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Abstract: Asrecently introduced in [1], an HMM2 can be considered as a particular case of an HMM mixture in
whichthe HMM emissionprobabilities(usuallyestimatedhroughGaussiammixturesor anatrtificial neuralnetwork)
are modeled by state-dependent, feature-based HMM (referred to as frequency HMM). A general EM training algo-
rithm for such a structure has been developed [2]. Although there are numerous motivations for using such a struc-
ture, and many possible ways to explait it, this paper will mainly focus on one particular instantiation of HMM2 in
which the frequency HMM will be used to extract formant structure information, which will then be used as addi-
tional acousticfeaturesn a standardAutomaticSpeechHRecognition(ASR) system While thefactthatthis architec-
ture is able to automatically extract meaningful formant information is interesting by itself, empirical results also
show the robustness of these features to noise, and their potential to enhance state-of-the-art noise-robust HMM-
based ASR.

Acknowledgements: Thiswork was partly supported by grant FN 2000-059169.99/1 from the Swiss National Sci-
enceFoundation.Theauthorswould lik e to thankS. Pol FontandP. Pujol for their work contrikuting to the develop-
ment of frequengfiltered features at our institute.
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1 INTRODUCTION

State-of-the-arspeechrecognitionsystemsarebasedn hiddenMarkov models(HMM) wherethe stateemis-
sion probabilities are typically estimated by Gaussian mixture models (GMM) or artificial neural networks
(ANN). As recently introduced, HMM2 consist of standard HMMs where the emission probabilities are esti-
mated by anothestate-dependent, ‘frequgn¢iMM [1].

A standartHMM emitsa sequencef featurevectors.Theestimationof thelik elihoodsof a featurevector
givenanHMM stateis corventionallybasecon GMM or ANN. Alternatively, thislikelihoodcanbeestimated
by a frequency HMM. At each time step, the frequency HMM emits one feature vector in the form of a
sequencef its componentgusuallyscalarvalues).Typically, this featurevectoris in the spectraldomain,and
eachof its scalarscorrespond$o afrequeny componentEachstateof thefrequeny HMM s thusdescribed
by a one-dimensional probability density function, typically assumed to be Gaussian or a Gaussian mixture.
Therefore, the HMM2 parameters are the Gaussian means, variances and mixture weights of the frequency
HMM as well as the transition probabilities of the wemtional and the frequepéiMMs.

Frequency and conventional HMMs can be combined in arecognition system in different ways. A fre-
queny HMM (associateavith a certainstateof the cornventionalHMM) estimateghelik elihoodfor afeature
vector(whichthereforehasheendecomposeato a sequencef subvectorsor scalars) Thislikelihoodis then
further processed in the conventional HMM the same way as if it had been estimated by a GMM. In fact, the
HMM2 canbe ‘unfolded’ into onebig HMM, provided somesynchronizatiorconstraintis introduced.Train-
ing can therefore be done with an EM algorithm as conventionally applied to HMMs. This and similar
approaches have been applied before in computer vision [3,4,5] (although the interpretation of the so-called
Pseudo2D-HMM differs somewhat from ours). However, in [2] an integrated EM training algorithm which is
suited to this particular HMM2 topology (and which therefore avoids the constraints mentioned above) has
been proposed.

Aswe will discuss in more detail in section 2, the HMM?2 approach has several advantages compared to
state-of -the-art systems, such as the modeling of correlations through the frequency HMM's topology with a
parsimonious number of parameters, automatic non-linear frequency warping and dynamic (implicit or
explicit) formant trajectory tracking.

In contrasto the HMM2 systemintroducedin [1], the particularHMM2 systenmwe focusonin this paper
usesthefrequeny HMM to explicitly extractformantstructuresThe usefulnes®f formantfeaturesfor ASR
hasalreadybeeninvestigated,e.g.in [6,7]. Onthe otherhand,hiddenMarkov modelshave successfullypeen
applied to formant tracking before [8]. Here, we propose to use the formant structures extracted by the fre-
queny HMM as features in a cgantional HMM system.

In thefollowing, we discusshe motivationsof the HMM2 approachWe thendemonstrate¢he abilities of
the frequency HMM to extract formant structures, and explain how these can be used for speech recognition.
Finally, experimental results showing an improved robustness compared to state-of-the-art noise-robust fea-
tures are presented.

2 EXTRACTION AND USE OF FORMANT FEATURES

The general motations of using HMM2 as described abare the folling:

» Betterfeaturecorrelationmodelingthroughthefeature-base(frequeng) HMM topology Also, thecom-
plexity of this topologyandthe probability densityfunction associateavith eachstateeasilycontrolthe
number of parameters.
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Figure 1. Extraction of formant features from spectral feature vectors (a) with a frequency HMM (b).
Concatenation of the formant features obtained (c) to state-of-the-art noise-robust features (d). The new
combined features (€) are then processed in conventional HMMs (f) as usual.

e Automaticnon-linearspectralwarping.In the sameway the corventionalHMM doestime warpingand
time integration, the feature-based HMM performs freqyemarping and frequendntegration.

» Dynamicformanttrajectorymodelling.As furtherdiscussedbelor, the HMM2 structurehasthe potential
to extract somerelevant formantstructureinformation,which is often considerecasimportantto robust
speech recognition.

In the presenpaperwe mainly focusonthelastmotivation,asthefeature-basetliMM is usedto dynamically
segment the frequency vector into formant-like regions. It is generally agreed that formants are perceptually
importantfeatureslt is alsooftenacknavledgedthatspectrabeakgformants)shouldbe morerobustto addi-
tive noisesincethe formantregionswill generallyexhibit a large signal-to-noiseatio. Therefore the position
of these formants in a speeclysent could be quite useful for phoneme discrimination.

Figurel illustrateshow formant-like featurescanbeextractedwith afrequeny HMM, andthenbeusedas
supplementarfeaturesn acorventionalHMM. Startingfrom thespeectsignal,featurevectorsin thespectral
domain are extracted (a). These features are used to train the frequency HMM (b). After training, the fre-
gqueny HMM will beusedto performasegmentatioralongthefrequeny axisfor eachspectrafeaturevector
(c). Theupperpartof (c) shows this sggmentationin thetime-frequeng plane whereaghe lower partvisual-
izes the segmentation features themselves. These ‘formant features’ are then appended to state-of-the-art
noise-robust features (d). Then, the new features (comprising the usual state-of-the-art noise-robust features
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and the formant features, (€)) are used to train a conventional HMM (f). The usual speech recognition algo-
rithms can then be applied.

As expectedandasfurthershawn later, this approachindeedresultedn theextractionof somemeaningful
formant information, already quite robust by itself. Further empirical results discussed below aso show that
complementingtandardalreadynoise-rolust,acoustideatureswith this formantinformationyieldedsignifi-
cant performance impvements in noisy conditions.

3 EXPERIMENTS

The experiments described here were carried out on the OGI Numbers95 corpus [9], which comprises a
vocahulary of 30 words(continuouslyspolendigits). Variousnoisesg.g.from the Noisex databas§l0], were
added, and diérent features werexgacted.

Our baselinesystemworkswith 13 MFCC-SS(i.e., MFCC calculatedafter spectralsubtractionSS),with
cepstral mean subtraction (CMS) and including energy), as well as their first and second order derivatives,
making up feature vectors of 39 coefficients. It isimportant to note that state-of-the-art noise reduction tech-
niques(SSandCMS) have beenusedin the extractionof thesebaselin€eaturessothatthey arealreadyquite
robust to additive as well as convolutional noise. We use the GMM-based HTK system [11] for training and
recognition.Final modelsare 80 context-dependenphonemesvith 3 statesgachcomprisinga mixture of 10
Gaussians. On the clean NumbersQ&etimoment test set, we obtain and error rate (WER) of 5.7%.

As featuredor thefrequeng HMM we usefrequeng-filteredfilterbanks(FF), asproposedn [12]. These
FF features were chosen because they are a rather normalized and decorrelated spectral representation. First
andsecondrdertemporalderivativeswereappendedh orderto introducesomesmoothing Eachof these33-
dimensional temporal feature vectors was rearranged into 11 3-dimensional subvectors, a subvector being
composed of an FF coefficient as well was its first and second order time derivatives. At each time step, the
frequeny HMM emitsa 33-dimensionaleaturevectorin theform of asequencef 11 3-dimensionasubvec-
tors.

The topology of the frequency HMM s strictly top-down with loops on each state (see figure 1 (b)). The
numberof statesn thefrequeny HMM waschoseraccordingto the numberof formantregionswe aimedto
model.For theresultsreportedn this paperwe used4 statesTrainingwasdonewith anEM algorithmonall
FF data of the Numbers95 train set. Afterwards, the Viterbi algorithm was used to obtain a segmentation
(given the trained frequency HMM) for each FF feature vector of the whole database. Such a segmentation
typically consists of 3 values indicating the location in frequency of the transitions between the 4 successive
frequeny HMM statesThesevalueswould constitutethe new formantfeaturevector which canbeappended
as a second information stream to state-of-the-art features.

3.1 Formant tracking with a frequency HMM

In order to verify that a frequency HMM isindeed able to extract formant structures, we used frequency
HMMs trainedonly on certainpartsof the databaseThe frequeny HMM in theright of figure 2 wastrained
on the vowel ‘ow’. The background of the main part of figure 2 shows a speech segment of FF features (dark
andlight regionscorrespondo positive andnegative coeficientsrespectiely). In the left partof theimage,a
segmentatiorasperformedby the HMM onvowel ‘ow’ datais shovn. It canbe seenthat,e.g.,state3 models
the high energy region of the FF data. Projected onto the original filterbank spectogram (i.e., before the fre-
quency filtering is applied), the transitions follow quite nicely the maxima (formants) and minima of energy.
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Figure 2. S@mentationsbtainedform a frequencyHMM trained on the vowel ‘ow’ for a speeb sggmen
containingan exampleof phonemeéow’ asin theword ‘oh’ (left) and of phonemeéw’ asin ‘one’ (right). The
horizontal axis epresents time and the vertical axisduency eolution.

This conclusionstill holdsfor similar phonemeseg.g.for thevowel ‘w’ (seeright partof thefigure),andeven
for very different phonemes, some formanteligtructures are obtained.

Taking a frequency HMM trained on all data and looking at the segmentation results over sequences of
severalwords,we still seeformant-like structuralinformation,suchascoherentegionsin thetime/frequenyg
plane modeled by a certain state (an example is displayed in the upper part of figure 1(c)). Although we also
find sudden transitions to completely different segmentations (which in fact might partly be due to phonemic
transitions), and in case of consonants the interpretation of the segmentation as formant structures no longer
holds,this resultwasencouragingisto go onestepfurtherandbuild arecognitionsystemwith the segmenta-
tion data as features.

3.2 Recognition experiments

Can the segmentation information obtained from a frequency HMM (as described in the previous section) be
usefulfor speectrecognition?To answetthis questionwe usedthe segmentatiorinformation(obtainedfrom
the frequeng HMM trained on all data) as features for aventional HMM, as described ptieusly.

A corventionalHMM systemwasthustrainedwith featurevectorscomprisingonly 3 componentsgorre-
spondingto the 3 positionsof the sgmentatioralongthe frequeny axis (e.g.,[3 5 8], asshavn in Figure2).
Architecture and training procedure of this system are the same as in our baseline system (apart from some
parameterglueto thedifferentdatadimension) We obtainaWER of 43.2%o0n cleandata,whatwe considera
very good result given the rather crude and low-dimensional features employed here. It shows that our fre-
gueny HMM is indeed able tox¢ract meaningful (discriminatg) information for recognition.
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SNR |39 MFCC-S$ 3 formant |39MFCC-SS
(baseline features | + 3 formant
system) features
clean 5.7 43.2 5.6
18 7.4 42.3 7.3
12 11.9 49.8 114
6 23.0 62.2 21.4
0 48.6 76.4 46.6

Table 1: WER on Numbers95 with additive Noisex
factory noise for different SNR for the noise-robust
baseline system (39 MFCCs, extracted after spectral
subtraction), a system with 3 formant features only and
the combined MFCC-formant-feature system.

For feature combination with state-of-the-art features, we used the same method as described in [13] and
appended the segmental features obtained from the frequency HMM to the MFCCs, thus obtaining feature
vectors of 39+3=42 coefficients. Again, we stick to the same system architecture and training procedure as
usedin our baselinesystemFor cleanspeechwe obtaina comparableVER (5.6%vs. 5.7%in the baseline).
More results on speech with additive Noisex factory noise can be found in Table 1. While recognition results
for high signal-to-noise ratios (SNR) are comparable to those of the baseline system, the word error rate
decreasefor thecaseof low SNR.Furthertestson carandlynx noiseconfirmedtheseresults.Overall, we can
state with more than 95% confidence that our systerksnbetter than the baseline.

3.3 Discussion

The results reported in the previous section are promising, even more so as our present frequency HMM sys-
tem is till very crude. We believe that with a more sophisticated method for obtaining formant structures, an
even better recognition performance can be achieved in noisy speech. One method currently under investiga-
tion is to train one distinct frequency HMM for each phoneme, resulting in dynamic, model-dependent fea-
turesatthelevel of the cornventionalHMM. Furthermoreintroducingsomemechanisnin orderto smooththe
segmentation of the frequency HMM along the time axis could be helpful. Frequency HMMs with different
topologieqe.g.,numberof statesmightbeinvesticgated,anddifferentspectrafeatureqpossiblywith ahigher
frequeng resolution) may be used.

4 CONCLUSION

In this paper, we presented a particular instantiation of the HMM2 approach in which formant structures are
explicitly extractedby afrequeny HMM. Thesearethenusedasfeaturesn aregularGMM-basedHMM sys-
tems. We presented experimental results showing that the obtained segmentation might indeed correspond to
formantstructuresandthatit containssomediscriminatve informationwhich canenhanceherobustnes®f a
standard noise-raist ASR system.
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