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Abstract

Human actions capture a wide variety of interactions be-
tween people and objects. As a result, the set of possible ac-
tions is extremely large and it is difficult to obtain sufficient
training examples for all actions. However, we could com-
pensate for this sparsity in supervision by leveraging the
rich semantic relationship between different actions. A sin-
gle action is often composed of other smaller actions and
is exclusive of certain others. We need a method which
can reason about such relationships and extrapolate un-
observed actions from known actions. Hence, we propose
a novel neural network framework which jointly extracts
the relationship between actions and uses them for train-
ing better action retrieval models. Our model incorporates
linguistic, visual and logical consistency based cues to ef-
fectively identify theses relationships. We train and test our
model on a new largescale image dataset of human actions
under two settings with 27K and 2K actions. We show a
significant improvement in mean AP compared to different
baseline methods including the state-of-the-art HEX-graph
approach from Deng et al. [8].

1. Introduction
Humans appear in majority of visual scenes, and un-

derstanding their actions is the basis of successful human
computer interaction. While action retrieval poses the same
challenges as object recognition, one key difference is that
the semantic space of actions is much larger. As shown
in Fig. 1, actions are compositions of objects and there are
many possible interactions even between the same set of ob-
jects. The distribution of objects in images is already long
tailed; consequently actions would be distributed in a much
more skewed way since most object combinations are quite
rare. Thus for successful action retrieval, one has to address
the fundamental challenge of learning with few examples.
In the current work, we learn action models for retrieving
images corresponding to a large number of human actions
in this challenging setting.

An action such as “person interacting with panda” yields

Person feeding 
panda

part-of type-of
mutual-exclusive

(a) Standard action recongition model for “person holding panda”

(b) Our model for “person holding panda”

Person feeding 
calf

Person holding 
animals

Person interact-
ing with panda

Person feeding 
panda

Person feeding 
calf

Person holding 
animals

Person interact-
ing with panda

Figure 1. Given a query, such as “Person interacting with panda”
(a) standard models for action recognition treat every action in-
dependently, while (b) our method identifies the relation between
actions, and uses these relations to extrapolate labels for images of
related actions. In this example, “person interacting with panda”
is part-of “person feeding panda”, and mutually exclusive of “Per-
son feeding a calf”. Hence, the images of these actions could also
be used to train a model for “person interacting with panda”. The
green and the red boxes indicate the positive and negative exam-
ples considered by the methods for training the model.

very few relevant results on image search. Can we still learn
a reliable model with such sparse supervision? As shown
in Fig. 1, the answer lies in the key observation that ac-
tion classes are related to each other. We may have few in-
stances for this action, but we have also seen “person feed-
ing a panda”, “person holding animals” etc. and we un-
derstand how these actions are semantically related. Thus
we can readily extrapolate to recognize “person interacting
with panda”.

This observation naturally leads to the idea of using a se-
mantic graph that encodes relationship between classes. In
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fact, this idea was explored in the HEX-graph approach of
Deng et al. [8]. However, their method left a key issue unad-
dressed: where does the graph come from in the first place?
The experiments of [8] only used single entity classes and
adapted WordNet[26] to heuristically obtain a HEX-graph
for the entities. However, there is no such preexisting hier-
archical structure for composite classes like actions.

To address this problem, we would like to automatically
learn the semantic relations between actions. This cannot
be simply circumvented by crowdsourcing. It would be pro-
hibitively expensive to manually annotate relations even be-
tween every pair of object-verb-object triplets, leave alone
actions. On a more fundamental level, we would also like
computers to be able to automatically extract knowledge
from data. The main contribution of our work is a new
deep learning framework which unifies the two problems of
learning action retrieval models and predicting action rela-
tionships. To the best of our knowledge, this is the first such
attempt for retrieval of human actions.

We leverage two key insights to build our model, along
with the known fact that semantic relations help training
visual models:

1. Some relations can be deduced from linguistic
sources. Automatic relationship prediction in NLP [4, 24]
is far from perfect. Nevertheless, linguistic tools such as
WordNet still provide valuable cues. As an example, the
parent-child relationship between “panda” and “animal”
tells us that “Person holding panda” is part-of “Person hold-
ing animals”.

2. Relationship between actions like “feeding a panda”
and “interacting with a panda” Fig. 1 cannot be captured
solely through language. The visual knowledge from the
action retrieval models could help us in such examples. Ad-
ditionally, the logical consistency between actions can also
be used to extrapolate new relations from existing ones. If
we know “person feeding calf” excludes the action of “per-
son feeding panda”, and “feeding” is a type of “interaction”,
then we can infer that “person interacting with panda” is
also exclusive of “person feeding calf”.

We train our model on a large-scale dataset of 27425
actions collected by crawling the web for images corre-
sponding to these actions. We show significant improve-
ment compared to a standard recognition model, as well as
the HEX-graph based approach from [8]. Additionally, we
also provide results for a subset of 2000 actions, whose data
is made publicly available.

2. Related work
Semantic hierarchy for vision In the last few years, dif-
ferent works [7, 25, 47, 11, 44, 16, 37, 9, 27, 1, 8] have
tried to use preexisting structure between labels to train bet-
ter models for image classification, and object segmentation
[21]. Most related to our work is the recent work from Deng

et al. [8], who use DAG relationships and mutual exclu-
sions among entity labels to train better classifiers. All these
works achieve a gain in performance, when provided with a
fixed semantic hierarchy between labels. Such straightfor-
ward semantic relationships are absent for real world human
actions. Hence, we automatically discover these relations.

Another line of work shares data between visually simi-
lar classes by learning grouping of class labels [31, 23, 22,
38, 3, 30, 17, 29, 45]. These methods typically cluster the
labels or organize them in a hierarchical taxonomy based
on visual similarity and co-occurrence. However, we learn
semantic relationships based on both language and visual
information, and we do not restrict ourselves to a hierarchi-
cal taxonomy.
Building visual knowledge Recently, there has also been a
push in works such as [2, 46] to learn visual relationship be-
tween entity labels by mining images from the web. In par-
ticular, NEIL [2] extracts relationship between objects, at-
tributes and scenes only based on the visual overlap between
the corresponding images. They use the extracted relations
as additional context for re-scoring objects and scenes. In
contrast, we learn relationship between actions by minimiz-
ing a joint objective across all actions, and simultaneously
learn models for action retrieval. Further, we provide a sin-
gle neural network architecture to achieve this.
Action recognition Action recognition in images has been
widely studied in different works such as [42, 15, 28, 41,
32]. They focus on improving performance for a small
hand-crafted dataset of mutually exclusive actions such as
the PASCAL actions and Stanford 40 actions [10, 43]. Most
methods [42, 15, 28] try to improve the detection of ob-
jects or poses specific to these datasets, and are not scalable
to larger number of actions. More recently, video action
recognition [39, 33, 19] models have been quite successful
for larger datasets such as UCF-101 [36], and the Sports-1M
[19]. At this scale, the datasets are still composed of mutu-
ally independent actions such as sports activities. However,
we focus on an almost open world setting for actions with
rich semantic relationship between the actions.
Joint image and text embeddings Another class of work
[12, 35, 18] tries to learn models in an open world setting by
embedding textual labels, and images in a joint space. They
learn a single embedding space, where text and associated
images are close to each other. These methods only rely on
textual similarity between sentences/words to capture visual
similarity. Most of these methods treat sentences without
textual overlap such as “drinking coffee” and “holding cup”
to be dissimilar. Also, these methods are not constructed to
handle asymmetric relations between classes. On the other
hand, we explicitly learn asymmetric visual relationship be-
tween actions in our dataset.
Relationship prediction in NLP Our work also draws in-
spiration from research in NLP such as entailment[24] and

2



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

CVPR
#0195

CVPR
#0195

CVPR 2015 Submission #0195. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Action Embedding

Relation Prediction
(Sec. 3.3)

Actions

relation prediction losses
(Sec. 3.4 - 3.6)

Image Embedding

Language rules
(Sec. 3.4)

action prediction loss
(Sec. 3.2)

Images

Dot Product 

Figure 2. A schematic overview of our model for jointly predict-
ing the relationship between actions, and learning action retrieval
models.

natural logic [4]. In particular, our work is related to [34]
which proposes a neural tensor layer to learn relationship
between embeddings of textual entities.

3. Our approach

We wish to learn action retrieval models for a large num-
ber of actions which are related to each other. To learn good
models, we would ideally like to have all action labels for
all images in our dataset. In practice, obtaining multiple la-
bels for an image does not scale with the number of actions
and we are restricted to one label per image. However, if we
understand the semantic relationship between different hu-
man actions, we can easily extrapolate missing labels from
a single action. For example, we expect an image depict-
ing “Person riding horse”, to contain other actions such as
“Person sitting on animal”, “Person holding a leash” and to
not contain “Person riding a camel”.

Identifying such relationships is a challenging task in it-
self. While language can help to certain extent, we also
need to use visual information to reliably identify relation-
ships. The problems of training action retrieval models, and
predicting relationships are closely coupled with each other.
The main contribution of our work is a neural network ar-
chitecture which can jointly handle these tasks.

A schematic of our model is shown in Fig. 2. Actions
and images are embedded into vectors by embedding lay-
ers, and the relationship between actions are predicted from
the action embeddings. We finally have a joint objective
for learning action models and ensuring good relationship
prediction. The objective has two main components1:
• Action prediction loss visualized in Fig. 3.

• Relation prediction loss composed of three modules,
where each module is designed to capture a specific
aspect of the relationship as shown in Fig. 4.

1While the loss functions are minimized jointly, we have shown them
separately in the figures for the convenience of easy visualization.

Action - A

Action Embedding

wA
fA(+) f(-)

Person riding 
bike

action prediction loss

IA(+) I(-)

wA.fA(+) wA.f(-)

Image Embedding

Figure 3. The action retrieval model, where the image and action
embedding layers are shared with the modules in Fig. 4

3.1. Problem setup

We are given a set of actionsA, and for every actionA in
Awe have a set of positive images IA. We are also provided
a set of related actions RA ⊂ A, for every action A. For
each action we wish to learn models which ranks the pos-
itive images of the action higher than the negative images.
We also identify the relationship between A and every ac-
tion in RA. We obtain RA by selecting the actions whose
top 100 images returned by Google image search have an
overlap with those of the action A.

All the actions in our dataset contain one or both of the
two structures: 1. 〈 subject, verb, object 〉, eg.: “Person rid-
ing a horse” 2. 〈 subject, verb, prepositional object 〉, eg.:
“Person walking with a horse” This is a reasonable repre-
sentation for actions as noted in past works such as [13].

3.2. Action retrieval

We first develop a basic action retrieval model (Fig. 3)
which is later integrated with relationship prediction mod-
ules in the next few sections. We use a simple feed-forward
architecture, where each action description A from the set
of actions A is represented by a weight vector wA ∈ Rn,
and each image I is represented as a feature vector fI ∈ Rn,
and n is the embedding dimension. The feature fI is ob-
tained through a linear projection of the Convolutional Neu-
ral Network (CNN) feature, obtained from the last fully
connected layer of a CNN architecture [20, 40]:

fI =WimCNN(I) + bim, (1)
where CNN(I) represents the CNN feature of image I . The
projection parameters Wim, bim are learned in the model.
We assume that the actions which are not part of the set
RA are unrelated to A, and the corresponding images are
treated as negatives. The action weight vector should assign
a higher score to a positive image as compared to negatives.
Hence, we define a ranking loss:

Cac =
∑
A

∑
I+∈IA
I−∈IA

max
(
0, 1 + wTA(fI− − fI+)

)
, (2)

where A = A \RA is the set of actions unrelated to A.

3
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Action - A

Action Embedding

wA

Rel. Pred.

wB

Person riding 
bike

Person riding 
horse

Action - B

Language rules

Language prior loss

p t m

p t m

Action - A

Action Embedding

wA

p t m

wB

Person riding 
bike Person riding 

horse
Action - B

Consistency Loss

Person riding 
camel

Action - C

wC

Rel. Pred.

p t m

Rel. Pred.

p t m

Rel. Pred.

Action - A

Action Embedding

wA

Rel. Pred.

p t m

fA(+) fB(+) f(-)

wB

wA.fA(+) wA.f(-)
wB.fA(+) wB.f(-)

wA.fB(+)
wB.fB(+)

Person riding 
bike

Person riding 
horse

Action - B

part-of loss + type-of loss + mutex loss

IA(+)
IB(+) I(-)

Image Embedding

(a) Action retrieval with relationship (b) Language prior for relationship (c) Consistency loss

Figure 4. The different components of the relationship prediction model are shown, where the image and action embedding layers are
shared with Fig. 3. (a) defines a loss function which binds the predicted relationship with the learned action models, (b) regularizes the
predicted relations with a language prior, and (c) tries to enforce logical consistency between predicted relations.

3.3. Relationship prediction

Given a pair of actions A and B ∈ RA, we wish to iden-
tify the relationship between them. These relationships de-
termine the visual co-occurrence of actions within the same
image. Naturally, we want to predict relations based on
some visual representation of the actions. Hence, we for-
mulate a relation prediction function on top of the action
embeddings defined in the previous section. However, we
first need a reasonable definition for relationship. We follow
the recent work from [8] to define three kinds of relations:
• part-of: An action A is part-of B, if the occurrence of

action A implies the occurrence of B as well. This is
similar to the parent-child relationship between A and
B in a HEX-graph.
• type-of: An action A is type-of B, if action A is a

specific type of the action B. This is similar to child-
parent relationship between A and B in a HEX-graph.
• mutually exclusive: An actionA is mutually exclusive

ofB, if occurrence ofA prohibits the occurrence ofB.
We denote the relationship by a binary vector rAB =

[rpAB , r
t
AB , r

m
AB ] ∈ [0, 1]3, where rp, rt, rm denote part-of,

type-of and mutually exclusive relationship values respec-
tively. The relationship is predicted through a neural ten-
sor network layer similar to the knowledge base completion
work from Socher et al. [34]. This layer is followed by
softmax normalization, as shown in Fig. 4. The predicted
relationship can be written as:

rAB = softmaxβ
(
wA ⊗W [1:3]

rel ⊗ wB + brel

)
, (3)

where the tensor W [1:3]
rel ∈ Rn×n×3 and brel ∈ R3 are the

parameters to be optimized, and softmaxβ : R3 7→ R3 is the
softmax normalization function with parameter β.

3.4. Language prior for relationship

As noted in the introduction, the text of an action car-
ries valuable information about its relations. However, pre-
dicting relations between any two generic textual phrases
is a rather challenging problem in NLP [4, 24]. The per-
formance of such systems is often unsatisfying for use in
higher level tasks such as ours. We propose to get around
this limitation by capitalizing on the structured nature of ac-
tions in our problem. We define a set of simple rules based
on WordNet hierarchies to impose a prior on the relation-
ship between some of the actions in our dataset. If none
of the rules are satisfied, we do not use any prior, and let
the other components of the model decide the relationship.
Some rules used in our system are visualized in Fig. 5. The
complete set of rules are provided in the supplementary.

It is important to note that these rules are not always ac-
curate, and can be quite noisy as shown in the third exam-
ple of Fig. 5. Further, the rules are not satisfied for a large
number of cases. We observed that 41.69% of the relation-
ships in our datasets do not satisfy the listed language based
rules. Hence, the relationship set by these rules should only
be treated as a noisy prior, and cannot be directly used to
combine data as we show later in the experiments as well.

We use the relationship prior from these rules to define a
loss function as shown in Fig. 4(b). If the NLP prior for the
relationship is given by the vector r̃AB , then we define an
`1 loss function as follows:

Cnlp =
∑
A

∑
B∈RA

|rAB − r̃AB | (4)

3.5. Action retrieval with relationship

So far, we have defined a relation prediction layer and
determined a language based prior for a subset of the rela-
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Man eating dog

Person feeding a dog

Person preparing food

Chef cooking pasta

A:

A:

B:

B:

type-of

part-of

Person riding horse

Man riding camel

A:

B:

mutex

Figure 5. Some sample rules in our language prior are visualized
here. These rules are derived from WordNet; the arrows represent
parent-child relation in WordNet, and the dashed line corresponds
to siblings. For instance, the first example implies that if the sub-
jects are related as parent-child, the verbs are synonyms and the
objects are siblings, then the actions are mutually exclusive. As
seen in the third example, some relations derived can still be noisy
due to lack of contextual information for the action.

tions. However, to fully use relationships for training bet-
ter models, we still need to extrapolate relations which do
not have a language prior. We propose two novel objec-
tive functions which leverage visual information and logical
consistency to determine good action relationships.
Visual objective As mentioned earlier in the introduction,
the relationship between actions determine how their train-
ing data can be shared between them. In particular, we de-
fine a specific loss function for each relation:

• If action A is part-of B, the weight vector wA should
rank the positive images ofB higher than the negatives
of A, which in turn implies a small value for:

CpAB =
∑
Ib∈IB
I−∈IA

max
(
0, 1 + wTA(fI− − fIb)

)
(5)

• If A is type-of B, the weight vector of wB should rank
the positive images of A higher than negatives of B.
Hence, we expect a small value for the cost:

CtAB =
∑
Ia∈IA
I−∈IB

max
(
0, 1 + wTB(fI− − fIa)

)
(6)

• If A is mutually exclusive of B, the weight vector wA
should rank positive images of A higher than the posi-
tives of B. Hence, we expect a small value for:

CmAB =
∑
Ia∈IA
I−∈IB

max
(
0, 1 + wTA(fIb − fIa)

)
(7)

Now, we combine these losses along with the corre-
sponding relation prediction values to formulate an objec-
tive Crec as follows. The module of the neural network
corresponding to this objective is shown in Fig. 4(a).

Crec =
∑
A∈A
B∈RA

rpAB · C
p
AB + rtAB · CtAB + rmAB · CmAB (8)

If the action weight vectors wA, wB are properly trained,
the loss function corresponding to the best relation would
be small, causing the model to automatically choose the
right relation. Similarly, if the relationship is chosen cor-
rectly, the training data of the actions would be correctly
augmented, leading to better action weights.
Consistency objective We use logical consistency among
the predicted relations as an additional cue to constrain the
relationship assignment between actions. However, a global
consistency constraint would span all action pairs and cou-
ple their relation predictions. To get around this problem,
we propose a consistency cost only over triplets of related
actions. We observe triplets of actions, and down weight in-
consistent binary relationships between all pairs of actions
in this triplet. For instance, we want to avoid inconsistent
relationships such as: A is part-of B, B is part-of C and
A is mutually exclusive of C. It is straight-forward to list
out all the disallowed relationships for a triplet of actions
(shown in the supplementary material). We refer to this set
of disallowed relationships as D ⊂ {p, t,m}3, and define
the consistency objective as follows:

Ccons =
∑
A

B∈RA
C∈RB

∑
d∈D

rd1AB · r
d2
BC · r

d3
CA, (9)

where the disallowed relationship triplet d is of the form
(d1, d2, d3). The component of the neural network imple-
menting this loss function is shown in Fig. 4(c).

3.6. Full model

We tie together the action prediction loss and the relation
prediction losses in one single objective as shown below:

C = Cac+αrCrec+αnCnlp+αcCcons+λ‖W‖22, (10)

where αr, αn, αc are hyper-parameters. The weights in the
model W = {Wim,

⋃
A∈A

wA,Wrel} are `2 regularized with

a regularization coefficient λ.
Implementation details The full objective is minimized
through downpour stochastic gradient descent [5]. The
various hyper-parameters of the model: {β, λ, αr, αc, αn},
were obtained though grid search to maximize perfor-
mance on a validation set. These parameters were set to
1000, 0.01, 5, 0.1, 10 respectively for both experimental set-
tings in the next section. The embedding dimension n was
set to 64. While training the model, we run the first few it-
erations without the relation prediction objectives. We pro-
vide more details in the supplementary material.
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old people having funold people having fun old popele playing cardsold popele playing cards

people jumping o� cli�speople jumping o� cli�s someone jumping in airsomeone jumping in air

people picking up trashpeople picking up trash people dropping litterpeople dropping litter

kids shaking handskids shaking hands 2 people shaking hands2 people shaking hands

people having a picnicpeople having a picnic people sitting on grasspeople sitting on grass

unknownunknown

part-ofpart-of

unknownunknown

type-oftype-of

mut-ex.mut-ex.

mut-ex.mut-ex.

type-oftype-of

type-oftype-of

unknownunknown

type-oftype-of

Figure 6. A few actions from our dataset along with images. For
every action, we also show a sample related action. The relation
from language prior is shown in red, and the correct relation pre-
dicted by our full method is shown in green.

4. Experiments

We evaluate the action retrieval performance of our
model against different baselines under two experimental
settings. We also present a detailed analysis of the relations
learned by our model.

4.1. Dataset

As listed in Guo et al. [14], most existing action datasets
such as the PASCAL actions [10], as well as the Stanford-
40 [43] are relatively small, with a maximum of 40 actions.
The actions in the datasets were carefully chosen to be mu-
tually exclusive of each other, making them less practical
for real world settings. They have very little or no overlap
between the actions. However, to demonstrate the efficacy
of our method, we need a large dataset of human actions,
where the actions are related to each other. Hence, we con-
struct a dataset of 27425 action descriptions with very few
restrictions on the choice of actions.

We present results on two different settings correspond-
ing to 27K and 2K actions as explained below, where the
data is made publicly available for 2K actions.
27K actions: We collected a set of positive examples for
each action description by scraping the top results returned
by Google image search. This dataset was curated by an-
notator ratings, to remove noisy examples for each action.
Two thirds of the images per action are used for training,

while the remaining images are held out for use in testing
and validation. We treat 13700 actions and the associated
held-out images as the validation set. The held-out images
of the remaining 13725 actions are used for testing. We
have 15− 200 training images per action resulting in a total
of 910775 training images.
2K actions: We also run experiments under an additional
setting, where we make the test images publicly available.
In this setting, we use 2000 actions which form a subset of
the 27K actions. However, we do not use a hand-curated
training dataset with clean labels as before. Rather, while
training the model, we treat the top 30 images returned by
Google image search as ground truth positive images for
each action, and the next 5 images are used for cross valida-
tion. Since the images are returned based on the text accom-
panying the images, the data could be noisy. Nevertheless,
as observed in Dean et al. [6], they contain sufficient infor-
mation to train visual classifiers. Some sample actions and
relations in our dataset are shown in Fig. 6. It is to be noted
that the test set corresponding to the 2K actions is still cu-
rated with annotator ratings to remove noisy examples, and
has no overlap with the training and validation data.
Evaluation criteria We use mean Average Precision (mAP)
to evaluate our method in an image search setting, where we
wish to retrieve the correct images corresponding to an ac-
tion label from the test set. Note that, each test image could
be associated with more than one correct action label due
to the relationship between different actions in our dataset.
However, we do not have the label corresponding to all ac-
tions for all images in the test set. Hence, for the sake of
correct evaluation we also annotate a set of negative images
for each action description and compare the scores of the
true positives of an action with these annotated negatives
for the action. Our test set typically contains 500 negative
images and 3− 10 positive images for each action-label.

4.2. Results

We compare with the joint image-text embedding
method from DeVise [12], as well as the recent HEX-graph
method of using relations, proposed in [8]. The different
baselines used for comparison are listed below:

1. LOGISTIC Model without relations, trained with logis-
tic loss

2. SOFTMAX Model without relations, trained with soft-
max loss

3. LANGRELWITHHEX Action recognition model
trained with the HEX-graph loss function proposed in
[8]. Only the relations from Language prior are used
to to construct a HEX-graph.

4. OURRELWITHHEX We use the relationships learned
by our full model in the HEX-graph loss function.
Since the HEX-graph needs to be consistent with-
out cycles we first build a Maximum Spanning Forest
(MSF) based on our learned relations.
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Figure 7. Sample actions where our model achieves more than 10% mAP improvement over RANKLOSS. The related actions along with
relation prediction scores are shown for each of the three actions. Our model effectively treats the images corresponding to the part-of
related actions (shown in a green arc) as additional positives, and those of the mutually exclusive actions (shown in a red) as hard negatives.

5. RANKLOSS This is the basic action retrieval model
Sec. 3.2, without the use of relationships.

6. LINEARCOMB The action score of an image is deter-
mined by a linear combination of the scores of related
actions. The weights are determined by the visual sim-
ilarity between the training images of the two actions.
A higher weight is assigned for a higher similarity.
Note that this method is similar to the re-scoring ap-
proach from NEIL [2].

7. DEVISE [12] The action embedding layer of Sec. 3.2
is replaced by a fixed embedding vector, which is ob-
tained as the average of the word-vector embeddings
of the words present in the action description.

8. PROJECTEDDEVISE [12] We learn a linear layer on
top of the word vector embeddings, similar to [18].

9. OURONLYLANGREL Only Language prior is used to
determine relations in our model.

10. OURWEIGHTEDLANGREL We use from language
prior, but we weight the contribution of each related
action in our overall objective. The weight is deter-
mined by the visual overlap between the two actions.
This has the advantage of removing noisy relations.

11. OURNOCONSISTENCY Our model without the consis-
tency objective.

12. OURFULLMODEL This is our full model with consis-
tency objective.

The results for the 27K and 2K action datasets are
shown in Tab. 1. The RANKING LOSS model outperforms
both the SOFTMAX and LOGISTIC models. Since the HEX-
graph method provides a generalization of the logistic and
softmax models, its performance is also seen to suffer in
comparison to RANKLOSS. We also observe that the per-
formance of the DEVISE model is not significantly better

Method mAP (%) 27K mAP (%) 2K
RANDOMCHANCE 2.22 3.02
LOGISTIC 5.80 5.53
SOFTMAX 5.79 5.47
LANGRELWITHHEX [8] 6.01 5.96
OURRELWITHHEX [8] 6.43 5.71
RANKLOSS 8.17 6.88
DEVISE [12] 7.02 5.73
PROJECTEDDEVISE [12] 7.88 6.67
LINEARCOMB 8.64 7.78
OURONLYLANGREL 6.14 7.02
OURWEIGHTEDLANGREL 10.05 8.87
OURNOCONSISTENCY 11.92 10.04
OURFULLMODEL 11.96 10.16

Table 1. Results of action retrieval on the 27K and 2K dataset.

than RANKLOSS. For composite descriptions like actions,
a simple word vector averaging is not seen to capture the
visual relationship between the actions. Similarly, a naive
use of the language prior is seen to hurt performance in
OURONLYLANGREL. Also, a direct fusion of the scores
in LINEARCOMB, similar to the approach by NEIL only
provides a marginal gain.

Our full model significantly outperforms the previous
baselines for both settings. It is also interesting to note
that the consistency objective offers only a small advan-
tage in terms of performance, compared to the visual ob-
jective in Eq. 8. We visualize a few examples where our
model achieves a significant gain compared to RANKLOSS
in Fig. 7. Our performance gain can be attributed to
the additional labels extrapolated from the learned rela-
tions. In the first example, we see that the action “girl
doing a handstand” is identified as part-of “girl doing a
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part-of (0.934) part-of (0.853) type-of (0.808)

kids playing in snow child. build snowman kids snowball �ght child. play having fun

part-of (0.796)part-of (0.833) part-of (0.768)

messi plays football messi kicking ball messi & ronal. shake hands messi runs with ball

kids do school work students do math

part-of (0.998) mut-ex (0.612) mut-ex (0.482)

students write examskids do homework

Figure 8. Each row corresponds to an action with a sample test
image shown in the first column. Green boxes indicates the test
cases, where our model correctly ranked the image higher than
RANKLOSS, and the red boxes indicate a lower ranking. The last
three columns in each row depict the related actions arranged by
decreasing order of relations scores. Correct relation predictions
are shown in green, and wrong ones in red.

cartwheel”. Hence, the relationship objective in Eq. 8, treats
the cartwheel images as additional positives while training
a model for handstand. Similarly, by identifying the mu-
tual exclusivity with “girl doing a split”, our method gains
additional negatives. Since we identify relationships with
only those actions which have some overlap in the images
returned by image search, a correct mutual exclusion effec-
tively adds hard negatives for training.
Performance gain from each relationship We study the
impact of each of the three relations on our performance
improvement in Fig. 9. For an action, the strength of a spe-
cific relation is determined by the sum of the corresponding
relation scores with respect to all related actions. At dif-
ferent values of the relation strength, we plot the average
improvement in AP of all actions whose corresponding re-
lation strengths are higher than that value. The relationship
strength is quantized into 100 bins. We observe that actions
which are part-of more actions tend to have the highest im-
provement in AP, followed by mutual exclusion and type-of.
As shown in Fig. 7, we obtain additional positive training
data from part-of actions, and negatives form mutually ex-
clusive actions. As a result, we expect these two relations
to have a higher impact. This intuition agrees with the plot.
Evaluating predicted relations We also present a quanti-
tative evaluation of the predicted relations for a set of 900
action pairs. To clearly see the advantage our method over
the naive use of language based relations, we chose those
action pairs which do not have a language prior. Further, the
action pairs were chosen so that they had an almost unam-
biguous relationship. The pairs correspond to 1800 (since
relationship is asymmetric) relationships. The mean AP of
the relationship predictions are shown in Tab. 2. We notice
a significant gain in predicting part-of and type-of relations,
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Strength of predicted relationship value

Figure 9. For all three relations, the relation strength for an ac-
tion is computed as the sum of the corresponding relation scores
with respect to its related actions. At each relation strength, we
have plotted the average gain (over RANKLOSS) in AP of actions
having a relation strength higher than that value. This plot shows
that the performance gain is higher for actions with more part-of
relations, followed by mutually exclusive and type-of relations.

Method
mAP(%) for relationship prediction
part-of type-of mut-ex

RANDOMCHANCE 36.61 36.61 34.56
OURFULLMODEL 60.12 60.61 42.30

Table 2. Results for action relationship prediction for a subset of
900 action pairs (1800 relations).

compared to random chance. This shows the advantage of
our method over using only language relations.
Limitations While our model provides a significant gain by
assigning one of three relationships between action pairs,
there are a few instances where the relationship is ambigu-
ous (as shown in failure cases of Fig. 8). Since our model
makes soft assignments, these cases can still be partially
handled. However, few action pairs have a good visual
overlap and an ambiguous relationship such as: “kids doing
homework” and “students doing math”. Assigning mutual
exclusion is seen to hurt performance for these actions.

5. Conclusion

In this work, we tackled the problem of learning action
retrieval models in a practical setting with a large number
of actions which are related to each other. Existing meth-
ods achieve a performance gain in such settings by uti-
lizing readily available semantic graphs such as WordNet.
However, human actions do not have a predefined semantic
graph. We presented a neural network architecture which
jointly extracts the relationships between actions and jointly
learns better models by extrapolating action labels based on
these relations. Our model integrated language cues, visual
cues and logical consistency to determine these action rela-
tionships. Our full model achieved significant improvement
in action retrieval performance over state-of-the-art method
[8] for a novel large scale action dataset.
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