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Abstract:

 

 This paper presents the theoretical basis and preliminary experimental results of a new HMM model,
referred to as HMM2, which can be considered as a mixture of HMMs. In this new model, the emission probabilities
of the temporal (primary) HMM are estimated through secondary, state specific, HMMs working in the acoustic fea-
ture space. Thus, while the primary HMM is performing the usual time warping and integration, the secondary
HMMs are responsible for extracting/modeling the possible feature dependencies, while performing frequency warp-
ing and integration. Such a model has several potential advantages, such as a more flexible modeling of the time/fre-
quency structure of the speech signal. When working with spectral features, such a system can also perform nonlinear
spectral warping, effectively implementing a form of nonlinear vocal tract normalization. Furthermore, it will be
shown that HMM2 can be used to extract noise robust features, supposed to be related to formant regions, which can
be used as extra features for traditional HMM recognizers to improve their performance. These issues are evaluated in
the present paper, and different experimental results are reported on the Numbers95 database.
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1 INTRODUCTION

 

In state-of-the-art automatic speech recognition (ASR), hidden Markov models (HMMs) are widely used.
While there are many suitable alternatives and design options for some parts of ASR systems such as feature
extraction and phoneme probability estimation, HMMs are the uncontested model for the temporal decoding
stage. The success of HMMs can (at least partly) be contributed to their ability to easily accommodate tempo-
ral variations, such as different durations of phonemes, e.g. due to varying speaking rate or speakers’ accents. 

However, such variations do not only occur along the time axis, but can also be observed in frequency, as
shown in Figure 1. In the spectograms depicting four different pronunciations of phoneme ‘ay’ (including
some context), inter- as well as intra-speaker variability becomes apparent (compare Figure 1a with 1b, and
Figure 1b with 1c respectively). Furthermore, Figure 1d shows the same phoneme pronounced in a different
context, revealing the effects of coarticulation. All sub-figures suggest that the position of spectral peaks may
change significantly in the time-frequency plane during the pronunciation of a phoneme.

When using HMMs, however, it is assumed that speech segments corresponding to one phoneme or sub-
phone unit are (1) invariant enough to be modeled by the same static distribution and (2) stationary for their
duration, which clearly is not the case. In an attempt to relax these rather rigid assumptions, and encouraged
by many more practical motivations (as further elaborated in Section 2.2), we recently proposed the HMM2
approach (Weber, Bengio & Bourlard, 2000). HMM2 can be understood as an HMM mixture consisting of a
primary HMM, modeling the temporal properties of the speech signal, and a secondary HMM, modeling the
speech signal’s frequency properties. A secondary HMM is in fact inserted at the level of each state of the pri-
mary HMM, estimating local emission probabilities of acoustic feature vectors (conventionally done by Gaus-
sian mixture models (GMM) or artificial neural networks (ANN)). Consequently, an acoustic feature vector is
considered as a fixed length sequence of its components, which has supposedly been generated by the second-
ary HMM.

Although HMM2 was developed independently, a similar approach had already been proposed and used
with some success in computer vision (Levin & Pieraccini, 1993; Kuo & Agazzi, 1993; Samaria, 1994; Eick-
eler, Müller & Rigoll, 1999). However, as further discussed below, our approach includes full EM training and
was extended to take care of specificities of the problem at hand.

The purpose of this paper is to revise theoretical and practical aspects of the HMM2 approach with regard
to its application to speech recognition. Firstly, a brief description of HMM2 is given and motivations for
applying it to speech recognition are outlined. This is followed by the HMM2 theory, including training and
decoding, as well as some notes on its practical implementation. A thorough analysis of HMM2, its possible
drawbacks and constraints is then given. Finally, the applications of HMM2 in the domain of speech, namely
as a speech decoder and feature extractor, are investigated. Encouraging results for all these cases are given.

Figure 1: Spectograms of different pronunciations of the phoneme ‘ay’ by different speakers
and in different contexts. Dark regions correspond to high, light regions to low energy
spectral components. The vertical axis is the frequency, the horizontal one the time evolution. 

(a) Speaker 1: ‘five’ (b) Speaker 2: ‘five’
(1st occurrence)

(c) Speaker 2: ‘five’
(2nd occurrence)

(d) Speaker 2: ‘nine’
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2 HMM2 DESCRIPTION AND MOTIVATIONS

 

2.1 Description

 

HMMs are quite powerful statistical models which are used to represent sequential data, e.g. a sequence of 
acoustic vectors  in speech recognition (as shown in the upper part of Figure 2).
As each acoustic vector can itself be considered as a fixed length sequence of its  components

, another HMM can be used to model this feature sequence
(displayed in the lower part of the figure). By ‘component’ we mean a subvector of low dimension. For
instance, a temporal feature vector of dimension S is split up into S 1-dimensional subvectors. For the sake of
simplicity, this case is assumed for all theoretical derivations throughout this paper. However, the extension of
this case to higher-dimensional subvectors (consisting, e.g., of a coefficient and its first and second time deriv-
atives) is straightforward, and was in fact used for the practical experiments. 

While the primary HMM models temporal properties of the speech signal, the secondary, state-dependent
HMM is working along the frequency dimension. The secondary HMM is in fact acting as a likelihood estima-
tor for the primary HMM, a function which is accomplished by GMMs or ANNs in conventional systems.
However, the state emission distributions of the secondary HMM are again modeled by GMMs. Consequently,
HMM2 is a generalization of the standard HMM/GMM system, which it includes as a particular case. In fact,
a standard HMM can be realized with HMM2 by choosing a particular topology, e.g. the secondary HMM
consists just of one state and emits the entire temporal feature vector at once. An alternative way of realizing a
conventional HMM within the HMM2 framework is described in (Weber, Bengio & Bourlard, 2001). The
parameters of an HMM2 are the primary transition probabilities , the secondary transition proba-
bilities , and the emission probabilities .

T
y1
T y1 y2 … yt … yT, , , , ,{ }=

yt S
yt yt 1 S,( ) yt 1( ) yt 2( ) … yt s( ) … yt S( ), , , , ,{ }==

P qt qt 1–( )
P rs rs 1– q, t( ) p yt s( ) rs qt,( )

Figure 2: HMM2 system. In the upper part, a conventional HMM, working along the
temporal axis, can be seen. The local emission probability calculation is done with a
secondary HMM, working along the frequency axis (depicted in the lower part of the figure).

primary state j primary state i 

y1 yt yt-1 yT 

yt 

yt(s-1) 
yt(s) 

yt(1) 

yt(S) 

}
}
}
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P(qt=i | qt-1=j)

p(yt(s) | rs=l,qt=i)

secondary
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secondary 
state l
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2.2 Motivations

 

a) Better and more flexible modeling

 

HMMs assume piecewise stationarity of the speech signal and have difficulty in modeling the dynamic proper-
ties along the feature (frequency) dimension. Using a secondary HMM for the local likelihood estimation,
these assumptions are relaxed, as a more flexible modeling of the variability and dynamics inherent in the
speech signal is allowed. For instance, a spectral peak could be modeled by a single state of the secondary
HMM, even though its position on the frequency axis is quite variable (as seen in Figure 1). Such a sparse sec-
ondary HMM topology also allows for efficient parameter sharing. The number of parameters can be easily
controlled by the model topology and the probability density function associated with the secondary HMM
states. 

 

b) Modeling of correlation through secondary HMM topology

 

Under the typical HMM assumptions, correlation between feature vector components is not ignored, but sup-
posed to be modeled through the topology of the secondary HMM. Thereby, correlation of close feature vector
components is emphasized in comparison to distant correlation, which corresponds to the properties of data
we aim to model. In fact, HMM2 could allow a sophisticated modeling of the underlying time-frequency
structures of the speech signal and model complex constraints in both the temporal and the frequency dimen-
sions. In the same spirit, it was proposed in (Bilmes, 1999) to model time/frequency correlation in the frame-
work of buried Markov models by using Bayesian networks to compute emission probabilities, where the
connectivity of the Bayesian network was determined by the degree of mutual information between coeffi-
cients.

 

c) Non-linear, state dependent spectral warping

 

The secondary HMM automatically performs a non-linear, state dependent spectral warping. While the con-
ventional HMM does time warping and time integration, the secondary HMM performs warping and integra-
tion along the frequency axis. This frequency warping has the effect of automatic non-linear vocal tract
normalization, providing a kind of unsupervised and implicit speaker adaptation (therefore tackling the prob-
lem of inter-speaker variations). Applying HMM2 in this field is also encouraged by the work of Lee & Rose
(1998), who use a related frequency warping approach to speaker normalization. With the same mechanism,
intra-speaker variations as well as coarticulation effects are also taken care of. 

Furthermore, it can be expected that HMM2 will perform a dynamic formant trajectories tracking. As a
spectral peak (formant) can be modeled by an HMM state and a spectral valley by another, the segmentation
performed by the secondary HMM may be a good indicator for the position of a formant. Formants are
assumed to carry discriminant information in the speech signal, moreover being especially robust in the case
of degraded speech (Garner & Holmes, 1998, Welling & Ney, 1998).

 

d) Extension of multi-band processing

 

Currently, much research in speech recognition is being devoted to multi-band speech recognition (Morris,
Hagen, Glotin & Bourlard, 2001). In this case, the full frequency band is split into multiple subbands which
are processed independently (to a certain extent) by different classifiers before recombining the resulting prob-
abilities to yield the fullband phonetic probabilities. More recently, this multi-band ASR approach was
extended by using the so called ‘full combination approach’ in which subband probability combination is per-
formed by integrating over all possible reliable subband combinations. HMM2 can be seen as a further exten-
sion to this approach. Indeed, all possible paths through the secondary HMM will correspond to different
subband segmentations and recombinations. The frequency position of the subbands is then automatically
adapted to the data, following for example formant-like structures.
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3 HMM2 THEORY AND IMPLEMENTATION

 

This section gives a detailed description of the HMM2 approach, including training, decoding and implemen-
tation. As stated before, although HMM2 was proposed independently and with an entirely different motiva-
tion, it is related to similar approaches used previously for computer vision, such as Planar HMMs (Levin &
Pieraccini, 1993) and Pseudo 2D HMMs (Kuo & Agazzi, 1993; Samaria, 1994; Eickeler, Müller & Rigoll,
1999). However, while these models are trained using either a planar segmentation algorithm based on Viterbi
(Levin & Pieraccini, 1993), a segmental k-means algorithm (Kuo & Agazzi, 1993), or (after the two-dimen-
sional model has been converted to a similar one-dimensional HMM) with conventional EM training
(Samaria, 1994; Eickeler, Müller & Rigoll, 1999), we here develop an EM algorithm which is especially
adapted to HMM2.

 

3.1 Notation

 

Basic notations used throughout this paper are explained in Figure 2, with the following definitions:

•  the observed vector at time step , and  its observed component at frequency step 

 

,

 

•  the primary HMM state at time , where 

 

 

 

is the set of all possible paths through the primary
HMM, and  the secondary state associated with primary state  at frequency step , where

 

 

 

is the set of all possible paths through the secondary HMMs,

•  the emission probability in the primary HMM, where the instantiation  is the
probability to emit  in state , and  the emission probability in the secondary HMM,
where the instantiation  is the probability to emit component  in secondary
state  of primary state ,

•  the initial state probability of the primary HMM, and  the initial state probability of the
secondary HMM in primary HMM state ,

•  the state transition probabilities in the primary HMM, where the instantiation
 is the probability to go from primary state  at time  to state  at time , and

 the state transition probabilities in the secondary HMM in primary state , where the
instantiation  is the probability to go from secondary state  at the fre-
quency step  to secondary state  at frequency step  while in primary state  at time ,

•  the number of states in the primary HMM, and  the number of states of the secondary HMM in
the primary HMM state ,

•  the size of the sequence , and  the size of the sequence of components

 

.

 

The likelihood of the data sequence  given the model parameters  at training step  is then

. (1)

 

3.2  Training

 

Since an HMM is a special kind of mixture of distributions, an HMM2, being a mixture of HMMs, can there-
fore also be considered as a more general mixture of distributions. It should hence be natural that an Expecta-
tion-Maximization (EM) algorithm could be derived when the emission and transition probabilities of the
secondary (feature-based) HMMs are represented by mixtures of Gaussians and multinomials respectively. In
this section, a sketch of such a derivation is given, which is detailed in (Bengio, Bourlard & Weber, 2000).

The general idea of EM is to select a set of hidden variables such that the knowledge of these variables would
simplify the learning problem. Hence, in the estimation step, the value of the hidden variables is estimated,

yt t yt s( ) s

qt t Q
rs qt( ) qt s

R Q( )

p yt qt( ) p yt qt i=( )
yt i p yt s( ) rs qt,( )

p yt s( ) rs l= qt i=,( ) yt s( )
l i

P q0( ) P r0 qt( )
qt

P qt qt 1–( )
P qt i= qt 1– j=( ) j t 1– i t
P rs rs 1– q, t( ) qt

P rs l= rs 1– m= q, t i=( ) m
s 1– l s i t

N N i

i

T yT
1

y1 y2 … yT, , ,{ }= S
yt 1 S,( ) yt 1( ) yt 2( ) … yt S( ), , ,{ }=

Y θ k

L Y θ( ) p yT
1

θk 
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while in the maximization step, the expectation of the log likelihood of the observations and the hidden vari-
ables is maximized, given the previous values of the parameters. This two-step process is repeated iteratively
and is proved to converge to a local optimum of the likelihood of the observation (Dempster, Laird & Rubin,
1977).

In the case of HMM2, two sets of indicator variables  and  are defined such that
 is defined to be 1 when  and 0 otherwise, and  is defined to be 1 when  and ,

and 0 otherwise. The joint likelihood of the observations and the hidden variables is then defined as:

(2)

which has the same form as the joint likelihood in standard HMMs, where the emission probability is
expressed as:

(3)

Having stated the problem, it is straightforward to derive both the E-step and the M-step of EM, which are
very similar to the general EM formulation for HMMs. During the E-step, the expected value of the following
variables are estimated:

(4)

(5)

(6)

(7)

given the model parameters  at the -th EM iteration. 

Finally, during the M-step, the values of the parameters  that maximize the expectation of
 are found. The final HMM2 update equations are similar to the update equations used in

normal HMMs except that all the posteriors computed in the secondary HMM are weighted by the posterior
probability of being in the given state of the primary HMM. For instance, if the emission probability of pri-
mary state  and secondary state  is defined as a diagonal Gaussian with mean  and standard deviation

, the update equations are:

(8)

and

. (9)

Z zi t,{ }= W w i t l s,( ),{ }=
zi t, qt i= w i t l,( ), qt i= rs l=

L Y Q R Q( ), ,( ) P q0( ) p yt qt i=( )
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N

∏
i 1=

N

∏
t 1=
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∏=
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3.3  Decoding

The aim of HMM decoding is to find the sequence of HMM states which best explains the input data, while at
the same time taking account of phonological, lexical and syntactical constraints. Therefore, under the typical
HMM assumptions (i.e. piecewise stationarity and data independence), the recognized word sequence is
defined by the path  (from the set of all possible paths ) which maximizes the joint likelihood of the data
and the hidden variables, given the model parameters:

. (10)

The likelihood of an acoustic feature vector (i.e., a sequence of its components) given the primary HMM state
 may be calculated in two different ways:

(11)

or, using the Viterbi approximation: 

(12)

where  is the set of all possible paths through the model. Naturally, every term of this equation is condi-
tioned on the state of the primary HMM. As GMMs with diagonal covariance matrices are used for the likeli-
hood estimation in the states of the secondary HMM, the corresponding local probability density functions
(PDF) are defined as follows:

 (13)

where G is the number of Gaussian mixtures.

3.4 Implementation

There are different ways to implement HMM2 systems. A straightforward realization is based on the imple-
mentation of a generalized form of the standard EM algorithm, as described in the previous section. A second
way is to unfold the HMM2 (which, as previously stated, is a kind of HMM mixture) into one large HMM, as
described before in (Samaria, 1994; Eickeler, Müller & Rigoll, 1999; Weber, Bengio & Bourlard, 2001a). For
this implementation, synchronization constraints have to be introduced to ensure that exactly one feature vec-
tor is emitted between each two transitions in the primary HMM. Standard EM training algorithms can be used
to implement this unfolded HMM2, and Viterbi decoding has to be used at the level of both the primary and
the secondary HMM.

4 ANALYSIS
Hidden Markov models are a generalization of Gaussian mixture models (suitable for sequential data). Given a
sufficiently large number of appropriately chosen parameters, these mixture models can approximate any con-
tinuous density to arbitrary accuracy (Bishop, 1995). Practically, however, there are limitations. The number of
parameters in a mixture model has to be small enough to be reliably estimated from the given amount of train-
ing data. Furthermore, for the case of sequential data modeled by an HMM, there are additional assumptions,
notably that of data independence (conditioned on the state) and of piecewise stationarity (Rabiner & Juang,
1993). Moreover, there may be constraints imposed by the HMM topology.
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Naturally, in the case of HMM2, these assumptions and con-
straints not only apply to the primary, but also to the secondary
HMM. As is generally the case for a temporal sequence of
speech data, the assumptions of conditional data independence
and of piecewise stationarity are also not entirely satisfied for the
HMM2 feature vector sequence, which may result in a mismatch
between the data and the model’s capacity for data representation
and discrimination (Weber, Bengio & Bourlard, 2001a). In the
following, the implications of the stationarity assumption and of
the topology chosen for the secondary HMM are investigated.

Figure 3 shows an energy spectrum of phoneme ‘ay’.
Although the assumption of piecewise stationarity is not entirely
correct, it is possible to segment this representation along the
(horizontal) frequency axis into a few quasi-stationary sectors,
which could subsequently be represented by the same PDF. Con-
sequently, several frequency components could be modeled by
one secondary HMM state.

The secondary HMM may take any topology, the most gen-
eral being ergodic. However, in this paper, the topology of the
secondary HMM is chosen to be strictly top-down and to have fewer states than there are components in one
temporal feature vector (as also seen in Figure 2). Therefore, each secondary HMM2 state is expected to emit
a number of adjacent components, i.e. all components belonging to a certain frequency band. The number of
secondary HMM states determines the number of frequency bands into which the spectrum is decomposed.
The cut-off frequencies and bandwidths of these frequency bands will be dynamically determined, given the
data and the model parameters, during training and decoding.

It is known that HMMs cannot provide good duration modeling. This disadvantage applies similarly to the
modeling of bandwidth (and subsequently frequency positions) in the secondary HMM. However, as fre-
quency positions of different spectral regions (especially formants) represent important discriminant acoustic
cues, it has to be ensured that HMM2 takes them into account in an appropriate way. This problem can be
resolved with an additional coefficient of the feature vector, which indicates the frequency position of its
respective component, as shown in Figure 4a (Weber, Bengio & Bourlard, 2001b). This has the effect of forc-
ing the Viterbi algorithm to take the frequency position of each feature vector into account during the fre-
quency segmentation. 

As an example, Figure 4 illustrates the typical spectral shape of two vowel classes α and β, both consisting
of 2 alternating spectral peaks (H) and valleys (L), resulting in the overall structure HLHL. These classes can
be distinguished only by the position of the spectral peaks and valleys, and it is known that these positions are
indeed the most important perceptual cues. Using HMM2 without frequency coefficients, the only way of
modeling the differences between α and β is by the transition probabilities, which, as stated previously, do not
have much influence. The two classes are therefore easily confusable. When introducing the frequency coeffi-
cients, the Viterbi segmentation of a feature vector is in some way constrained and discriminability will be
maintained. In fact, the frequency coefficient is handled in the same way as the other coefficients in a feature
vector, i.e. it is modeled by the GMM. The Gaussian mean will correspond to the mean frequency of the mod-
eled frequency band, and the variance should be an indicator of the bandwidth.

While the idea of using an additional frequency coefficient may seem surprising, it is justified in the fre-
quency warping performed by HMM2. Improved recognition results confirm the suitability of this idea
(Weber, Bengio & Bourlard, 2001b). Naturally, in standard HMMs this frequency coefficient does not give any
additional information, as the frequency position of each coefficient is known. 

1 2 3 4 5 6 7 8 9 10 11
−2

−1

0

1

2

3

4

Figure 3: Energy spectrum of a
pronunciation of phoneme ‘ay’. Each line
in the figure corresponds to one time step,
and thus to one feature vector (the thick
black line is the mean). 
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To investigate the meaning of such frequency information, an HMM2 system was trained, using secondary
feature vectors augmented by the frequency index. In Figure 5, the corresponding Gaussian means are shown
for different phonemes of the database (for comparison, those occurring in Figure 8 were chosen). It can be
seen that these parameters vary across phonemes, and that, for a given phoneme, they may also vary in time.

Figure 4: The frequency index: In (a), data assumed to be typical of the classes α
and β are visualized by a black and a gray curve respectively. On the right, feature
vectors (corresponding to the class α curve) as used in the secondary HMM
composed of coefficients cs, their delta ds and acceleration coefficients as, as well
as the frequency coefficient fs, are shown. In (b), an example frequency
segmentation is shown for each class. (c) shows a structure of an HMM with
alternating H and L states, which is able to model both classes. With an additional
trained frequency coefficient (as shown in (d)), discriminability can be ensured.

  f1   f2   f3   f4   ...                                           fS

H    H   H    L    L    L     H   H    H    L    L    L
H    H   H    H    L    L     L   L    H    H    H    L

H L H L

class α class β

example frequency segmentations:
      class α:
      class β:

 2                5               8              11
2.5             6.5            10             12 

mean of trained frequency indices of the 4 states:
                     class α:
                     class β:

(a)

(b)

(c)

(d)

Energy
c1
c2

c3

c4

Frequency

c1

c2

cS

d1

d2

dS

a1

a2

aS

: : :

 f1

 f2

 fS

:

1

2

3

4

5

6

7

8

9

10

11

Figure 5: Trained HMM2 parameters for different phonemes. In each column, the means of
the frequency indices of the 4 secondary HMM states belonging to the same temporal state
are visualized. Vertical bars show the respective variances. The 3 columns belonging to a
phoneme correspond to the 3 temporal states. 

 ah n  th  r iyw
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The corresponding variances are also visualized in the figure. While the trained means of the frequency index
provide information about the position of the frequency bands modeled by the corresponding states, the vari-
ances model the respective bandwidths. The figure confirms that some general structural information of the
phonemes is modeled, which is likely to be realteed to formant regions.

5 APPLICATIONS AND RESULTS
In the previous sections, it already has become apparent that HMM2 is not only limited in application to
speech recognition decoding. It can also be used as feature extractor, e.g. to extract formant related regions.
Although it has been shown in (Weber, de Wet, Cranen, Boves, Bengio & Bourlard, 2002) that, in the current
HMM2 implementation, there is no one-to-one correspondence to formant positions, it is however clear that
the resulting features are extracted in a principled way, optimizing a maximum likelihood criterion. The
HMM2 applications are visualized in Figure 6.

Supposing that HMM2 does indeed segment the speech signal into formant-like regions, and given the fact
that formants show a high robustness to noise, the HMM2 approach seems particularly promising for the rec-
ognition of degraded speech. The following gives a brief outline of the basic experimental setup, and then
describes the proposed HMM2 applications, including speech recognition results in clean and noisy conditions
where appropriate.

5.1 Experimental Setup

Experiments were carried out on the OGI Numbers95 corpus (Cole, Noel, Lander & Durham, 1995), on clean
speech and on speech corrupted with 3 kinds of additive noises at 4 different signal-to-noise ratios (SNR). The
noises were partly drawn from the Noisex database (Varga, Steeneken, Tomlinson & Jones, 1992), and partly
provided by DaimlerChrysler in the framework of the SPHEAR project (SPHEAR). For the motivations
described in Section 2.2, it is preferable to use features in the spectral domain. Frequency filtered filterbanks
(FF2, see (Nadeau, 1999)) were chosen as they are lowly correlated spectral features which offer an acceptable
baseline performance for clean speech. Twelve normalized FF2 coefficients (including one energy coefficient)
were used. The 4-dimensional feature vectors consisted of a coefficient, its first and second order time deriva-
tives and its frequency coefficient (here indices from 1 to 12). The HMM2 was implemented with HTK
(Young, Odell, Ollason, Valtchev & Woodland, 1995). Eighty triphones model were used, each consisting of 3
temporal states. All secondary HMMs had 4 states connected in a looped top-down topology, similar to that in
Figure 2. However, to take care of the energy, an additional state (without loops) was introduced as first state
of each secondary HMM. There were 10 Gaussian mixtures in each secondary HMM state. This system was
trained globally, on clean speech only, using the EM algorithm, and Viterbi-based recognition was performed
under varying conditions (clean and all noises).

Figure 6: HMM2 system used
directly for speech recognition (a),
and for features extraction (b). For
(b), a second recognition pass, using
a conventional HMM, is performed.

Viterbi

(a) 

(b)

conven-
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5.2 HMM2 used as a Decoder

To realistically compare the performance of the HMM2 system (variant (a) in Figure 6) to that of a conven-
tional HMM, tests were performed on both models given the same features (i.e., spectral FF2). Figure 7 shows
results for one noise condition, with error bars indicating the 95% confidence interval. It can be seen that the
differences in the performance of these 2 models are statistically significant. While HMM2 is not competitive
with conventional HMMs in clean conditions or noisy speech with a high SNR, for heavily degraded noise it
easily outperforms the conventional HMMs. In fact, HMM2 is better able to handle the mismatch between
training and testing conditions (as training was done on clean speech only). This was confirmed on all other
tested noise conditions. However, the obtained results (for both HMM and HMM2 with FF2 features) are not
competitive with the state-of-the-art performance (obtained with conventional HMMs, but employing as fea-
tures mel-frequency cepstral coefficients, including spectral subtraction and cepstral mean subtraction). In
fact, the performance is limited due to the choice of features in the spectral domain, which were not found to
be competitive with cepstral features. To further improve HMM2 performance and to evaluate whether HMM2
really has advantages over the usual HMM (using MFCCs) in adverse conditions, more research is required in
the area of the robust extraction of spectral features. 

5.3 HMM2 used as a Feature Extractor 

One of the motivations for HMM2 is its ability to extract structural information of the speech signal, possibly
corresponding to formant regions. Consequently, HMM2 could be used as a formant tracker. Although the
interpretation of the segmentation of the full HMM2 as formant-like regions may not always be fully justified
(as seen later), this application is motivated by HMM2 being a tool which integrates a speech decoder and a
formant tracker in a unique model. This is supported by the assumption of Holmes (2000) that the “analysis of
formants separately from hypotheses about what is being said will always be prone to errors”. 

The segmentation between secondary HMM states, produced as a by-product of the Viterbi algorithm, can
be interpreted as a separator between regions of different energy levels in the spectogram (just as the temporal
segmentation separates phonetic units). If a distinct high energy region is surrounded by low energy along the
frequency dimension, it may be assumed to correspond to a formant. Therefore, the HMM2 frequency seg-
mentation could correspond to formant-like structures.

A first experiment was carried out using an HMM2 with shared parameters for all primary HMM states
(i.e., the secondary HMM was the same for all phonetic units, trained on all data regardless of the labeling). In
this case, no frequency index was appended to the secondary feature vectors. The frequency segmentation for
an example speech unit is shown in Figure 8a. It can be seen that the 3rd secondary HMM state models a high
energy region. However, in the case of less distinct or absent formants (as for the case of unvoiced phonemes),
irregularities and discontinuities can be observed.
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Figure 7: HMM vs. HMM2
performance for frequency filtered
filterbank features, illustrated by the
dotted and solid lines respectively.
Errorbars for HMM WER show the
95% confidence intervals. The results
are for clean speech and car noise at
different SNR.

HMM

HMM2

SNRclean        18             12             6               0

WER
    60

    50

    40

    30

    20

   10



IDIAP RR 01-42 11

When using a full HMM2 with class-dependent secondary HMMs and including the frequency index in the
feature vector (as described in Section 5.1), the segmentation is smoother (see Figure 8b). However, high and
low energy regions are not necessarily modelled by equivalent secondary HMM states (e.g., the third second-
ary HMM state may model a high energy region for one phoneme and a low energy region for another). Nev-
ertheless, a certain structure of the speech signal becomes apparent from the segmentation. Furthermore, for
the case of noisy speech, it has been shown that the HMM2 features exhibit a comparatively high robustness:
the separation into regions of different energy levels is largely maintained.

Based on the above, HMM2 can be used as a feature extractor. This application is motivated by (1) the
assumption that HMM2 extracts formant-like structures and (2) the discriminant properties of formant posi-
tions, and thus their usefulness as features for ASR. However, the formant-like features extracted by HMM2
are rather crude: they typically correspond to the frequency index of the secondary feature vector after which a
transition from one secondary HMM state to the next occurred. Four secondary HMM states are used here for
each phoneme, and a feature vector of 3 components is obtained, e.g. [3 7 9].

The features extracted by the simplified HMM2 (sharing parameters for all primary states) and the full
HMM2 were tested. Word error rates (WER) of 37.0% and 18.6% respectively were achieved. From these
results, it also appears that the smoother segmentation obtained from the full HMM2 contains more discrimi-
nant information. In addition to using the full HMM2 frequency segmentation as new features, the temporal
segmentation was converted into a time index. Using the augmented 4-dimensional feature vectors, the WER
could further be decreased to 15.0%. We consider this a good result given the low dimension and the crudeness

Figure 8: Segmentations obtained (on unseen data) from (a) a single secondary HMM and
(b) a full HMM2 system. In both figures, the horizontal lines correspond to the frequency
segmentation. In (b), the vertical lines show the temporal segmentation obtained from the
full HMM2 system, where phoneme boundaries are displayed as thick lines, and transitions
between temporal states of the same phonemes as thin ones. 
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of the feature vectors. However, before drawing any conclusions, further comparisons should be performed
with other low-dimensional features, such as MFCCs projected down with linear discriminant analysis, and
other formant-like features or even hand-labeled formants. Positive results in that sense were recently obtained
on a different database and are reported in (Weber, de Wet, Cranen, Boves, Bengio & Bourlard, 2002).

When either of the different segmentation features (of the simplified or full HMM2) are combined in a
multi-stream approach (at the level of the local likelihoods) with noise-robust MFCCs (already including spec-
tral subtraction (SS) and cepstral mean subtraction), an improved robustness in noisy speech was observed, as
shown in Table 1. Although equally good results might be obtained when using additional features other than
those extracted with HMM2, it can be stated that a widely employed state-of-the-art noise-robust ASR system
could be significantly improved (with more than 98% confidence).

6 CONCLUSION
This paper has presented the motivations and foundations underlying the use of HMM2, a particular form of
HMM in which emission probabilities are estimated through secondary, state-dependent, HMMs working
along the acoustic feature dimension. It was shown that the parameters of this new model can also be trained
using the Expectation-Maximization (EM) algorithm.

Including standard multi-Gaussian HMMs as a particular case, HMM2 provides additional modeling capa-
bilities, allowing a principled approach towards flexible modeling of the time/frequency structure of speech
through warping along the temporal and frequency dimensions. In particular, this paper has investigated the
frequency warping aspect of HMM2. It was shown that, working in the spectral domain, HMM2 was able to
automatically extract pertinent state/phone-specific formant-like structures during training and recognition. In
fact, these formant-like structures can be used as low-dimensional features, which were shown to yield impres-
sive speech recognition results. Furthermore, when using these features in conjunction with noise-robust
MFCCs in standard speech recognition systems, an improved noise robustness was observed. Finally, HMM2
was also used directly as a decoder, achieving a good (although not yet fully competitive) recognition perfor-
mance. These results indicate the advantages of HMM2 as an acoustic model, motivating research towards, for
example, non-linear vocal tract normalization, new sub-band speech recognition approaches, and improved
noise robustness.
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SNR HMM2
features

MFCC-SS MFCC-SS +
HMM2
features

clean 15.0 5.7 5.7
18 16.1 6.7 6.6
12 20.4 9.3 9.0
6 32.8 16.7 16.1
0 56.0 35.4 34.3

Table 1: Performance of MFCC-SS and full HMM2
features, and their multi-stream combination: WER
on Numbers95 at different signal-to-noise ratios:
means over 3 different noise types.
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