
supervised methods such as clustering and dimensionality
reduction techniques. A clever use of geometrical struc-
ture should improve the performance of any learning al-
gorithm. In particular, semi-supervised methods are under
rapid development recently. These methods exploit unla-
beled data, i.e. those data samples which consist of the in-
put values only, while the desired output value is unknown.
In fact, most real-life learning problems are actually semi-
supervised. For example, this is the situation when a huge
amount of images are available, but only a part of them is
annotated, i.e. labeled.

The information one obtains from the unlabeled part of
the dataset can be of different nature. A reasonable assump-
tion to make is the following. Assume the data lies on some
lower-dimensional manifold in the original input space. Us-
ing some properties of the manifold, data analysis methods
can be improved, as shown in recent developments devoted
to the exploration of such an approach (see [1] and refer-
ences therein for instance). Furthermore, given the explo-

sive growth of interest in the field of kernel methods, non-
parametric data-dependent kernels which reflect the inner
geometry of the data are of particular interest. A general
approach was recently proposed in [5].

In this paper, we apply this framework for another impor-
tant problem, namely invariant learning. The methodology
developed for semi-supervised learning is adapted to model
the manifolds induced by the desired invariant transforma-
tions. Afterward, a kernel classifier is applied to the task.
The kernel is constructed in a way to produce smooth de-
cision functions on the modeled invariant manifolds, there-
fore preserving the class membership on these manifolds.
We introduce manifold learning in Section 2, present the
way to adapt this framework to invariant learning in Section
3, and introduce the corresponding kernels in Section 4. We
provide some practical issues and experimental results on a
real Optical Character Recognition (OCR) task in Section
5, and conclude the paper in Section 6.

2. Learning on Manifolds

The supervised learner aims at estimating the input-
output relationship (dependency or function) f(x) by using
a training data set {xi, yi}, i = 1, . . . , N where the inputs
x are n-dimensional vectors and the labels (or system re-
sponses) y are continuous values for regression tasks and
discrete (e.g., boolean) for classification problems.

However, the situation where some labeled patterns are
provided together with unlabeled ones, arises frequently.
This is called semi-supervised learning.

Recently several approaches to semi-supervised learn-
ing were proposed. Low Density Separation (LDS) algo-
rithms [2], Transductive SVMs, Graph and Gradient Trans-
ductive SVMs [3], and a group of Manifold Learning meth-
ods [1] are the core of those recently developed techniques.

Here we give a basic idea for the last group of meth-
ods, namely, Manifold Learning. The so-called manifold



assumption is accepted in this framework. This implies that
data actually belong to some lower dimensional manifold in
high dimensional input space. Thus, it is reasonable to build
models which exploit regularization on the manifolds.

Usually the only information about the manifold is the
finite set of (unlabeled) samples, {xi}, i = N + 1, . . . , M .
Thus, the model has to be smooth (regularized) on the
corresponding graph, whose nodes are data samples and
edges are constructed to preserve the geometrical properties
(geodesic distances) on the graph. Let an edge connecting
xi and xj have some weight wij ; zero value means that the
nodes are not connected.

A nice property here arises from the notion of graph
Laplacian. It is defined as

L = D −W (1)

where W is the matrix with elements wij = exp(−δ(xi −
xj)2), and D is a diagonal matrix with dii =

∑
j wij .

It can be shown that eigenvectors of L provide a natural
basis on the graph, giving rise to regularization by penal-
izing the complexity. This can be done by minimizing the
norm in the space of functions defined on graphs. Please re-
fer to [1] for details and solid justification behind this tech-
nique.

3. Invariant Manifolds

One of the well-known approaches to invariant learning
is the Tangent Distance method [8]. It proposes to replace
the Euclidean distance between data samples with a dis-
tance between the corresponding linear tangent manifolds
defined by tangent vectors of the desired invariance trans-
formation. This method was successfully applied to Optical
Character Recognition (OCR) tasks. A restriction of these
methods is that they are suited for distance-based kernels
only. The proposed method, on the other hand, does not
suffer this restriction.

The decision function, which is smooth on the corre-
sponding manifold, provides invariant classification. This
smoothness guarantees that the decision for class member-
ship is unchanged as one considers samples from the invari-
ant manifold (i.e. transformed samples).

The direct approach to enforce smoothness in the direc-
tion of tangent vectors is considered in [4]. This method,
however, leads to complicated optimization and appeared
to be impractical in real-life tasks.

3.1. Graph-based Invariant Manifolds

Given a training sample xi, consider a set of correspond-
ing virtual samples, generated by applying the desired (and,
virtually, arbitrary) transformation G(x, α):

{xk
i } = G(xi, α), α ∈ Λ, (2)

where α is a vector of parameters from some finite set Λ
(such as a set of rotation angles). Then, a graph is built
for every training sample by connecting and setting weights
for the nodes xk

i sharing the same original sample xi. The
weights wij are set to exp(−δ(xi − xj)2) if nodes are con-
nected, zero otherwise. Considering the graph-based mani-
fold models and enforcing smoothness of the model on the
graph, we constrain it to be invariant to the transformation
which generated the manifold.

Next, we introduce a kernel, adapted from [5], to apply
a kernel classifier such as Support Vector Machine to graph
based manifolds.

4. Kernel Methods

A semi-positive definite function which satisfies Mercer
conditions is called a kernel. This implies that it corre-
sponds to a dot product in some space (Reproducing Kernel
Hilbert Space, RKHS), sometimes referred to as a feature
space. Generally, given a (linear) algorithm, which includes
data samples in the form of dot products only, one can ob-
tain a (non-linear) kernel version of it by substituting the dot
products with kernel functions [6]. The choice of the kernel
function is an open issue. Hereafter, we briefly present a
method, adapted from [5] for constructing non-parametric
semi-supervised kernels which deals with graph-modeled
invariant manifolds.

We will follow the notation of [5]. Given data points
{x1, . . . ,xn}, and some RKHS H , consider the evaluation
map S(f) = (f(x1), . . . , f(xn));S : H → Rn. The semi-
norm on Rn is given by a symmetric semi-definite matrix
M,

‖S(f)‖2 = fT Mf , (3)

where we denoted f = (f(x1), . . . , f(xn)) and T means
transpose.

The exact explicit form of the corresponding reproduc-
ing kernel k̃(x,x′) was derived in [5] and is given by:

k̃(x,x′) = k(x,x′)− kT
x (I + MK)−1Mkx′ (4)

where K is the complete kernel matrix of k(·, ·), kx rep-
resents one row of K and I is the identity matrix. In the
presence of unlabeled data, the choice of M implements the
smoothness assumption with respect to its geometric struc-
ture. As shown in [1], this is achieved by taking M = γL,
L being the Laplacian matrix of the graph built on unla-
beled samples, and γ a regularization parameter which de-
fines the extent of kernel deformation. By setting γ=0 one
obtains the original kernel, as it is clearly seen with (4), and
no invariance information is used in the model.

This kernel can be plugged into any classification algo-
rithm. We will use the widely known standard form of soft



margin SVMs [9]. This method provides a classifier of the
form:

f(x) = sign

(
N∑

i=1

αik̃(xi,x) + b

)
, (5)

where the weights αi are obtained from solving a QP opti-
mization problem.

The advantage of the method in computational speed
is that the size of this QP is the same as the size of the
original optimization problem. In virtual samples methods,
however, the training set size and, correspondingly, the op-
timization problem dimension is increased [7]. However,
each kernel computation becomes more expensive.

5. Experiments

The experiments described below deal with global rota-
tional invariance as an example. We start with an illustration
of modeling the invariant manifold and kernel construction
with graphs, using character images. Finally, we test our
approach on a real-world handwritten digits dataset, com-
monly used in machine learning for benchmarking different
algorithms and known as USPS digits.

5.1. Practical Issues

We first start with the discussion on some issues which
arise while implementing the described method.

Manifold modeling. There are two basics to take into
account while constructing the graph: the smoothness of the
transformation, which is modeled as locally linear between
the adjacent nodes; and the number of nodes, which has to
be sufficient to model the manifold reliably.

A workaround is to build the graph by generating a suf-
ficient number of virtual samples as nodes, and connect the
K nearest neighbors. The rest of the procedure remains un-
changed. This approach will capture some intra-class sim-
ilarity in the data. However, the influence of noise in data
such as mislabeling or outliers will probably be increased.

Choice of parameters. There are several parameters
which influence the final classification model. A general
way to tune them would be to carry out cross-validation on
the training data. However, this is complicated since the
parameter space is of high dimension. Here we consider
several heuristics to simplify the choice.

There are two groups of parameters. The first group cor-
responds to the manifold-modeling graph. These are δ and
γ. The parameter δ is taken such that the bandwidth of RBF
function in graph Laplacian is equal to the average distance
between the graph nodes. The influence of the γ parameter
is explored experimentally below.

The second group contains the hyper-parameters of the
learning algorithm, which include the trade-off parameter

C of the SVM and the kernel parameters. In this paper,
we used the kernel described in Section 4, using the stan-
dard Gaussian RBF kernel with bandwidth σ as a base ker-
nel. These parameters are tuned using the standard cross-
validation technique on the training data.

5.2. Global Rotation

The purpose of this section is to provide empirical evi-
dence for the method, and particularly manifold modeling.
We consider the problem of kernel construction for charac-
ter image classification.

Figure 1 presents a contour plot of the kernel function
centered at image A. Since the basic kernel is an RBF one,
this value can be considered as a measure of similarity. The
angle at the polar plane corresponds to the rotation angle
of the image, and radius corresponds to the lag of vertical
translation of the image before rotation. Black dots are the
unlabeled rotated images used as graph nodes.

Figure 1. Kernel centered at image ‘A’.

Figure 2 presents the value of kernel function centered
at the original image of the letter, as a function of the angle
the image was rotated. The values were normalized. As one
can see, the parameter γ controls the amount of invariance
information introduced by virtual inputs.

5.3. USPS digits

In this section we carry out experiments on a widely used
benchmark: the USPS dataset of handwritten digits. It con-
sists of 7291 training and 2007 testing samples. These are
grey scaled images of 16x16 pixels.

The data were modified by applying rotation to each
character image. The rotation angle is random in the range
0-360 degrees (see Figure 3). In this modified setting, this
classification problem becomes extremely difficult. The
proposed algorithm was applied to binary classification.



Figure 2. Kernels for different γ values.

The task was to classify digits “0−4” against “5−9”. Graph
nodes were constructed by consequently rotating the origi-
nal images on 15 degrees. This results in 23 virtual samples
per image. The training set was split into 36 subsets of 200
samples. The results averaged over splits are presented in
Table 1. Standard SVM obviously fails to classify the ro-
tated digits.

Figure 3. Some rotated USPS digits.

Table 1. Testing errors on USPS data.
Algorithm Testing Error, % Time, s

SVM (unrotated data) 12.0 8.5
SVM (rotated data) 34.0 8.5

VSV SVM 13.1 2160
Graph SVM 12.5 480

6. Discussion and Conclusions

The universal approach to invariant learning is the vir-
tual samples approach. Given unlimited computational re-
sources and an ability to add enough virtual samples to
the training set, all the information on invariances can be
learned directly from data.

An alternative to this approach, proposed in this paper,
consists in modeling the invariant manifolds instead in or-
der to obtain improvements in training time without lack
of precision. We adapted the recently developed method to
model manifolds defined by samples and we built a kernel
classifier which enforced smoothness on these manifolds.
We thus obtained an invariance property of the classifier.

The method provides a way to model nearly arbitrary in-
variances. It requires additional computations to build the

kernel. At the same time, the size of the optimization prob-
lem is unchanged. The amount of invariant information
used in the algorithm can be tuned by the choice of param-
eter γ.

Promising classification performance on a real OCR task
was observed. Other applications, such as dealing with spe-
cific invariances or matching problems are of particular in-
terest for further developments.
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