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Abstract. This paper proposes the use of Gaussian Mixture Models to estimate conditional
probability density functions in an environmental risk mapping context. A conditional Gaussian
Mixture Model has been compared to the geostatistical method of Sequential Gaussian Simulations
and shows good performances in reconstructing local PDF. The data sets used for this comparison
are parts of the digital elevation model of Switzerland.
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1 Introduction
Environmental survey needs very reliable tools in order to facilitate decision making. An important
category of these tools is called �Risk Maps�. It consists of drawing various kinds of probability maps,
such as �indicator maps� (probability of exceeding a threshold), the �value at risk� (quantile map),
etc.

These problems can be solved using classical regression models such as K-Nearest Neighbors, In-
verse Distance, Indicator Kriging, Arti�cial Neural Networks, etc. However, it is known that regression
models based on minimization of the expected error have a smoothing e�ect and do not recover the
variability of data. In the case of risk mapping, this smoothing e�ect is not acceptable as we are
especially interested in unusual events, i.e. events that are not necessarily extreme but often far from
the mean value. It is thus necessary to develop alternate prediction methods which could concentrate
on reconstructing not only the mean but also the variability and eventually the whole distribution of
the data.

In Geostatistics, Stochastic Simulations [5] were developed to solve these particular problems.
However, these methods have some drawbacks. The modelization process is usually very complicated
and necessitates a strong expert knowledge; they are often based on some assumptions about data
distribution (stationarity, normality, . . . ); they do not provide any analytical model of the local
distribution of a sample point which could be reused for other tasks.

In this paper, we propose a method that can estimate the local probability density function (PDF)
for each data point, without making any assumption on the distribution of the data. It is based on the
use of Gaussian Mixture Models (GMM) for conditional density estimation, by conditioning a global
PDF model on the sample location.

To evaluate the relative performance of this method, we compare it to the well-known Geostatistical
method of Sequential Gaussian Simulations (SGS).

In the following, we �rst present the principles of conditional GMM and SGS algorithms. We
then describe the methodology used to build, use and compare the models during the experiments.
Finally, we present the experiments themselves, the results and some conclusions on the e�ciency of
conditional GMM for local PDF estimation.

2 Algorithms Description
2.1 Gaussian Mixture Models
Gaussian Mixture Models have the property of being able to represent any distribution as long as the
number of Gaussians in the mixture is large enough. The PDF of a vector v can be modeled as:

p(v) =
n∑

i=1

wi · N (v, µi,Σi) (1)

where wi, µi and Σi are respectively the weight, the mean vector and the covariance matrix of the ith

of the n Gaussians of the model. All wi are positive and sum to 1.
In the present study, we are interested in modeling the distribution p(y|x) of a variable y given its

position x. An interesting solution is to use a neural network with inputs x and which outputs the
parameters of a mixture of Gaussians on y, the whole thing being optimized by gradient ascent [6][1].
However such solution, while appealing, often does not work in practice as it su�ers from initialization
problems: if the Gaussians are not properly initialized, the learning algorithm is often stuck in poor
local optima, and with such solution, we only control the parameters of the neural network. Hence,
an other solution is to use the de�nition:

p(y|x) =
p(y,x)
p(x)

. (2)
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The method developped for these experiments was found to be similar to the Distorted Probability
Mixture Network described in [6]. The idea is to use the property of diagonal GMM 1 allowing to
write:

p(y,x) =
n∑

i=1

wiN (y, µyi, σyi)N (x, µxi, Σxi). (3)

It is then possible to derive p(x) from this model, simply by �removing� the contribution of y to the
model. The expression p(y|x) then becomes:

p(y|x) =
n∑

i=1

Wi(x)N (y, µyi, σyi) (4)

with:
Wi(x) =

wiN (x, µxi,Σxi)∑n
j=1 wjN (x, µxj , Σxj)

. (5)

2.2 Sequential Gaussian Simulations
The idea of stochastic simulations is to develop a spatial Monte Carlo generator that will be able to
generate many, and in some sense equally probable, realizations of a random function (in general,
described by a joint probability density function).

Simulations di�er from regression models as reconstruction of the histogram and of the spatial
variability of original data takes precedence over local accuracy.

In the present study, SGS were applied. This method consists of generating values corresponding
to given spatial locations, using a modelization of the spatial correlation (also called variogram model
in Geostatistics) of a normally distributed known data set. The experimental variogram γ is �rst
constructed using the formula:

γ(h) =
1

2N(h)

N(h)∑

i=1

(y(x)− y(x + h))2 (6)

where h is the vector of the direction in which the correlation is measured, and N(h) is the number
of pairs of points (x1,x2) such that −→

x1x2= h. h usually has a user-de�ned tolerance in norm and
direction. If its direction tolerance is 90◦, the variogram is omni-directional. Given this experimental
variogram, which is of course not a continuous function, we still need to model it using various
continuous functions. One of the most commonly used is the spherical model, whose formula for a
�xed direction of h is:

γ̂(h) =
{

3h
2a − 1

2

(
h
a

)3
0 ≤ h ≤ a

1 h > a

where h is the norm of the vector h, and a is called the �range� of the variogram in the studied
direction, i.e. the distance beyond which there is no more spatial correlation (in case of stationary
data).

The variogram model is then used to compute the weights of a linear regression method called
Kriging [2] (similar to Gaussian Processes [7]) which is the best linear unbiased estimator. It allows
not only to estimate the value of new datum but also to compute the variance of this estimation.

Each simulated value is then generated from a normal distribution whose mean and variance are
computed by applying Kriging on the neighboring (original and previously simulated) data points,
based on the global variogram model.

1i.e. a GMM where the covariance matrix of each Gaussian is diagonal. Hence, for each Gaussian: p(v) =
∏

i
p(vi)
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3 Methodology
In the experiments presented in this paper, the data set is segmented into three parts. The �rst part
is the training set, de�ned as

Y = (xi, yi), ∀i = 1, . . . , N (7)

where x is the input vector (which represents the coordinates of the sample on a map), and y is the
scalar output (studied value). The second part is the testing set, de�ned as

V = (ui, vi), ∀i = 1, . . . , M (8)

where u is the input vector, and the output v is hidden to the models. The third part, which contains
at least ten times more points than the training and testing sets, is called reference set. It will be
used to compute the reference cumulative distribution of each point of the testing set.

The training set is used to tune the model's parameters and hyper-parameters as it will be explained
for each method in the following subsections.

The tuned models are then used to build a cumulative distribution function for each point of the
testing set. These cumulative distributions are then compared to those based on the reference set2.
The quantitative performance of the models is evaluated on this last comparison.

3.1 GMM Experimental Protocol
In order to train a conditional GMM, one �rst need to select some hyper-parameters, such as the
number of Gaussians, the relative variance lower bound in each dimension, and the Dirichlet prior on
the weights of each Gaussians.

The initial position of the Gaussians must also be chosen. After several empirical experiments,
we decided to initialize the GMM with one Gaussian per training point. The mean vector of each
Gaussian was initially set to the position of the associated training point in the input space. Afterward,
the GMM was trained using the Expectation-Maximization (EM) algorithm [3]. At the end of the
training procedure, the Gaussians which were not contributing to the model (i.e. whose weights were
close to 0) were removed.

The choice of the other hyper-parameters is done by k-fold cross-validation. Various criteria,
measured on validation data, were tested to select e�ciently the optimal set of hyper-parameters,
such as the maximization of the likelihood, the lowest prediction error and the best reconstruction of
centered moments. Finally, maximization of likelihood appeared to be the most e�cient criterion.

3.2 SGS Experimental Protocol
SGS can only be used on normally distributed data. As a consequence, if this is not the case for
original data, a Normal Score transformation[5] is needed. This transformation consists of the function
NS : FY → N (0, 1), where FY(y) is the cumulative distribution function of y in Y. The crucial part
is then to model the spatial correlation (i.e. the variogram). It can be di�cult (or even impossible)
to �t the variogram's shape with an appropriate model, depending on the studied phenomenon, the
spatial repartition of data, the number of points, etc. In the present experiments, variograms were
modeled using the classical spherical model presented before.

A simulation procedure starts by de�ning a random path visiting each location u of V once. Then,
the simulated values are obtained by kriging of the neighboring training and previously simulated
data. Afterward, they are back-transformed using NS−1 : N (0, 1) → FY .

After a given number of simulations of the whole testing set (usually at least 100), the cumulative
distribution at each point is estimated using a cumulative histogram.

2As the reference set is very large, a non-parametric method, detailed later, can be used to estimate reliably the
distribution.
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3.3 Model Comparison Method
Comparing local PDF models is very di�cult when there is only one realization of the studied phe-
nomenon. In order to solve this problem, we used large data sets (thousands of samples) from which
we only kept a small portion for training and testing (a typical training set in Geostatistics contains
a few hundreds of samples). Remaining data were used to build a reference cumulative distribution
function Cref (v|u) at every location u of the testing set.

Cref (v|u) is constructed by selecting the k nearest neighbors of each testing location, taken from
the reference set and compute a cumulative histogram as it has been done for simulations. To de�ne
how many neighbors have to be taken, we simply divided the number of points in the reference set
by the number of testing points. With such an approach, and providing that the testing locations
are not clustered, one can consider that most of the k nearest neighbors of a testing point are only
associated with this point. Of course, this cumulative histogram is only an approximation of the true
CDF. However it is the best approximation one can expect without any a priori knowledge of the
data.

To measure the quality of a conditional PDF estimator, we proceed as follows:
• construct the conditional PDF estimator,

• estimate the cumulative Cmodel(v|u) at every location u,

• compute the D-Statistic, which is the greatest discrepancy between Cref (v|u) and Cmodel(v|u)
for each u, as it is used in the Kolmogorov-Smirnof Test[4] to verify whether two distribution
functions are di�erent,

• compute the mean of the D-Statistics over the whole testing set.
This statistic is the main quantitative performance criterion that will be use in this paper.

4 Experiments
4.1 Data description
Two data sets were used in this paper3. The �rst one is the digital elevation model of Switzerland
and will be designed as SWRND (left of Figure 1). The second one is a subset of the previous one,
and focuses on the mountains of the eastern part of Switzerland. It will be referenced as GRISONS
(right of Figure 1).

In both cases, 3 subsets were generated: a training, a testing and a reference set. Table 1 gives
the number of points inside each set.

Subsets SWRND GRISONS
Train 500 500
Test 1000 1000
Reference 93628 16032
Neighbors 100 20

Table 1: Number of data points inside the various subsets of SWRND and GRISONS. Train and
Test were extracted randomly from the full data set, and Reference is the remaining data. The value
�Neighbors� indicates how many neighbors were taken in the Reference set to construct the reference
cumulative histogram of the Test points.

For numerical stability reasons, the coordinates have been linearly transformed so that they are
all positive and smaller than 1. For the same reasons, altitudes are given in kilometers in order to
have smaller values.

3these data sets are available at http://www.idiap.ch/learning/data/swissdem.tar.gz.
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Figure 1: Presentation of the complete data sets SWRND (left) and GRISONS (right)
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Figure 2: Statistical histograms of output values (altitudes in kilometers) for SWRND (left) and
GRISONS (right). The plain curve is the reference set, the dash curve is the training set, and the dot
curve is the testing set.

The main characteristic of the SWRND data set is that its histogram (left of Figure 2) shows
clearly a multi-modal distribution of the altitude values. This can also be observed on left of Figure
1 where the high altitudes of the Alps appear in dark, while the low altitudes of the Swiss Plateau
appear in light grey. The GRISONS data set looks simpler as its histogram is unimodal (right of
Figure 2). However it has a high local variability, not easy to extract from the global tendency of
medium altitudes.

The cumulative histograms used for the experiments are constituted of 100 intervals lying between
0.0 and 5.0 km, in such a way that any altitude of the data sets is covered.

4.2 The SWRND data set
The D-Statistics, detailed in Table 2, shows that, on the SWRND data set, conditional GMM globally
yields better estimates of local PDF than SGS. This was an expected result because of the multi-modal
behavior of SWRND altitudes. The Normal Score back-transformation of data, which is necessary for
SGS, can produce bad results when data are far from the normal distribution, and even more if they
are multi-modal. This kind of problems doesn't occur with GMM, since no assumptions need to be
done on data distribution, except the fact that data are supposed to be independently and identically
distributed.

Figure 3 shows how GMM and SGS manage to reconstruct the local cumulative distribution at two
locations taken randomly in the testing set. On the left, GMM's cumulative distribution �ts almost
perfectly the reference curve while SGS is completely missing the point. On the right, both methods
give a good estimation of local PDF, and in this case, SGS seems a little bit better than conditional
GMM.

The risk maps of Figure 4 were constructed directly from the local estimation of the cumulative
PDF of the testing set. Each map is a cut through these cumulative functions for v < 2.0 km given u.
A rapid comparison between the three models enlights the sharpness of SGS maps and the reference
maps in front of the smoothness of GMM maps. The �rst reason is that the GMM model built for
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SWRND D-Statistics Mean Min Median Max
Conditional GMM 0.350 0.051 0.332 0.835
SGS 0.531 0.000 0.510 1.000

Table 2: Results from D-Statistics calculation on SWRND testing set, between the reference cumu-
lative distribution and the estimations from Sequential Gaussian Simulation (SGS) and Conditional
Gaussians Mixture Model (GMM). The smaller the statistics, the better the model.
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Figure 3: Comparison of the cumulative distributions of altitude at two di�erent locations of the
testing set. Plain lines are the references. Dash lines are the estimations from conditional GMM. Dots
lines are the estimations from SGS.

Figure 4: Risk Maps of the probability that altitude lies under 2.0 kilometers. The darker, the less
probable. Conditional GMM risk map is on the left, reference is in the middle, and SGS risk map is
on the right.

this data set contains �only� 95 Gaussians, while SGS is using a lot more points. The second reason
is that GMM provides a continuous function while SGS and the reference don't. As a consequence,
there is a lot of discontinuities in SGS maps which make them appear sharp.

However, this �sharpness� of SGS is in fact mainly noise. Looking closer at the map on the right
of Figure 4, SGS estimations don't seem to be so close to the reference. GMM seems to be more
e�cient to keep the general structure, except in the Eastern part. One can �nally see that GMM is
generally also smoothing the distribution tales, as it seems to under-estimate the high probabilities
and over-estimate the low probabilities.

4.3 The GRISONS data set
Table 3 shows that conditional GMM and SGS perform in a very similar way on the GRISONS data
set. While for SWRND, D-Statistics performance of GMM was 33% better than SGS, it is now less
than 4% better. On this data set, SGS is no longer perturbed by any multi-modal distribution, and
thus, its performances are relatively better. On the other hand, GMM had a lot of di�culties to
reproduce the variability of data: the optimal model found contains only 21 Gaussians, which is very
few. However, it seems to be enough to perform e�ciently regarding D-Statistics.

The similarity between GMM and SGS performances is also visible on Figure 5. For both sample
locations, the cumulative from GMM and the one from SGS are very close to each other.

The smoothing tendency of GMM pointed out with SWRND data set becomes obvious when
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GRISONS D-Statistics Mean Min Median Max
Conditional GMM 0.385 0.081 0.360 0.965
SGS 0.400 0.080 0.370 1.000

Table 3: Results from the D-Statistics calculation on GRISONS testing set, between the reference cu-
mulative distribution and the estimation from Sequential Gaussian Simulation (SGS) and Conditional
Gaussians Mixture Model ( GMM). The smaller the values, the better the model.
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Figure 5: Comparison of the cumulative distributions of altitude at two di�erent locations of the
testing set. Plain lines are the references. Dash lines are the estimations from conditional GMM. Dot
lines are the estimations from SGS.

Figure 6: Risk Maps of the probability that altitude lies under 2.5 kilometers. The darker, the less
probable. Conditional GMM risk map is on the left, reference is in the middle, and SGS risk map is
on the right.

comparing the various risk maps of Figure 6. GMM did not manage to reproduce the complexity
of the GRISONS data set and the optimal model generated was a very �simple� one. SGS appeared
to reproduce this complexity, but in fact, results are more noisy than sharp, and out of the general
tendencies (also found by GMM) it does not perform very well. It is interesting to notice that GMM
and SGS are performing similarly in terms of D-Statistics but in a completely di�erent way.

5 Conclusion
Conditional Gaussians Mixture Models proved to be e�cient to estimate local probability density
function in order to draw risk maps. When compared to the classical method used in this �eld, it
appeared to be at least as e�cient in terms of D-Statistics, and even better when the distribution of
data is multi-modal. A strong advantage of conditional GMM over SGS is that it needs less expert
knowledge and less hypotheses on data distribution. It also gives a real function of the conditional
probability of a variable at any location of the studied area, and can easily handle joint distributions
of multiple output variables.
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