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Hervé Bourlard

May 22, 2003

Abstract. This study investigates possibilities to find a low-dimensional, formant-related physi-
cal representation of speech signals, which is suitable for automatic speech recognition. This aim is
motivated by the fact that formants are known to be discriminant features for speech recognition.
Combinations of automatically extracted formant-like features and state-of-the-art, noise-robust
features have previously been shown to be more robust in adverse conditions than state-of-the-art
features alone. However, it is not clear how these automatically extracted formant-like features
behave in comparison with true formants. The purpose of this paper is to investigate two methods
to automatically extract formant-like features, i.e. robust formants and HMM2 features, and to
compare these features to hand-labeled formants as well as to mel-frequency cepstral coefficients
in terms of their performance on a vowel classification task. The speech data and hand-labeled for-
mants that were used in this study are a subset of the American English vowels database presented
in [Hillenbrand et al., J. Acoust. Soc. Am. 97, 3099-3111 (1995)]. Classification performance was
measured on the original, clean data as well as in (simulated) adverse conditions. In combination
with standard automatic speech recognition methods, the classification performance of the robust
formant and HMM2 features compare very well to the performance of the hand-labeled formants.
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1 Introduction

Human speech signals can be described in many different ways [Flanagan, 1972, Rabiner and Schafer, 1978].
Some descriptions are directly related to speech production, while others are more suitable for inves-
tigating speech perception. Some descriptive frameworks, of which the formant representation is a
well-known example, have successfully been applied to both production and perception.

Speech production is often modeled as an acoustic source feeding into a linear filter (representing
the vocal tract) with little or no interaction between the source and the filter. In terms of this
model of acoustic speech production, the phonetically relevant properties of speech signals can be
characterized by the resonance frequencies of the filter (to be completed with information on the
source, in terms of periodicity and power). It is well known that the frequencies of the first two or
three formants are sufficient information for the perceptual identification of vowels [Flanagan, 1972,
Minifie et al., 1973]. The formant representation is attractive because of its parsimonious character: it
allows the representation of speech signals with a very small number of parameters. Not surprisingly,
many attempts have been made to exploit the parametric formant representation in speech technology
applications such as speech synthesis, speech coding and automatic speech recognition (ASR).

A special reason why formants make for an attractive representation of the acoustic characteristics
of speech signals is their relation -by virtue of their very definition- to spectral maxima. In the presence
of additive noise the lower energy regions of the spectrum of the speech signal will tend to be masked
by the noise energy, but the formant regions may stay above the noise level, even if the average signal-
to-noise ratio becomes zero or negative [Hunt, 1999]. Therefore, one might expect a representation in
terms of formant parameters to be robust against additive noise. Automatically extracted formant-
like features have shown some potential for noise robustness in automatic speech recognition, espe-
cially when combined with state-of-the-art features [Garner and Holmes, 1998, Weber et al., 2001a,
de Wet et al., 2000].

Despite its apparent advantages, the formant representation of speech signals has never completely
eliminated competing representations. Especially in speech technology there seems to be a strong
preference for non-parametric representations of speech signals. These representations are based on
estimates of the spectral envelope, if necessary completed by information on the excitation source.
Even if the estimate of the spectral envelope is derived from a parametric estimator such as Linear
Predictive Coding (LPC) (which can in principle be related to the source-filter model of acoustic speech
production [Markel and Gray (Jr.), 1976]), state-of-the-art speech technology systems carefully avoid
an explicit interpretation of spectral features in terms of formants.

Given the power of the formant representation in speech production and perception research, its
absence in speech technology is disquieting and perhaps undesirable, even if it may not be difficult
to “explain” the discrepancy. The single most important disadvantage of the formant representation
is that, while resonance frequencies of a linear filter are easy to compute given a small number of
characteristic parameters, there is no one-to-one relation between the spectral maxima of an arbitrary
speech signal and its representation in terms of formant frequencies and bandwidths. The exact causes
of the many-to-many mapping between spectral maxima and formants need not concern us here.
What is essential is that despite numerous attempts to build accurate and reliable automatic formant
extractors (c.f. [Flanagan, 1972, Rabiner and Schafer, 1978]), there are still no tools available that can
automatically extract the “true” formants from the speech in the very large corpora that have become
the standard in developing speech technology systems. Labeling of spectral maxima as formants is
often only possible if the phonetic label of the sound is known, because there may be more -or fewer-
prominent maxima, depending on the spectral characteristics of the source signal, to mention only
the most obvious confounding factor. This does not contradict the results of perception studies that
suggest that the first three formants are sufficient to identify vowel sounds. The acoustic stimuli used
in those experiments are almost invariably constructed so as to avoid spectral maxima related to the
excitation signal.

The many-to-many relation between spectral maxima and formants is not the only reason why
speech technology systems avoid formant representations. Not all speech sounds are equally well
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suited to be described in terms of formant frequencies in the sense of resonance frequencies of a linear
filter. Nasals and fricatives, for example, can only be accurately described if anti-resonances are
specified in addition to the resonances. It is well known that anti-resonances can mask formants to
the extent that they no longer appear as spectral maxima. This masking can even occur in vowels
that are nasalized because of their phonetic context. Last but not least, the voice source may contain
spectral peaks and valleys, which may also affect the spectral peaks in the radiated speech signal.
Thus, even if it were possible to accurately and reliably label spectral maxima as formants, one would
still be faced with the fact that many portions of the speech signals that must be processed show
fewer (or more) spectral maxima than the number predicted by acoustic phonetic theory. Most of the
search algorithms that are used in ASR algorithms are designed to deal with feature vectors of a fixed
length. Recently, attempts have been made to design ASR systems that are able to cope with missing
data [Cooke et al., 2001, de Veth et al., 2001, Renevey and Drygajlo, 2000, Ramakrishnan, 2000], but
still in the context of search algorithms that require fixed-length feature vectors. In these approaches
“unreliable” parameter values obtain a special treatment in the computation of the distance between a
feature vector and the models of the speech sounds that have previously been trained. However, none of
these systems use formants as features. One of the few recent ASR systems that do try to use formants
(in addition to non-parametric spectral features) is [Holmes et al., 1997]. In [Holmes et al., 1997] it is
proposed to overcome the problem of labeling spectral maxima as formants by introducing a confidence
measure on the formant values. The approach proved to be quite successful, but only for a limited
task and a small data set.

Most modern ASR systems rely on very large labeled corpora to train probabilistic models. Due
to the lack of tools to compute formants reliably and accurately, experts are needed to add formant
labels to the speech. This makes it very difficult to provide sufficiently large training corpora for the
development of formant-based processing. Yet, the theoretical attractiveness of formant representa-
tions has motivated several attempts to overcome this hurdle. This paper extends this line of research
by investigating two techniques to extract formant-like features that may overcome at least one of
the problems in more conventional formant extraction techniques. The methods we investigate, i.e.
two-dimensional hidden Markov models (HMM2) [Weber et al., 2000] and Robust Formant extraction
(RF) [Willems, 1986], can be guaranteed to find a fixed number of “formants” in each spectral slice.
The details of these techniques will be explained in Sections 3 and 4. By guaranteeing to deliver a
fixed number of formant-like features for each frame, these techniques avoid problems in the search
of the ASR engine that would arise if the number of parameters were allowed to vary from frame
to frame. The research in this paper is focused on automatic speech recognition. Therefore, we will
not make references to applications of the techniques in speech synthesis and speech coding in the
remainder of this paper, despite the fact that the RF technique was developed in that context.

There is an obvious area of tension between the definition of “true formants” in terms of resonances
of the vocal tract on the one hand, and a formant extraction technique that guarantees to deliver a
fixed number of formant-like features for each frame of a speech signal on the other. It is unlikely
that what these automatic techniques deliver always corresponds to vocal tract resonances, even if
the parameters can be proven to relate to spectral maxima. This raises the question whether the
formant-like features delivered by these automatic extraction techniques are as powerful as the true
formants that could have been measured by expert phoneticians when it comes to identifying speech
sounds.

In order to compare the classification performance of (true) formants measured by phoneticians
and (imperfect) formant-like features extracted by means of HMM2 and RF, a speech corpus with
hand-labeled formants is required. Such corpora are extremely rare, because - as was explained above
- their construction requires an enormous amount of time and expertise. One of the few corpora
that does include hand-labeled formants is the American English Vowels (AEV) database presented
in [Hillenbrand et al., 1995]. The details of the AEV corpus are described in Section 2. Here it
is sufficient to say that the corpus consists of 12 American-English vowels, pronounced in /h-V-d/
context by 45 men, 48 women and 46 children. The identification of all vowel tokens was checked in
perception experiments.
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Despite the large effort spent in generating the AEV corpus, its size is very small by ASR standards,
and the corpus only contains information about vowels. Consequently, promising results obtained with
the AEV corpus may not generalize to continuous speech that will inevitably contain consonants, both
voiced and voiceless. However, the goal of the research reported in this paper was not to develop a
full-fledged alternative automatic speech recognizer. Rather, we aim at a better understanding of the
contribution that formant-like representations of speech can make to the improvement of automatic
speech recognition. More specifically, the aims of the research reported here are

• to investigate whether the classification performance of (true) formants measured by phoneticians
represents an upper limit for the performance of (imperfect) formant-like features extracted by
means of HMM2 and RF. This will be done for two different classification techniques, i.e.

1. Discriminant Analysis, where we used straightforward Linear Discriminant Analysis (LDA)
instead of Quadratic Discriminant Analysis (QDA) that was used in the original AEV paper
[Hillenbrand et al., 1995];

2. Hidden Markov Models (HMMs), which are considered state-of-the-art in today’s ASR.

• to interpret the classification performance of automatically extracted formant-like features in
terms of their resemblance to true formants. This should improve our understanding of the
importance of the relation between vocal tract parameters in speech production and acoustic
features for automatic speech recognition.

• to investigate the claim that formant-like features are inherently robust against additive noise,
because they relate to spectral maxima that will stay above the local spectral level of additive
noise. For practical reasons, this part of the study is limited to automatically extracted formant-
like features.

The rest of this paper is organized as follows: Section 2 gives an overview of the protocol according
to which the AEV database was created. The RF algorithm is the subject of Section 3 and the HMM2
feature extractor is described in Section 4. Section 5 reports on the experimental set-up and the
results of the classification experiments. The results are followed by a discussion and conclusions in
Sections 6 and 7.

2 Database of American English Vowels

The speech material that was used in this study is a subset of the database of American English
vowels (AEV) described in [Hillenbrand et al., 1995]. This section provides some information on the
construction of the database and the labeling of the formant data. Interested readers are referred to
the original paper for a complete overview of the database.

Amongst other things, the AEV database contains recordings of the 12 vowels (/i, I, E, æ, A, O, Ú, u,
2, Ç, e, o/) produced in /h-V-d/ syllables by 45 men, 48 women and 46 children. The /h-V-d/ syllables
were produced in isolation, not within a carrier phrase. Full details on the screening and selection of
the subjects can be found in [Hillenbrand et al., 1995]. During the recordings, the subjects read from
one of 12 different randomizations of a list containing the key words corresponding to the /h-V-d/
syllables. They were given as much time as needed to practice the task and to demonstrate their
ability to pronounce the key words correctly. On average, three recordings were made per subject.
Unless there were problems with recording fidelity or background noise, the tokens from the subject’s
first reading of the list were taken up in the database.

The recordings are all studio quality and were digitized at 16 kHz with 12 bits amplitude resolution.
Various acoustic measurements were made for each token in the database, including vowel duration,
vowel steady-state times1, formant tracks and fundamental frequency tracks. In what follows, the
focus will be on the formant tracks, since these values were used as features in our classification
experiments.
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To obtain the formant tracks, candidate formant peaks were first extracted from the speech data
by means of a 14th order LPC analysis. These values were subsequently edited by trained speech
pathologists, phoneticians, or both. In addition to the LPC peaks overlaid on a gray-scale spectrogram,
labelers were also provided with individual LPC or Fourier slices where necessary. The labelers were
allowed to repeat the LPC analysis with different parameters and to hand edit the formant tracks.
The formant tracks were only hand edited between the start and end times of the vowels, i.e. the
formants corresponding to the leading /h/ and trailing /d/ of the /h-V-d/ syllables were not manually
labeled.

Where irresolvable formant mergers occurred, zeros were written into the higher of the two formant
slots affected by the merger. Irresolvable mergers occurred in about 4% of the data. F1, F2, and F3
were measured for all the signals, except for utterances that contained irresolvable mergers. F4 tracks
were only measured if they were clearly visible in the peaks of the LPC spectrum. In 15.6% of the
utterances F4 could not be measured. We therefore decided to limit the scope of the formant feature
set to the first three formants.

Given that the mean values that were measured for F1, F2, and F3 were all well below 4 kHz,
we decided to downsample the speech data to 8 kHz for our own experiments. All acoustic analyses
adhered to the same time resolution used in [Hillenbrand et al., 1995]. Specifically, all analyses used
a frame rate of one frame per 8 ms. This allows a frame-to-frame comparison of the hand-labeled
formants with the formant-like features generated by the two automatic extraction techniques.

3 Robust Formants

The robust formant (RF) algorithm was initially designed for speech coding and synthesis applications
[Willems, 1986]. The algorithm uses the split Levinson algorithm (SLA) to determine a fixed number
of spectral maxima for each speech frame. Instead of directly applying a root solving procedure to a
standard LPC polynomial to obtain the frequency positions of the spectral maxima, a so-called singular
predictor polynomial is constructed from which the zeros are determined in an iterative procedure. All
the zeros of this singular predictor polynomial lie on the unit circle, with the result that the number of
maxima that are found is guaranteed to be half the LPC order under all circumstances. The maxima
that are located in this manner are referred to as the “formants” found by the RF algorithm.

After the frequency positions of the RF formants have been established, their corresponding band-
widths are chosen from a pre-defined table such that the resulting all-pole filter minimizes the error
between the predicted data and the input. The frequencies at which the zeros of the singular predictor
polynomial occur are close to the frequencies at which the zeros of the classical root solving proce-
dure occur, as long as these are close to the unit circle (i.e. as long as the true formants have small
bandwidth values). This property ensures that the most important formants are properly represented.

For our goal (as was the case for speech coding and synthesis), the RF algorithm has two major
advantages over standard root solving of the LPC polynomial (or searching for maxima in the spectral
envelope derived from the LPC coefficients). First, the SLA guarantees to find a fixed number of
complex poles -corresponding to “formants”- for each speech frame. This helps to avoid labeling errors
(e.g. F3 labeled as F2) since there are no missing formants. In addition, the algorithm tends to
distribute the complex poles uniformly along the unit circle. Consequently, the formant tracks are
guaranteed to be fairly smooth and continuous (as one would expect the vocal tract resonances to be).
A potential disadvantage of the SLA is that it cannot handle formant mergers in a way that resembles
the procedure used in [Hillenbrand et al., 1995]. Because of the tendency of the SLA to distribute
poles uniformly along the unit circle, formant mergers are likely to result in one or two “resonances”
that are shifted away (in frequency) from the true resonances of the vocal tract.

As was mentioned in Section 2, the AEV data was downsampled to 8 kHz. It is usually as-
sumed that there are four vocal tract resonances in this frequency band. However, the data in
[Hillenbrand et al., 1995] show that F4 could not be found in 15.6% of the vowels. The scope of
this study is therefore limited to F1, F2, and F3. Moreover, in the AEV database the mean value
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(taken over all the relevant data) of F4 is 3.536 kHz (σ = 135.5) for males and 4.159 kHz (σ = 174.7)
for females. Thus, it is clear that an automatic formant extraction procedure applied to the AEV
corpus must be able to deal with a potential discrepancy between the “true” number of formants in
the signal and the requirement that only the first three formants must be returned.

For the RF extractor, the simplest way to cope with the requirement that only three formants
should be found is to use a 6th order LPC analysis2. However, the accuracy of the LPC analysis is
bound to suffer if a 6th order analysis is used to analyze spectra with four maxima. In these cases
an 8th order LPC would seem more appropriate, although it would introduce the need to select three
RFs from the set of four.

Given these constraints, there are a number of possible choices that can be made concerning the
calculation of the RFs. We considered two of these: (1) calculate three RF features per frame (RF3);
(2) calculate four RF features per frame and use only the first three (3RF4). These two sets of RF
features were subsequently calculated every 8 ms over 16 ms Hamming windowed segments. The
output of the two procedures was evaluated by means of a frame-to-frame comparison with the hand-
labeled formants. The mean Mahalanobis distance between the resulting RF3 and 3RF4 features and
the corresponding hand-labeled formants (HLF) are given in Table 1.

Table 1 about here.

The results in Table 1 show that the RF features are closer to the HLF features if the order
of the analysis is chosen according to the gender-specific properties of the true formants. If there
is a mismatch between the number of spectral peaks the algorithm tries to model and the number
of spectral maxima that actually occur in the data, the distance between the automatically derived
data and the hand-labeled data increases. Thus, the distance between the RFs and the hand-labeled
formants decreases if the order of the analysis corresponds to the inherent signal structure. In the
rest of this paper we will present results for both gender-dependent and gender-independent data sets.
Because the RF3 features yielded the smallest Mahalanobis distance for the mixed data set, these will
be used in the gender-independent experiments. In the gender-dependent experiments, the RF3 and
3RF4 features will be used for the female and male data, respectively.

4 The HMM2 Feature Extractor

In this section, we introduce the most important characteristics of the HMM2 approach. HMM2 is a
special mixture of hidden Markov models (HMM), in which the emission probabilities of a conventional,
temporal HMM are estimated by a secondary HMM [Weber et al., 2001b]. As shown in Figure 1, one
secondary HMM is associated with each state of the temporal HMM. While the conventional HMM
works along the temporal dimension of speech and emits a time sequence of feature vectors, the
secondary HMM works along the frequency dimension, and emits a frequency sequence of feature
vectors, provided that features in the spectral domain are used.

In fact, each temporal feature vector can be seen as a sequence of sub-vectors. The sub-vectors are
typically low-dimensional feature vectors, consisting of, for example, a coefficient, its first and second
order time derivatives and an additional frequency index [Weber et al., 2001c]. If such a temporal
feature vector is to be emitted by a specific temporal HMM state, the associated sequence of frequency
sub-vectors is emitted by the secondary HMM associated with the corresponding temporal HMM state.
Therefore, the secondary HMMs (in the following also called frequency HMMs) are used to estimate
the temporal HMM state likelihoods. In turn, the frequency HMM state likelihoods are estimated
by Gaussian mixture models (GMM). As a consequence, HMM2 can be seen as a generalization of
conventional HMMs, where higher dimensional GMMs are directly used for state emission probability
estimation.

Figure 1 about here.
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Frequency filtered filterbanks (FF) [Nadeu, 1999] are typically used as features for HMM2, because
they are decorrelated in the spectral domain. In many ASR tasks the baseline performance of the FF
coefficients has been shown to be comparable to that of other widely used state-of-the-art features
such as mel frequency cepstral coefficients (MFCCs). For the HMM2 systems that were used in this
study, a sequence of 12 FF coefficients was calculated every 8 ms, which, together with their first and
second order time derivatives plus an additional frequency index, form a sequence of 12 4-dimensional
sub-vectors. Each square in the vector labeled “FF feature vector” in Figure 1 therefore represents a
4-dimensional sub-vector.

Speech recognition with HMM2 can be done with the Viterbi algorithm, delivering (as a by-
product) the segmentation of the signal in time as well as in frequency. The frequency segmentation of
one temporal feature vector reflects its partitioning into frequency bands of similar energy. Supposing
that certain frequency HMM states model frequency bands with high energy (i.e., formant-like regions)
and others those bands with low energies, the Viterbi frequency segmentation could be interpreted as
an alternative way to represent formant-like structures.

For each temporal feature vector, we determined at which point in frequency (i.e. between which
sub-vectors) a transition from one frequency HMM state to the next took place. For example, in
Figure 1 the first HMM2 feature vector coefficient is 3, indicating that the transition from the first
to the second frequency HMM state occurred before the third sub-vector. In the case of 4 frequency
HMM states connected in a top-down topology (as seen in Figure 1), we therefore obtain 3 integer
indices (corresponding to precise frequency values). In our classification experiments, these indices
were used as 3-dimensional feature vectors in a conventional HMM.

4.1 HMM2 design options

The design of an HMM2 system can vary substantially, depending, for example, on the task and on the
data to model. There are a number of design option which determine the performance of an HMM2
system. These include issues like model topology (which needs to be considered both in the time and
the frequency dimension), the addition of frequency coefficients, different initialization possibilities as
well as different (combinations of) segmentation strategies that can be applied for training and test
purposes. In the following, each of these issues is shortly discussed.

As a first step in HMM2 design, a suitable topology, i.e. the number and connectivity of the
temporal and the frequency HMM states, has to be defined. In this study, we chose a strict “left-right”
(without any state skipping) topology for the temporal HMM (such as typically used for HMMs used
in ASR) and an equivalent “top-down” topology for the frequency HMM. It should be noted, however,
that the choice of topology is by no means limited to these options: e.g. the frequency HMM can also
have an ergodic, a tree- or trellis-like, or any other topology [Weber et al., 2000].

Given the restriction of a left-right/top-down HMM2 topology, the number of HMM states of
the temporal and the frequency HMMs can still be varied. However, in all experiments described in
this paper, the frequency HMM had 4 states. This choice was motivated by the task at hand (i.e.
extracting three formant-like features from each speech frame), as well as the characteristics of the
data used. Different numbers of states for the temporal HMM were tested. In the first instance, a very
simple HMM2 feature extractor was realized using just one HMM2 model, which had one temporal
state with four frequency states, and which was trained on all the training data, independent of the
class labeling. Obviously, such a model cannot be used directly for speech recognition. Nevertheless,
a forced alignment of the data given this model delivers a frequency segmentation of each temporal
data vector and therefore “HMM2 feature vectors”. These features should - in a very crude way -
represent frequency regions of similar energy.

Furthermore, 12 phoneme-dependent HMM2s with a similar topology (i.e., one temporal HMM
state) were tested, as well as 12 phoneme-dependent HMM2s with 3 temporal states. In both cases, a 4-
state frequency HMM was associated with each temporal state. These HMM2 models were trained with
the expectation maximization (EM) algorithm, and Viterbi recognition was subsequently performed.
Both of these systems can be applied directly as a decoder for speech recognition, or, as in the
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context of this paper, for feature extraction. Although the quality of phone-dependent HMM2 feature
extraction suffers from the fact that HMM2 recognition is error-prone, using such a system (as opposed
to, e.g. using just one HMM2 model) is motivated by the assumption that the ”... analysis of formants
separately from hypotheses about what is being said will always be prone to errors” [Holmes, 2000].
In fact, it can be confirmed that, in terms of recognition rates, the features obtained from the phone-
dependent HMM2 systems generally perform better than those obtained from a single model.

A further HMM2 design decision concerns the use of a frequency coefficient as an additional com-
ponent of the frequency sub-vectors. It has been shown that this frequency information improves
discrimination between the different phonemes [Weber et al., 2001c]. However, the impact of the fre-
quency coefficient is different depending on whether it is treated (1) as an additional feature component
(feature combination) or (2) as a second feature stream (likelihood combination). Moreover, in the
latter case, additional parameters are required, i.e. the stream weights.

The initialization of the HMM2 models can be done in different ways. For instance, assuming a
linear segmentation along the frequency axis, the initial features can be chosen such that an equal
number of sub-vectors is assigned to each of the 4 frequency states. Alternatively, as formant frequen-
cies are provided with the AEV database, these can be used to obtain an initial non-linear frequency
segmentation. Another option is to assume an alternation of spectral valleys (L) and spectral peaks
(H), i.e. assigning values to the frequency states which force an HLHL or LHLH segmentation along
the frequency axis.

HMM2 feature vectors can be obtained in two different ways, depending on whether or not the
labeling is known. For the training data, we typically know the phoneme labeling of all the speech
segments. Therefore, forced alignment can be used to align these speech data to the corresponding
HMM2 model and extract the segmentation. Alternatively for the training data, and imperatively
for the test data, a real recognition using all phoneme-dependent HMM2 models can be used. The
segmentation finally extracted by the HMM2 system corresponds to the segmentation produced by the
HMM2 phoneme model which has the highest probability of emitting the given data sequence. Ob-
viously, the HMM2 system makes recognition errors, resulting in sub-optimal HMM2 feature vectors,
i.e. feature vectors extracted by the “wrong” HMM2 phoneme model.

In this study, all of the design, initialization and training/test options introduced above, as well
as combinations of them, were tested. However, it is beyond the scope of this paper to give an
exhaustive overview of these results. The models that were used to obtain the results reported on in
Section 5 all had a 3-state, left-right topology in the time domain and a 4-state top-down topology
in the frequency domain. Frequency coefficients were not used as a second feature stream but were
included as additional feature components in the frequency sub-vectors. The gender-independent
HMM2 models were initialized with an LHLH segmentation while the gender-dependent models were
initialized according to the hand-labeled formant frequencies’ segmentation. The HMM2 features that
were used for training were obtained by means of forced alignment while those that were used for testing
were obtained from a free recognition. Training and testing were done with HTK [Young et al., 1997]
and the HMM2 systems were realized as a large, unfolded HMM, which is possible when introducing
synchronization constraints [Weber et al., 2001b].

Finally, it should be pointed out that results from a previous study have shown that adding first or-
der time derivatives does not improve the classification performance of HMM2 features [Weber et al., 2002].
In that study, it was argued that this result can be attributed to (1) the nature of the AEV data,
exhibiting only very few spectral changes (see Section 5.5.4 for a graphical illustration), in conjunc-
tion with (2) the very crude nature of the HMM2 features. Often, the frequency segmentation of one
phoneme would be the same for all time steps, thus the time derivatives are zero. In other cases,
oscillations between two neighboring segmentations were observed, which give equally meaningless
derivatives.
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5 Experiments and Results

In this section, we describe the design and execution of the experiments that were performed on
the AEV database in order to investigate the classification performance of two sets of automatically
extracted formant-like features. The behavior of the RF and HMM2 features is compared to the
results obtained using the hand-labeled formants that are included in the AEV database.

In section 5.1, the overall design of the experiments is described. Section 5.2 reports on the
results of classification experiments based on Linear Discriminant Analysis (LDA). These experi-
ments enable us to relate our results to those reported in the original paper on the AEV database
[Hillenbrand et al., 1995]. In section 5.3, the results of classification experiments based on HMMs are
presented. These experiments are included to investigate whether the proven classification perfor-
mance of hand-labeled formants with LDA generalizes to the classification performance obtained with
the EM procedures that are dominant in the ASR community.

To strengthen the link with current research in automatic speech recognition, all classification
experiments were repeated with acoustic features that are used in most conventional ASR systems, i.e.
MFCCs, which describe the spectral envelope in a small number of essentially orthogonal coefficients.
Usually, 10 to 15 MFCCs are needed to obtain a sufficiently accurate description of the spectrum.
In our experiments, two sets of MFCCs were used. The first set comprises 12 coefficients to account
for the spectral envelope and one energy feature. Since this set contains more than four times as
many independent coefficients as the representation in terms of F1, F2 and F3 we also used a subset
consisting of c1, c2, and c3, i.e., the first three MFCCs that are related to the shape of the spectrum.

In order to explain some of the classification results, we also present a number of graphical il-
lustrations of the differences and similarities between hand-labeled formant values and the RF and
HMM2 features in Section 5.4. Finally, Section 5.5 reports on the classification performance of the
automatically extracted formant-like features in (simulated) noisy acoustic conditions.

5.1 Experimental set-up

In all the experiments reported on in this section, a subset of the AEV database was used, i.e. the 12
vowels (/i, I, E, æ, A, O, Ú, u, 2, Ç, e, o/) pronounced by 45 male and 45 female speakers. Only the vowel
part of these utterances were taken into consideration, because the formant tracks of the leading /h/s
and trailing /d/s were not hand-edited. Where mergers occurred in the hand-labeled formant tracks
(c.f. Section 2), the zeros were replaced by the frequency values in the lower formant slot, i.e. two
equal values were used. This procedure allowed us to treat all vowels in the same way, including those
where mergers occurred. Alternatively, we might have replaced the merged formants with frequencies
slightly below and above the value that is given in the AEV database, but it is unlikely that this
would have affected the results.

In keeping with what has become standard practice in ASR, the formant frequencies were mel-
scaled before they were used in the classification experiments3. In comparison with the databases
that are typically used in ASR experiments, the AEV database is quite small. Given this limitation,
a 3-fold cross-validation was used for the classification experiments. The classifiers (LDA and HMM)
were trained on two subsets of the data, and tested on the third one. Thus, each experiment consisted
of a number of independent tests. Moreover, all tests were performed in two conditions, i.e. gender-
independent and gender-dependent. The gender-independent data sets were defined as three non-
overlapping train/test sets, each containing the vowel data of 60(train)/30(test) speakers, with an
equal number of males and females in each set. For the gender-dependent data, three independent
train/test sets were defined for males and females, respectively. Each train/test set consisted of
30(train)/15(test) speakers. For the gender-independent data sets, the classification results reported
below correspond to the mean value of the three independent tests. The gender-dependent results
were obtained by averaging the classification results of six independent experiments (three male and
three female).

Five different feature sets are relevant to the experiments in this section:
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• HLF: hand-labeled formants F1, F2, and F3, as provided with the AEV database;

• RF: robust formants, formant tracks extracted automatically using the method described in
Section 3;

• HMM2: HMM2 features, extracted according to the method described in Section 4;

• MFCC13: 12 mel-frequency cepstral coefficients, together with an energy measure (c0 in this
case) as an example of commonly-used, state-of-the-art ASR features4;

• MFCC3: as above, but using only three coefficients (c1, c2, c3) for comparison, since all the
other feature sets are 3-dimensional.

5.2 LDA results

In [Hillenbrand et al., 1995], a number of discriminant analyses were performed in order to determine
how well the vowel classes could be separated based on the different acoustic measurements. A
quadratic discriminant analysis (QDA) was applied in a leave-1-out jack-knifing procedure and all the
male, female and children’s data (except for the vowels /e/ and /o/5) were used. Using the linear
frequency values of F1, F2, and F3 measured (within one frame) at steady state (stst), 81.0% of the
vowels could be correctly classified. The corresponding formant values measured at 20% and 80%
vowel duration (20%80%) yielded 91.6% correct classification. A combination of the three values
(20%stst80%) resulted in a classification rate of 91.8%. Human classification for the same data (based
on the complete /h-V-d/ utterances) was 95.4% correct. These values indicate that the vowel classes
can be separated reasonably well (in comparison with human performance) by the steady state values
of their first three formants. Information about patterns of spectral change clearly enhances the
distinction between classes.

This section reports on a similar (but not identical) experiment in which the LDA classification
performance of the RF, HMM2 and MFCC features was compared to the classification rate achieved
by the HLF features. An LDA was used instead of a QDA, all frequency values were mel-weighted
and only the male and female data were taken into consideration. The training and test data were
divided according to the 3-fold cross-validation scheme described in Section 5.1. The feature val-
ues were all measured at the same time instants in the vowel as for the experiments described in
[Hillenbrand et al., 1995]. The results for the gender-independent data are given in Table 2 and those
for the gender-dependent data in Table 3. As our goal was to compare the performance of the HLF
features with that of the other features, the 95% confidence intervals corresponding to the HLF results
are indicated in brackets.

Tables 2 and 3 about here.

With the exception of the steady state results, the classification rates achieved by the HLF fea-
tures are in good agreement with the corresponding values reported in [Hillenbrand et al., 1995]. The
difference observed for the steady state results can probably be attributed to the difference between
the QDA used in [Hillenbrand et al., 1995] and the LDA used in the current study.

The values in Tables 2 and 3 show that, with the exception of the MFCC13 features, the HLF
features outperform all the other features in terms of vowel classification rate. The difference between
HLF and the other results is much larger for the gender-independent experiments than for the gender-
dependent experiments. This observation suggests that, in the gender-independent condition, three
hand-labeled formant frequencies represent more information on the identity of the vowel classes in the
AEV set than three RF, HMM2 or MFCC features. This is not surprising, since the formant features
incorporate substantial know-how from expert phoneticians and speech pathologists. If an essential
part of that prior knowledge, i.e. the gender of the speakers, is given to the other feature extractors,
their performance is substantially enhanced. For instance, in the gender-independent experiments
the classification rate achieved by the RF features is clearly inferior to the HLFs’ performance. The
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corresponding difference in classification performance is much smaller in the gender-dependent exper-
iments.

The classification performance of the HMM2 features is substantially lower than the results ob-
tained for the other feature sets. Obviously, the vowel classes are not linearly separable given these
features at just one, two or three different instances in time. While the HMM2 features at any given
moment may not be sufficient to discriminate between the vowel classes, the additional information
required to do so may be provided by a complete temporal sequence of HMM2 features. This presup-
position will be investigated in the following section within the framework of HMM recognition.

The MFCC13 features achieve classification rates which compare very well with those of the HLF
features. Although they perform slightly better than the HLF features in the gender-dependent exper-
iments, this difference is not significant. This result indicates that, for the current vowel classification
task using LDA, three HLF features and 13 MFCCs are equally able to discriminate between the vowel
classes.

The MFCC3 features do not seem to provide a description of the vowel spectra that is able to
compete with HLF or RF features in terms of vowel classification. However, it should be kept in mind
that choosing the first 3 MFCCs as features is probably not the best choice we could have made.
In a control experiment we used Wilk’s lambda to rank the MFCCs in terms of explained variance.
This resulted in different feature combinations for different experimental conditions. However, the set
that was most frequently observed (for the gender-dependent data) was c2, c4, and c5. Using these
3 MFCCs instead of c1, c2, and c3 improved the gender-dependent classification rates by about 2%
(on average). Although this is a substantial improvement, it does indicate that, in combination with
LDA, more than 3 MFCC features are required to compete with HLF and RF features on a vowel
classification task.

Classification performance is determined by two factors, i.e. the degree of noise in the features
and the overlap between the vowels in the feature space. The data in Tables 2 and 3 show that all
the feature types that were evaluated in this experiment generally yield much better results for the
gender-dependent data sets. This observation may be explained by the fact that the vowel classes
are better separated in a gender-dependent feature space. However, the RF and HMM2 features
clearly benefit more from the gender separation than the HLF and MFCC features. This seems to
suggest that, for the RF and HMM2 features, the gender separation also achieved a certain degree
of noise reduction in the features themselves. For instance, according to the Mahalanobis distance
measures in Table 1, the gender-dependent RF features approximate the HLF features much better
than their gender-independent counterparts. For the HMM2 features the biggest advantage of the
gender separation (in terms of reducing the noise in the features) is probably the fact that the original
classification of the vowels (during the HMM2 feature extraction process) improved.

5.3 HMM classification rates on clean data

The classification rates in Tables 2 and 3 were obtained by means of an LDA. In discriminative
training algorithms such as LDA, the aim of the optimization function is to achieve maximum class
separability by finding optimal decision surfaces between the data of the different classes. However, the
recognition engines of most state-of-the-art ASR systems are trained using a Maximum Likelihood
(ML) optimization criterion. The training algorithms therefore learn the distribution of the data
without paying particular attention to the boundaries between the different data classes. Although
discriminative training procedures have been developed for ASR, they are not as commonly used
as their more straightforward ML counterparts. The LDA classification described in the previous
section also required a time-domain segmentation of the data. In real-world applications this kind
of information will not be available. The aim of the next experiment is therefore to evaluate the
classification performance of the different feature sets using HMMs that were derived by means of ML
training.

Towards this aim, we compared the vowel classification rates achieved by the five different fea-
ture sets introduced in Section 5.1. With the exception of the HMM2 features, the first order time
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derivatives of all the features were also included in the acoustic feature vectors. In a previous study
[Weber et al., 2002], it was shown that adding temporal derivatives to the HMM2 features does not
improve performance, most probably due to the very crude quantization of these features, which causes
most of the time derivatives to become zero. The resulting feature vector dimensions for the HLF,
RF, HMM2, MFCC13, and MFCC3 features were therefore 6, 6, 3, 26 and 6.

Classification experiments were conducted using both the gender-independent and the gender-
dependent data sets defined in Section 5.1. For each of the vowels in the AEV database and for
each acoustic feature/data set combination, a three state HMM was trained. The EM algorithm
implemented in HTK was used for the ML training [Young et al., 1997]. Each HMM state consisted
of a mixture of 10 continuous density Gaussian distributions. The results are shown in Table 4. The
values in the last column of Table 4 correspond to the dimensions of the different feature sets. Once
again, the 95% confidence intervals corresponding to the HLF results are indicated in brackets.

Table 4 about here.

According to the results in Table 4, the HLF features consistently achieved classification rates
of almost 90% correct. Even though these values are significantly lower than those measured in
the LDA experiments, they do indicate that, in principle, the HLF features are suitable to be used
as features in combination with state-of-the-art ASR methods, i.e. using HMMs, ML training and
Viterbi classification. However, in practical applications the use of hand-labeled features is not really
feasible.

A remarkable difference between the LDA and HMM experiments is the difference in the classifi-
cation rates achieved by the HMM2 features: these features perform much better in combination with
HMMs than LDA. Table 4 shows that, for the gender-dependent data, the HMM2 features not only
outperform the MFCC3s but also approximate the performance of the HLF and RF features, in spite
of their lower feature dimension.

The data in Table 4 also show that, for the current vowel classification task, HLF features compare
very well with MFCCs. Although the MFCC13 features outperform their HLF counterparts on both
gender-independent and gender-dependent data, this is at the price of a much higher feature dimension.
MFCCs with the same dimension (MFCC3) perform significantly worse than both MFCC13 and HLF.
Once again, the choice to use the first 3 MFCCs is probably not optimal. In order to be completely fair
towards the MFCCs, 3 coefficients should have been selected by means of, e.g. principle component
analysis.

Comparing gender-independent and gender-dependent results, it can be seen that, in general, the
gender-dependent systems work better, even in the case of HLF features. This observation is in
good agreement with the results of the LDA experiments. Another similarity between the HMM and
LDA results is the fact that the classification performance of the automatically extracted formant-
like features are especially gender-dependent. As was argued before, the large improvement of the
performance of the RF and HMM2 features in the gender-dependent condition is most probably
due to the combination of the fact that there is less noise in the raw data (because of the gender
specific measurement techniques) and, again, removal of gender-related overlap between feature values.
Although not to the same extent as the formant-like features, the performance of the MFCC3 features
is also enhanced by incorporating gender-information. Only the performance of the MFCC13 features
seems to be insensitive to gender differences. This may be due to the capability of the EM training
algorithm to capture the difference between female and male spectra in the 10 Gaussians in each state.
The larger number of parameters in the MFCC13 feature space is also likely to have improved the
recognition performance.

5.4 Graphical examples

In this section we will illustrate, by means of a graphical example, the differences and similarities
between the hand-labeled formants and the corresponding RF and HMM2 features for the vowel
/Ç/. Figure 2 shows feature tracks of HLF, RF and HMM2 features, projected onto two different
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“spectrograms”. In both instances the y-axis corresponds to frequency index, the x-axis to time and
darker shades of gray to higher energy levels. The spectrogram in Figure 2(a) corresponds to the mel-
weighted log-energy within each frame. The mel-scaled filterbank that was used to scale the energy
values consisted of 14 filters that were linearly spaced in the mel frequency domain between 0 and
2146 mel (0 and 4000 Hz). The spectrogram in Figure 2(b) was derived from the corresponding FF
features that were used to train the HMM2 feature extractor.

Figure 2 about here.

The data in Figure 2 show that the RF feature tracks are fairly similar to the HLFs. However, it
should be kept in mind that this is a gender-dependent example. The Mahalanobis distances in Table
1 indicated that the differences between the HLF and RF tracks are substantially larger in the gender-
independent data, where wrongly labeled spectral peaks are more frequent. The example suggests
that the spectrum of this vowel contains multiple peaks in the F2-F3 region, and that the human
labeler has consistently preferred a peak at a lower frequency than the automatic RF procedure. In
addition, the RF features exhibit more frame-to-frame variance than their hand-labeled counterparts
- especially for F3. The dip in the F3 track at the vowel onset may be due to the fact that there the
lower frequency peak preferred by the human labelers throughout was so strong that the RF procedure
could find it, despite its close proximity to F2. So far, we have not been able to verify whether this
type of frame-to-frame variation is related to those parts of the vowels where the human labelers had
most problems in finding the “correct” spectral peaks. Neither is it clear whether this variation has
affected the classification performance of the RF features, relative to the more smooth HLF features.
From an articulatory point of view the smooth HLF feature tracks seem to be more plausible than the
slightly more “noisy” RF features. However, it may be that the RF features are a better descriptor of
the acoustic signal than the manually smoothed HLFs. This observation raises the question whether it
is at all possible for a tractable automatic procedure to emulate the expert knowledge that is implicitly
encoded in the HLF features. Fortunately, from the point of view of automatic classification an exact
emulation is not essential: if avoidable measurement noise in the RF features is indeed avoided, their
performance is equivalent to the HLF features.

The HMM2 features are very crude and do not resemble either the HLF or the RF tracks. The
crudeness is due to the fact that the HMM2 features are derived from 12 FF features, instead of
spectral envelopes sampled at multiple equidistant frequencies. Moreover, due to their very nature
(they indicate transitions between regions of low and high spectral energy, rather than spectral peaks)
the HMM2 tracks can at best approximate the shape of true formant tracks, not their position on the
frequency axis. However, the feature tracks in Figure 2(b) indicate that, in the FF domain, the HMM2
method succeeded in separating high energy from low energy regions. General trends present in the
signal (such as the upward tendency for the highest formant at the end of the vowel) are also reflected
by the HMM2 tracks. As was noted before, the HMM2 features’ time derivatives are not meaningful
because of their discrete nature and the kind of data present in the AEV database (showing very little
spectral change in each vowel).

5.5 HMM classification rates on noisy data

In this experiment, the MFCC13, RF and HMM2 models that were used for the experiments described
in Section 5.3 were tested in noise. The models were trained only on clean data. Noisy acoustic
conditions were simulated by artificially adding babble and factory noise to the test data at SNRs of
18, 12, 6, and 0 dB. The babble and factory noise were both taken from the Noisex CD [Noisex, 1990].
For obvious reasons the HLF features could not be included in this experiment.

Figure 3 gives an overview of the classification performance of gender-dependent models tested in
noise. Classification rate is shown as a function of SNR for both babble and factory noise. Similar,
but slightly inferior, results were obtained for the gender-independent models. (These results are not
shown here.)



14 IDIAP–RR 03-08

Figure 3 about here.

In Section 1 it was argued that, in the presence of additive noise, the lower energy regions in speech
spectra will tend to be masked by the noise energy, but that the formant regions/spectral maxima
may stay above the noise level, even if the average signal-to-noise ratio becomes zero or negative. This
line of reasoning gave rise to the hypothesis that a representation in terms of formants or formant-like
features should be inherently robust against additive noise. However, the results in Figure 3 do not
support this hypothesis. In fact, the figure shows that the recognition performance of all three systems
deteriorates in noise. While the performance of the different features is comparable at SNRs of 18
dB and higher, the MFCC13 features clearly outperform the formant-like features at lower SNRs. To
a certain extent, this result may be explained by the fact that the MFCC13 system has a total of
26 features at its disposal, while the dimensionality of the RF and HMM2 systems is restricted to 6
and 3 features, respectively. The higher order acoustic feature vectors - which may contain redundant
information in clean conditions - seem to be better at maintaining system performance in adverse
acoustic conditions.

For all three systems the drop in recognition rate is more severe in factory noise than in babble
noise. Factory noise also seems to affect the RF features more than HMM2. The type of performance
degradation shown in Figure 3 is equivalent to results obtained for other databases in comparable
simulated noise conditions (e.g., [de Wet et al., 2000]).

In principle, the argument that spectral maxima may stay above the noise level seems to be
plausible. However, the RF features - which are supposed to model spectral maxima - clearly fail
in noisy acoustic conditions. This observation suggests that the RF algorithm is “misled” by the
information between the spectral peaks, such that it is no longer capable to find the maxima that
should still be in the spectra. This limitation can be overcome by an algorithm which is capable of
finding spectral maxima without being hindered by the misleading information between the peaks.
Such an algorithm was recently proposed in [Andringa, 2002].

The failure of the HMM2 system at low SNRs may be explained as follows: for heavily degraded
speech, the number of recognition errors made by the HMM recognizer embedded in the feature
extractor is bound to increase. As a result, the corresponding HMM2 features will be calculated by
the “wrong” HMM2 feature extractor, i.e. the HMM2 model corresponding to the wrong phoneme
will give the best likelihood score and will therefore be chosen for feature extraction. Recognition
errors made by the HMM2 feature extractor and the conventional HMM recognizer (which uses the
erroneous HMM2 features) accumulate, which will forcibly lead to severe degradations at low SNRs.

6 Discussion

The research reported on in this paper intended to investigate the contributions that formant rep-
resentations of speech signals can make to automatic speech recognition, in clean and especially in
noisy acoustic conditions. Since the design of the experiments required the availability of reliably
hand-labeled formants, the extent of this study is limited to the AEV database. This database is
not representative of “normal” speech, if only because of the fact that the phonetic contexts of the
vowels are limited to /h-V-d/. In a sense, therefore, the AEV database constitutes a best case plat-
form for research on the added value of formant(-like) features. Within this context, it was confirmed
that hand-labeled formants are suitable features for vowel classification, both in combination with
discriminant analysis and state-of-the-art ASR systems. However, given the fact that hand-labeled
formants cannot be used in practical situations, two different methods to extract formant-like features
automatically were examined, i.e. RF and HMM2.

The results reported in Sections 5.5.2 and 5.5.3 showed that, for clean data (with the exception of
HMM2 features in combination with LDA), the classification performance of both these formant-like
feature sets compares very well to the performance of hand-labeled formant features. RF features
consistently outperformed HMM2 features, most probably due to the fact that the HMM2 features
are very coarsely quantized. Moreover, the HMM2 features are only 3-dimensional, whereas the RF
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features have additional delta’s and therefore 6 dimensions. This observation shows that hand-labeled
formants are certainly not the only parsimonious representation of the spectral envelope that enables
accurate vowel classification. Representations that yield a regular and consistent description of vowel
spectra, such as the RF and HMM2 features, are (almost) just as capable as the true formants to
discriminate between the vowel classes - even if the features are as crude as HMM2. Especially the
results obtained with the HMM2 features, which definitely do not represent formants in the sense of
vocal tract resonances, suggest that consistency (including smoothness of the feature tracks over time)
is more important than the relation to the underlying, physical speech production process.

The most salient difference between the LDA and HMM results is the classification rates that were
obtained for the HMM2 features. While the HMM2 results for the HMM classifier are comparable with
the corresponding HLF results, the LDA classifier does not seem to be able to distinguish between
the vowel classes if it is trained on HMM2 features. This result indicates that it is not possible to
distinguish between the vowel classes in the coarsely sampled HMM2 feature space when only a few
points (in time) are taken into consideration. Due to the coarseness of the HMM2 features, HMM2
feature tracks may change rather abruptly at any point in time. For example, an abrupt change may
occur before the 20% duration point for some pronunciations of a certain phoneme and after the 20%
duration point for other pronunciations of the same phoneme. The LDA classifier does not seem to
be able to deal with these differences. The HMM classifier, on the other hand, is able to handle these
changes in the data because it classifies vowels in terms of a complete temporal sequence of HMM2
features. However, the coarse quantization of the HMM2 features is not an intrinsic limitation of this
approach to the representation of spectral envelopes. On the contrary, it is one of the implications of
the way in which the current version of HMM2 has been implemented. Other implementations are
presently under investigation, which use filters with much narrower pass bands than the 13 critical
band filters used in this study.

In both the LDA and the HMM classification experiments, the classification rates measured for
the gender-dependent data sets were higher than the corresponding results for the gender-independent
data sets. However, for the HLF data the difference was much smaller than for the other feature
representations. It is probably true that the gender-independent HLF data are not truly gender-
independent, because the gender of the speakers was known to the human labelers. The HLF features
may therefore be said to contain implicit gender information. A comparison of the results obtained
with HLF and gender-dependent RF features suggests that the advantage of expert knowledge is rather
small when an automatic formant extraction procedure can be configured to avoid errors in assigning
spectral peaks to formant numbers.

HLF features could also be expected to have an advantage due to the fact that the labelers knew
the phone identities while they were assigning the formant labels. As was pointed out in Section 4,
the analysis of formants separately from hypotheses about what is being said will always be prone
to errors [Holmes, 2000]. The human labelers knew the identity of the tokens they were labeling, i.e.
they could use additional information in assigning formant labels. This constitutes another source of
implicit knowledge which gives the HLF features an advantage over the automatically derived features:
these either rely on imperfect classification results (in the case of HMM2) or have no knowledge about
the token for which feature extraction is attempted (in the case of the RF features). Here too the
comparison of the HLF and the gender-dependent RF features suggests that the advantage derived
from prior knowledge of the vowel identities was not very large. However, this observation may not
generalize to other databases, where the phonetic context of the vowels will be richer and have a bigger
impact on the spectral envelopes. After all, the /h-V-d/ context was chosen to minimize coarticulation
effects, which will be especially cumbersome for automatic (and manual) formant extraction in, for
example, the case of nasal consonants.

It is difficult to say to what extent the HLF features relate to formants as resonances of the vocal
tract. After all, the experts based their formant measurements on LPC spectra of the radiated speech
signals. Although they have used prior knowledge about vocal tract resonances of individual vowels,
this knowledge could only be brought to bear on the results in the form of selection of one spectral
peak instead of other competing candidates, perhaps even after a change of the LPC order to obtain
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a peak in the frequency region where it was predicted by acoustic phonetic theory. It is also possible
that part of the formant values recorded in the AEV database for vowel onsets and offsets is the result
of manual smoothing, interpolation, or extrapolation, again guided by phonetic theory. However, the
automatically extracted RF features appeared to resemble the HLF features very closely, provided that
the automatic RF extractor was given prior information about the gender of the speaker. Although
there is a theoretical relation between LPC spectral estimation and resonances of linear filters that
could model the vocal tract [Markel and Gray (Jr.), 1976], and although this relation is enhanced by
a proper selection of the LPC order (as was done for the gender-dependent RF extractor), it is now
generally accepted that inferences of vocal tract shapes and resonances from spectral envelopes are not
well possible. This suggests that HLF and gender-dependent RF features are very similar, in the sense
that both represent the spectral envelopes in terms of the locations of the major peaks. The results
of this study suggest that, for ASR, it is less important that these peaks should correspond to true
vocal tract resonances than that the selection of the peaks in the presence of multiple candidates is
done consistently. The fact that consistency is more important than relation to vocal tract resonance
is most clearly demonstrated by the power of the HMM2 features, which do not even relate to spectral
maxima per se, but which appear to be very consistent.

The results in Section 5.5.5 show that the formant-like features that were investigated in this study
are not inherently robust against additive noise. Neither of the two representations was able to keep
track of the spectral maxima that should remain intact in noisy speech data. The finding that it is
not possible to build a successful classifier using features that are inherently error-prone is not very
surprising. For the use of formants in ASR the message appears to be that the theoretical advantages of
the formant representation are neutralized by the enormous difficulty of building a reliable automatic
formant extractor, especially one that is also able to process noisy speech. Until such a powerful
formant extractor is available, there seems to be little advantage in adding formant measures to the
set of features in ASR. The relative success of adding formant candidates to MFCC parameters in
the work of [Holmes et al., 1997] does not contradict this conclusion. After all, their results can
be considered as the simultaneous solution of two closely related problems: formant extraction and
ASR. For formant extraction there is no doubt that the results should improve as speech recognition
improves, since knowledge of the sounds is a powerful knowledge source to guide the classification
of spectral peaks as formants. For speech recognition one would expect a similar advantage: an
interpretation of the signal in terms of sounds and words that make sense against the background of
formant candidates should be more accurate than one that does not.

High performance formant extraction in noisy speech will require a different approach to signal
processing than the usual spectral estimators that assume the signal to be stationary over the du-
ration of an analysis window. Several techniques based on models of the signal processing in the
mammalian auditory system have been proposed. [Andringa, 2002] is a recent example which is espe-
cially interesting because it argues that signal processing and recognition are intimately intertwined.
The decision whether a spectral maximum is indeed a vowel formant is made dependent not only on
the characteristics of the signal itself (are local spectral peaks consistent with a very precise estimate
of the instantaneous fundamental frequency ?) but also on whether a vowel with the hypothesized
formant structure could be present at a specific point in the signal. This suggests that, for a formant
representation to have its maximum impact on ASR, it is not just the signal processing and feature
extraction that must be advanced. Major advances in the search and decision process that eventually
link features to words, meanings and intentions are also required.

7 Conclusions

In this paper three issues were investigated within the framework of the AEV database introduced
in [Hillenbrand et al., 1995]. In the first instance, it was shown that, using standard ASR methods,
hand-labeled formants only marginally outperform automatically extracted formant-like features such
as RFs and HMM2 features on a vowel classification task.



IDIAP–RR 03-08 17

Secondly, a comparison of hand-labeled formants, RFs and HMM2 features revealed that there
is little advantage in using acoustic features that have a direct relation to vocal tract resonance for
the classification of vowels. Although gender-dependent RF features resemble hand-labeled formants
quite closely, this is not the case for HMM2 features. The latter do not even relate to spectral
peaks, but rather to transitions between minima and maxima of the spectral envelope. The most
likely explanation for the (small) advantage of hand-labeled formants that emerged from this study
is their intrinsic smoothness over time, in conjunction with a very high resilience against consistent
mis-alignment between spectral peaks and formant labels.

Thirdly, the theoretical robustness of formant measures against additive noise could not be verified
for either of the two automatically extracted formant-like feature sets. The lack of robustness of these
features does not necessarily imply the rejection of the hypothesis that the formants remain visible
as peaks in the spectral envelope. Rather, the noise seems to introduce additional spectral peaks,
which cannot be effectively discarded as formant candidates by the relatively simple signal processing
techniques underlying RF extraction and HMM2 feature computation. The theoretical advantages of
the formant concept for processing noisy speech can only be harnessed by signal processing techniques
that take full profit of continuity and coherence in the signals, both in time and in frequency.

In summary, it is fair to say that in clean conditions the formant representation of speech signals
has no compelling advantages over representations that do not involve error-prone labeling decisions
(such as MFCCs used in this and many other studies). In noisy conditions the theoretical advantages
of the formant concept are vastly diminished by the failure of almost all signal processing techniques
to reliably distinguish between spectral maxima that must be attributed to vocal tract resonances and
maxima that are introduced by the noise.
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Notes

1 Vowel steady state was defined by Peterson and Barney as, ”... following the influence of
the /h/ and preceding the influence of the /d/, during which a practically steady state is reached”
[Peterson and Barney, 1952].

2The possibility to apply pre-emphasis is incorporated in the acoustic pre-processing of the RF
algorithm. One may therefore assume that the inherent spectral tilt in the data is equalized and that
all the LPC poles are available to model spectral peaks.

3In [Hillenbrand and Gayvert, 1993] it was found that, for a vowel classification task, nonlinear
frequency transforms significantly enhanced the performance of a linear discriminant classifier. For a
quadratic classifier, on the other hand, there was no advantage for any of the nonlinear transforms
(mel, log, Koenig, Bark) over linear frequency. During the current investigation HMM classification
experiments were also conducted using the original, linear frequency values. No significant difference
was observed between the tests performed with the linear frequency values and the mel-scaled values.

4These features were derived using HTK’s feature extraction software [Young et al., 1997].

5Data from /e/ and /o/ were omitted in [Hillenbrand et al., 1995] to facilitate comparisons with
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Peterson and Barney’s results.
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Table 1: Mean Mahalanobis distance between RF features and hand-labeled data.

gender RF3 3RF4
male 3.5 2.1

female 1.6 5.3
all 1.9 3.0
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Table 2: LDA classification results: gender-independent data.

Feature type stst 20%80% 20%stst80%
HLF 77.0 (± 2.5) 91.4 (± 1.7) 91.9 (± 1.6)
RF 63.4 81.8 83.0

HMM2 31.7 48.7 52.2
MFCC13 73.1 90.5 91.2
MFCC3 57.5 78.6 78.2
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Table 3: LDA classification results: gender-dependent data.

Feature type stst 20%80% 20%stst80%
HLF 79.4 (± 2.4) 93.6 (± 1.5) 93.8 (± 1.4)
RF 76.1 91.2 92.0

HMM2 48.5 60.1 63.8
MFCC13 81.7 94.5 94.2
MFCC3 64.2 84.8 84.9
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Table 4: HMM classification results for gender-independent and gender-dependent data.

Feature type Gender-independent Gender-dependent Feature dimension
HLF 87.7 (±2) 89.6 (±1.8) 6
RF 84.1 90.5 6

HMM2 77.0 87.2 3
MFCC13 92.3 92.1 26
MFCC3 77.6 81.2 6
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Figure captions

Figure 1: Left panel: Schematic representation of an HMM2 system in the time/frequency plane.
The left-right model is the temporal HMM with a top-down frequency HMM in each of its states.
Right panel: Example of a temporal “FF” vector (left) as emitted by a frequency HMM. Each of
the squares in this feature vector corresponds to a 4-dimensional sub-vector. Grey arrows indicate the
frequency positions at which transitions between the different frequency HMM states took place. The
corresponding indices form an HMM2 feature vector (right).

Figure 2: Tracks of HLF, RF and HMM2 features for one female pronunciation of the vowel /Ç/
projected onto (a) the mel-scaled log-energy of each frame and (b) the corresponding FF features.

Figure 3: Average classification rates (% correct) for gender-dependent models trained on clean
MFCC13 (+), RF (∗) and HMM2 (o) features and tested in babble (left panel) and factory (right
panel) noise. The corresponding feature vector dimensions are 26 (MFCC13), 6 (RF) and 3 (HMM2).
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