
 
 

E
S

E
A

R
C

H
R

E
P

R
O

R
T

I
D

I
A

P

D a l l e M o l l e I n s t i t u t e
for Perceptua l Art i f i c ia l
Intelligence • P.O.Box 592 •
Martigny •Valais • Switzerland

phone +41− 27− 721 77 11

fax +41− 27− 721 77 12

e-mail secretariat@idiap.ch
internet http://www.idiap.ch

A Parallel Mixture of SVMs
for Very Large Scale

Problems
Ronan Collobert a b Samy Bengio a

Yoshua Bengio b

IDIAP�RR 01-12

April 26, 2002

published in
Neural Computation, vol 14, number 5, 2002

a IDIAP, CP 592, 1920 Martigny, Switzerland, {collober,bengio}@idiap.ch
b Université de Montréal, DIRO, CP 6128, Succ. Centre-Ville, Montréal, Québec,
Canada, {collober,bengioy}@iro.umontreal.ca





IDIAP Research Report 01-12

A Parallel Mixture of SVMs for Very Large
Scale Problems

Ronan Collobert Samy Bengio Yoshua Bengio

April 26, 2002

published in
Neural Computation, vol 14, number 5, 2002

Abstract. Support Vector Machines (SVMs) are currently the state-of-the-art models for many
classi�cation problems but they su�er from the complexity of their training algorithm which is at
least quadratic with respect to the number of examples. Hence, it is hopeless to try to solve real-life
problems having more than a few hundreds of thousands examples with SVMs. The present paper
proposes a new mixture of SVMs that can be easily implemented in parallel and where each SVM
is trained on a small subset of the whole dataset. Experiments on a large benchmark dataset
(Forest) yielded signi�cant time improvement (time complexity appears empirically to locally
grow linearly with the number of examples). In addition, and that is a surprise, a signi�cant
improvement in generalization was observed.



2 IDIAP�RR 01-12

1 Introduction
Recently a lot of work has been done around Support Vector Machines (Vapnik, 1995), mainly due
to their impressive generalization performances on classi�cation problems when compared to other
algorithms such as arti�cial neural networks (Cortes & Vapnik, 1995; Osuna, Freund, & Girosi, 1997).
However, SVMs require to solve a quadratic optimization problem which needs resources that are at
least quadratic on the number of training examples, and it is thus hopeless to try solving problems
having millions of examples using classical SVMs.

In order to overcome this drawback, we propose in this paper to use a mixture of several SVMs,
each of them trained only on a part of the dataset. The idea of an SVM mixture is not new, although
previous attempts such as Kwok's paper on Support Vector Mixtures (Kwok, 1998) did not train
the SVMs on part of the dataset but on the whole dataset and hence could not overcome the time
complexity problem for large datasets. We propose here a simple method to train such a mixture,
and we will show that in practice this method is much faster than training only one SVM, and leads
to results that are at least as good as one SVM. We conjecture that the training time complexity of
the proposed approach with respect to the number of examples is sub-quadratic for large data sets.
Moreover this mixture can be easily parallelized, which could improve again signi�cantly the training
time.

The organization of the paper goes as follows: in the next section, we brie�y introduce the SVM
model for classi�cation. In section 3 we present our mixture of SVMs, followed in section 4 by some
comparisons to related models. In section 5 we show some experimental results, �rst on a toy dataset,
then on a large real-life dataset. A short conclusion then follows.

2 Introduction to Support Vector Machines
Support Vector Machines (SVMs) (Vapnik, 1995) have been applied to many classi�cation problems,
generally yielding good performance compared to other algorithms. The decision function is of the
form

y = sign
(

N∑

i=1

yiαiK(x, xi) + b

)
(1)

where x ∈ Rd is the d-dimensional input vector of a test example, y ∈ {−1, 1} is a class label, xi ∈ Rd

is the input vector for the ith training example, N is the number of training examples, K(x, xi) is
a positive de�nite kernel function, and α = {α1, . . . , αN} and b are the parameters of the model.
Training an SVM consists in �nding α that minimizes the objective function

Q(α) = −
N∑

i=1

αi +
1
2

N∑

i=1

N∑

j=1

αiαjyiyjK(xi, xj) (2)

subject to the constraints
N∑

i=1

αiyi = 0 (3)

and

0 ≤ αi ≤ C ∀i. (4)

The kernel K(x, xi) can have di�erent forms, such as the Radial Basis Function (RBF):

K(xi, xj) = exp
(−‖xi − xj‖2

σ2

)
(5)



IDIAP�RR 01-12 3

with parameter σ.
Therefore, to train an SVM, we need to solve a quadratic optimization problem, where the number

of parameters is N . This makes the use of SVMs for large datasets di�cult: computing K(xi, xj)
for every training pair would require O(N2) computation, and solving may take up to O(N3). Note
however that current state-of-the-art algorithms appear to have training time complexity scaling much
closer to O(N2) than O(N3) (Collobert & Bengio, 2001).

3 Mixtures of SVMs
In this section we introduce a new type of mixture of SVMs. The proposed model should minimize
the following cost function:

C =
N∑

i=1

[
h

(
M∑

m=1

wm(xi)sm(xi)

)
− yi

]2

(6)

where M is the number of experts in the mixture, sm(xi) is the output of the mth expert given input
xi, wm(xi) is the weight for the mth expert given by a �gater� module taking also xi in input, and h
is a transfer function which could be for example the hyperbolic tangent for classi�cation tasks. Here
each expert is an SVM, and we took a neural network for the gater in our experiments.

To train this model, we propose a very simple algorithm:

1. Divide the training set into M random subsets of size near N/M .
2. Train each expert separately over one of these subsets.
3. Keeping the experts �xed, train the gater to minimize the cost (6) on the whole training set.
4. Reconstruct M subsets: for each example (xi, yi),

• sort the experts in descending order according to the values wm(xi),
• assign the example to the �rst expert in the list which has less than (N/M + c) examples1,

in order to ensure a balance between the experts.
5. If a termination criterion is not ful�lled (such as a given number of iterations or a validation

error going up), goto step 2.

Note that step 2 of this algorithm can be easily implemented in parallel as each expert can be trained
separately on a di�erent computer. Note also that step 3 can be an approximate minimization (as
usually done when training neural networks).

4 Related Models
The idea of mixture models is quite old and has given rise to very popular algorithms, such as the
well-known Mixture of Experts (Jacobs, Jordan, Nowlan, & Hinton, 1991) where the cost function is
similar to equation (6) but where the gater and the experts are trained, using gradient descent or
EM, on the whole dataset (and not subsets) and their parameters are trained simultaneously. Hence
such an algorithm is quite demanding in terms of resources when the dataset is large, if training time
scales like O(Np) with p > 1.

In the more recent Support Vector Mixture model (Kwok, 1998), the author shows how to replace
the experts (typically neural networks) by SVMs and gives a learning algorithm for this model. Once
again the resulting mixture is trained jointly on the whole dataset, and hence does not solve the
quadratic barrier when the dataset is large.

In another divide-and-conquer approach (Rida, Labbi, & Pellegrini, 1999), the authors propose to
�rst divide the training set using an unsupervised algorithm to cluster the data (typically a mixture

1where c is a small positive constant



4 IDIAP�RR 01-12

of gaussians), then train an expert (such as an SVM) on each subset of the data corresponding to
a cluster, and �nally recombine the outputs of the experts. Here, the algorithm does indeed train
separatly the experts on small datasets, like the present algorithm, but there is no notion of a loop
reassigning the examples to experts according to the prediction made by the gater of how well each
expert performs on each example. Our experiments suggest that this element is essential to the success
of the algorithm.

5 Experiments
In this section, we present two sets of experiments comparing the new mixture of SVMs to other
machine learning algorithms.

5.1 A Toy Problem
In the �rst series of experiments, We �rst tested the mixture on an arti�cial toy problem where
we generated 10000 training examples and 10000 test examples. The problem had two non linearly
separable classes and had two input dimensions. On Figure 1 we show the decision surfaces obtained
�rst by a linear SVM, then by a gaussian SVM, and �nally by the proposed mixture of SVMs.
Moreover, in the latter, the gater was a simple linear function and there were two linear SVMs in the
mixture. This arti�cial problem thus shows clearly that the algorithm seems to work, and is able to
combine, even linearly, very simple models in order to produce a non-linear decision surface.

−2 −1 0 1 2
−2

−1

0

1

2

(a) Linear SVM
−2 −1 0 1 2

−2

−1

0

1

2

(b) Gaussian SVM
−2 −1 0 1 2

−2

−1

0

1

2

(c) Mixture of two linear SVMs

Figure 1: Comparison of the decision surfaces obtained by (a) a linear SVM, (b) a gaussian SVM, and
(c) a linear mixture of two linear SVMs, on a two-dimensional classi�cation toy problem.

5.2 A Large-Scale Realistic Problem: Forest
For a more realistic problem, we did a series of experiments on part of the UCI Forest dataset2. Since
this is a classi�cation problem with 7 classes, we modi�ed it in a binary classi�cation problem where
the goal was to separate class 2 from the other 6 classes. The dataset had more than 500000 examples
and this enabled us to prepare a series of experiments as follows:

• We kept a test set of 50000 examples to compare the best mixture of SVMs to other learning
algorithms.

• We used a validation set of 10000 examples to select the best mixture of SVMs, varying the
number of experts and the number of hidden units in the gater.

2The Forest dataset is available on the UCI website at the following address:
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/covtype/covtype.info.



IDIAP�RR 01-12 5

• We trained our models on di�erent training sets, using from 100000 to 400000 examples.

• The mixtures had from 10 to 50 expert SVMs with gaussian kernel and the gater was an MLP
with between 25 and 500 hidden units.

Note that since the number of examples was quite large, we selected the internal training parameters
such as the σ of the gaussian kernel of the SVMs or the learning rate of the gater using a held-out
portion of the training set. We compared our models to

• a single MLP, where the number of hidden units was selected by cross-validation between 25
and 250 units,

• a single SVM, where the parameter of the kernel was also selected by cross-validation,

• a mixture of SVMs where the gater was replaced by a constant vector, assigning the same weight
value to every expert.

Table 1 gives the results of a �rst series of experiments with a �xed training set of 100000 examples.
Note that we did not select among the variants of the gated SVM mixture using only performance
over the validation set but also taking into account the time to train the model. The selected model
had 50 experts and a gater with 150 hidden units. A model with 500 hidden units would have given
a performance of 8.1% over the test set but would have taken 621 minutes on one machine (and 388
minutes on 50 machines).

Train Valid Test Time (minutes) Total
Error (%) (1 cpu) (50 cpu) # SV

one MLP 17.56 18.12 18.15 12 100
one SVM 16.03 16.68 16.76 3231 42451
uniform SVM mixture 19.69 19.90 20.31 85 2 52846
gated SVM mixture 5.91 8.90 9.28 237 73 31703

Table 1: Comparison of performance between an MLP (100 hidden units), a single SVM, a uniform
SVM mixture where the gater always output the same value for each expert, and �nally a mixture of
SVMs as proposed in this paper.

As it can be seen, the gated SVM outperformed all models in terms of training, validation, and
test error. It was also much faster, even on one machine, than the SVM and since the mixture could
easily be parallelized (each expert can be trained separately), we also gave the time it took to train
on 50 machines. It is also interesting to note that the total number of support vectors of the gated
SVM was less than the number of support vectors of the SVM. In a �rst attempt to understand these
results, one can at least say that the power of the model does not lie only on the gater, since a single
MLP was pretty bad, it is neither only because we used SVMs, since a single SVM was not as good
as the gated mixture, and it was not only because we divided the problem into many sub-problems
since the uniform mixture also performed badly. It seems to be a combination of all these elements.

We also did a series of experiments in order to see the in�uence of the number of hidden units of the
gater as well as the number of experts in the mixture. Figure 2 shows the validation error of di�erent
mixtures of SVMs, where the number of hidden units varied from 25 to 500 and the number of experts
varied from 10 to 50. There is a clear performance improvement when the number of hidden units is
increased, while the improvement with additional experts exists but is less clear. Note however that
the training time increases also rapidly with the number of hidden units while it slightly decreases
with the number of experts if one uses one computer per expert.

In order to �nd how the algorithm scaled with respect to the number of examples, we then compared
the same mixture of experts (50 experts, 150 hidden units in the gater) on di�erent training set sizes.
Table 3 shows the training time of the mixture of SVMs trained on training sets of sizes from 100000



6 IDIAP�RR 01-12

2550
100

150
200

250

500 10
15

20
25

50
8

10

12

14

Number of experts

Validation error as a function of the number of hidden units
of the gater and the number of experts

Number of hidden
units of the gater

V
al

id
at

io
n 

er
ro

r 
(%

)

Figure 2: Comparison of the validation error of di�erent mixtures of SVMs with various number of
hidden units and experts.

to 400000. It seems that, at least in this range and for this particular dataset, the mixture of SVMs
scales linearly with respect to the number of examples, and not quadratically as a classical SVM. It
is interesting to see for instance that the mixture of SVMs was able to solve a problem of 400000
examples in less than 7 hours (on 50 computers) while it would have taken more than one month to
solve the same problem with a single SVM.

Finally, �gure 4 shows the evolution of the training and validation errors of a mixture of 50 SVMs
gated by an MLP with 150 hidden units, during 5 iterations of the algorithm. This should convince
that the loop of the algorithm is essential to obtain good performance.

6 Conclusion

In this paper we have presented a new algorithm to train a mixture of SVMs that gave very good
results compared to classical SVMs either in terms of training time, generalization performance, or
sparseness. Moreover, the algorithm appears to scale linearly with the number of examples, at least
between 100000 and 400000 examples. Furthermore, the proposed algorithm has also been tested on
another task with a similar number of examples and also yielded performance improvements.

These results are extremely encouraging and suggest that the proposed method could allow training
SVM-like models for very large multi-million data sets in a reasonable time. If training of the neural
network gater with stochastic gradient takes time that grows much less than quadratically, as we
conjecture it to be the case for very large data sets (to reach a �good enough� solution), then the whole
method is clearly sub-quadratic in training time with respect to the number of training examples.



IDIAP�RR 01-12 7

1 1.5 2 2.5 3 3.5 4

x 10
5

50

100

150

200

250

300

350

400

450
Training time as a function of the number of train examples

Number of train examples

T
im

e 
(m

in
)

Figure 3: Comparison of the training time of the same mixture of SVMs (50 experts, 150 hidden units
in the gater) trained on di�erent training set sizes, from 100000 to 400000.

Acknowledgments
RC would like to thank the Swiss National Science Foundation for �nancial support (project FN2100-
061234.00). YB would like to thank the NSERC funding agency and NCM2 network for support.

References
Collobert, R., & Bengio, S. (2001). SVMTorch: Support vector machines for large-scale regression

problems. Journal of Machine Learning Research, 1, 143�160.

Cortes, C., & Vapnik, V. (1995). Support vector networks. Machine Learning, 20, 273�297.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., & Hinton, G. E. (1991). Adaptive mixtures of local
experts. Neural Computation, 3 (1), 79�87.

Kwok, J. T. (1998). Support vector mixture for classi�cation and regression problems. In Proceedings of
the international conference on pattern recognition (icpr) (pp. 255�258). Brisbane, Queensland,
Australia.

Osuna, E., Freund, R., & Girosi, F. (1997). Training support vector machines: an application to face
detection. In Ieee conference on computer vision and pattern recognition (pp. 130�136). San
Juan, Puerto Rico.

Rida, A., Labbi, A., & Pellegrini, C. (1999). Local experts combination trough density decomposition.
In International workshop on ai and statistics (uncertainty'99). Morgan Kaufmann.



8 IDIAP�RR 01-12

1 2 3 4 5
5

6

7

8

9

10

11

12

13

14
Error as a function of the number of training iterations

Number of training iterations

E
rr

or
 (

%
)

Train error
Validation Error

Figure 4: Comparison of the training and validation errors of the mixture of SVMs as a function of
the number of training iterations.

Vapnik, V. N. (1995). The nature of statistical learning theory (second ed.). Springer.


