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Abstract. In this paper, several approaches that can be used to improve biometric authentication
applications are proposed. The idea is inspired by the ensemble approach, i.e., the use of several
classifiers to solve a problem. Compared to using only one classifier, the ensemble of classifiers has
the advantage of reducing the overall variance of the system. Instead of using multiple classifiers,
we propose here to examine other possible means of variance reduction (VR), namely through
the use of multiple synthetic samples, different extractors (features) and biometric modalities.
The scores are combined using the average operator, Multi-Layer Perceptron and Support Vector
Machines. It is found empirically that VR via modalities is the best technique, followed by VR
via extractors, VR via classifiers and VR via synthetic samples. This order of effectiveness is
due to the corresponding degree of independence of the combined objects (in decreasing order).
The theoretical and empirical findings show that the combined experts via VR techniques always

perform better than the average of their participating experts. Furthermore, in practice, most

combined experts perform better than any of their participating experts.
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1 Introduction

Biometric authentication (BA) is the problem of verifying an identity claim using a person’s be-
havioural and physiological characteristics. BA is becoming an important alternative to traditional
authentication methods such as keys (“something one has”, i.e., by possession) or PIN numbers
(“something one knows”, i.e., by knowledge) because it is essentially “who one is”, i.e., by biometric
information. Therefore, it is not susceptible to misplacement or forgetfulness. Examples of biometric
modalities are fingerprints, faces, voice, hand-geometry and retina scans [1].

To date, biometric-based security systems (devices, algorithms, architectures) still have room for
improvement, particularly in their accuracy, tolerance to various noisy environments and scalability
as the number of individuals increases. The focus of this study is to improve system accuracy by
directly minimising the effects of noise via various variance reduction techniques. Biometric data is
often noisy because of deformable templates, corruption by environmental noise, variability over time
and occlusion by the user’s accessories. The higher the noise, the less reliable the biometric system
becomes.

Advancements in biometrics show two emerging solutions: combining several biometric modalities
[2, 3] (often called multi-modal biometrics) and combining several samples of a single biometric modal-
ity [4]. These techniques are related to variance reduction (VR). This is a phenomenon originating
from combining classifier scores. Specifically, by combining the outputs of N classifier scores using
an average operator (in the simplest case), one can reduce the variance of the combined score, with
respect to the target score, by a factor of N [5, Chap. 9], if the classifier scores are not correlated (or
independent from each another). On the other hand, in the extreme case, when they are completely
correlated (dependent on each other), there will be no reduction in variance at all [6].

In the context of BA, when one combines several biometric modalities or several samples, one
indeed exploits the independence of each modality and sample, respectively. In this work, we examine
several other ways to exploit this (often partial) independence, namely via extractors, classifiers and
synthetic samples. In short, all these methods can be termed as follows: Variance Reduction (VR)
via classifiers, VR via extractors, VR via samples and VR via (biometric) modalities.

In our opinion, VR techniques have the potential to improve the accuracy of BA systems because
better classifiers or ensemble methods, feature extraction algorithms and biometric-enabled sensors
are emerging. Instead of choosing one best technique (best features, classifiers, etc), VR techniques
propose to combine these new algorithms with existing techniques (features, classifiers) to obtain
improved results, whenever this is feasible. The added overhead cost will be computation time and
possibly hardware cost in the case of adding new sensors (as opposed to other VR techniques which
do not require any extra hardware).

2 Variance Reduction in Biometric Authentication

2.1 Variance Reduction

This section presents a brief findings on the theory of variance reduction (VR). Details can be found
in [6].

A person requesting an access can be measured by his or her biometric data. Let this biometric
data be x. This measurement can be done by several methods, to be explored later. Let i denote the
i-th extract of x by a given method. For the sake of comprehension, one method to do so is to use
multiple samples. Thus, in this case, i denotes the i-th sample. If the chosen method uses multiple
biometric modalities, then i refers to the i-th biometric modality. Let the measured relationship be
denoted as yi(x). It can be thought as the i-th response (of the sample or modality, for instance)
given by a biometric system. Typically, this output (e.g. score) is used to make the accept/reject
decision. yi(x) can be decomposed into two components, as follows:

yi(x) = h(x) + ηi(x), (1)



IDIAP–RR 03-26 3

where h(x) is the “target” function that one wishes to estimate and ηi(x) is a random additive noise
with zero mean, also dependent on x.

Let N be the number of trials, (e.g., the number of samples, assuming that the chosen method
uses multiple samples hereinafter). The mean of y over N trials, denoted as ȳ(x) is:

ȳ(x) =
1

N

N
∑

i=1

yi(x). (2)

When N samples are available and they are used separately, the average of variance made by each
sample, independently, is:

VARAV (x) =
1

N

N
∑

i=1

VAR[yi(x)], (3)

where VAR[x] is the variance of x.

The variance as a result of averaging (or variance of average) due to Eqn. (2) is defined as:

VARCOM (x) = E[(ȳ(x) − h(x)])2], (4)

where E[x] is the expectation of x. In our previous work [6], it has been shown that:

1

N
VARAV (x) ≤ VARCOM (x) ≤ VARAV (x). (5)

This equation shows that when scores yi, i = 1, . . . , N are uncorrelated, the variance of average is
reduced by a factor of 1/N with respect to the average of variance. On the other hand, when the
scores are totally correlated, there is no reduction of variance, with respect to the average of variance.

To measure explicitly the factor of reduction, we introduce α, which can be defined as follows:

α =
VARAV (x)

VARCOM (x)
. (6)

By dividing Eqn (5) by VARCOM and rearranging it, we can deduce that 1 ≤ α ≤ N .

2.2 Variance Reduction and Classification Reduction

Fig. 1 illustrates the effect of averaging scores in a two-class problem, such as in BA where an identity
claim could belong either to a client or an impostor. Let us assume that the genuine user scores in a
situation where 3 samples are available but are used separately, follow a normal distribution of mean
1.0 and variance (VARAV (x) of genuine users) 0.9, denoted as N (1,

√
0.9), and that the impostor

scores (in the mentioned situation) follow a normal distribution of N (−1,
√

0.6) (both graphs are
plotted with “+”). If for each access, the 3 scores are used, according to Equation 6, the variance of
the resulting distribution will be reduced by a factor (which is the value α defined in Equation 6) of 3
or less. Both resulting distributions are plotted with “o”. Note the area where both the distributions
cross before and after. The later area is shaded in Fig. 1. This area corresponds to the zone where
minimum amount of mistakes will be committed given that the threshold is optimal1. Decreasing this
area implies an improvement in the performance of the system.

1Optimal in the Bayes sense, when (1) the cost and (2) probability of both types of errors (i.e., false acceptances
and false rejections) are equal.
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Figure 1: Averaging score distributions in a two-class problem

2.3 Variance Reduction and Correlation in Input Score Space

From the previous section, it is obvious that by reducing the variance, the classification results should
be improved. How much variance can be reduced depends on how correlated the input scores are.
The correlation between scores of two experts can be examined by plotting their scores on a 2D-plan,
with one axis for each expert. This is shown in Figs. 2 and 3. The first figure shows a scatter-plot of
scores taken from two experts working on the same features. The second figure shows a scatter-plot
of scores taken from two experts working on different biometric modalities. Details of the experts are
explained in Sec. 4. As can be seen, the scores of the former overlaps more than the latter, i.e., if
a boundary is to be drawn between clients and impostors scores, it would be more difficult for the
former problem than the latter problem. Note that overlapping occurs when both experts make the
same errors. Thus, there will be more classification errors in the former problem than in the latter.

2.4 Exploring Various Variance Reduction Techniques

This section explores various variance reduction (VR) techniques that can be applied to the BA
problem. A BA system can be viewed as a system consisting of sensors, extractors, classifiers and a
supervisor. Sensors such as cameras are responsible to capture a person’s biometric traits. Extractors
are responsible for extracting salient features that are useful for discriminating a person from others.
Classifiers (also referred to as “experts”) are responsible for comparing the extracted features to
previously stored features that are known to belong to the person. Finally, in the context of multiple
modalities, features, classifiers or samples, a supervisor is needed to merge all the results. A survey
of different fusion techniques can be found in [7].

This serial concatenation process of sensors, extractors, classifiers and a supervisor shows that
errors may accumulate along the chain because each module depends on the previous module. An
important finding in Sec. 2.1 [6] is that it is beneficial to increase the number of processes. For
instance, one can use more samples or more biometric modalities. In these two cases, N will be the
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Figure 2: Scores from experts of different features

number of samples and modalities, respectively. This is because by increasing N , one can decrease
the variance further, regardless of how correlated the scores obtained from these N experts are. Note
that in the work of Kittler et al [4], they showed that by increasing N samples up to a limit, there
is no more gain in accuracy. When this happens, they deem the system to be “saturated”. In our
context, we expand N through different methods, as follows:

• Multiple Biometric Modalities. Each modality has its own feature set and classifiers. In
other words, they operate independently of each other [7, 8, 9, 10]

• Multiple Samples. Samples could be real [4] or virtually generated [11].

• Multiple Extractors. Each feature is classified by a classifier independently of other fea-
tures [12, 13, 14].

• Multiple Classifiers. All classifiers receive the same input features. Heterogeneous types
of classifiers can be used. Unstable homegenous classifiers such as Multi-Layer Perceptrons
(MLPs) trained by bagging or with different hidden units can also be used. In general, many
ensemble methods such as bagging, boosting, via Error-Correcting Output-Coding fall in this
category [15, 16].

For each method mentioned above, the problem now is to combine these N scores. This is treated
in the next subsection.

2.5 Fusions in Variance Reduction Techniques

In Sec. 2.1, it has been illustrated that correlation of scores in the input space plays a vital role in
determining the success of the resultant combined system. Furthermore, by simple averaging of N
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Figure 3: Scores from experts of different biometric modalities

scores, it has been shown that the variance of the resultant combined score can be reduced by a factor
between 1 and N with respect to the average of variance.

Instead of using simple averaging, one could have used weighted average, or even non-linear tech-
niques such as MLPs and Support Vector Machines (SVMs) [5]. In the latter two cases however,
one needs to select carefully the various hyper-parameters of these models (such as the number of
hidden units in the MLPs or the kernel parameters in the SVMs). According to the Statistical Learn-
ing Theory [17], the expected performance of a model such as an MLP or an SVM on new data
depends on the capacity of the set of functions the model can approximate. If the capacity is too
small, the desired function might not be in the set of functions, while if it too high, several apparently
good functions could be approximated, with the risk of selecting a bad one. This phenomenon is
often called over-training. Although this capacity cannot unfortunately be explicitely estimated for
complex set of functions such as MLPs and SVMs, its ordering can be used to select efficiently the
corresponding hyper-parameters using some sort of validation technique. One such method is the
K-fold cross-validation.

Algorithm 1 shows how K-fold cross-validation can be used to estimate the correct value of the
hyper-parameters of our fusion model, as well as the decision threshold used in the case of authen-
tication. The basic framework of the algorithm is as follows: first perform K-fold cross-validation
on the training set by varying the capacity parameter, and for each capacity parameter, select the
corresponding decision threshold that minimises Half Total Error Rate (HTER)2; then choose the
best hyper-parameter according to this criterion and perform normal training with the best hyper-
parameter on the whole training set; finally test the resultant classifier on the test set [8] with HTER
evaluated on the previously found decision threshold.

There are several points to note concerning Algorithm 1: Z is a set of labelled examples of the

2HTER is defined as (FAR+FRR)/2, where FAR is False Acceptance Rate and FRR is False Rejection Rate.
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form (X ,Y), where the first term is a set of patterns and the second term is a set of corresponding
labels. The “train” function receives a hyper-parameter θ and a training set, and outputs an optimal
classifier F̂ by minimising the HTER on the training set. The “test” function receives a classifier F̂
and a set of examples, and outputs a set of scores for each associated example. The “thrdHTER”
function returns a decision threshold that minimises HTER by minimising |FAR(∆)−FRR(∆)| with
respect to the threshold ∆ (FAR(∆) and FRR(∆) are false acceptance and false rejection rates, as a
function of ∆) while LHTER returns the HTER value for a particular decision threshold. What makes

Algorithm 1 Risk Estimation (Θ, K,Z train,Ztest)

REM: Risk Estimation with K-fold Validation. See [8].
Θ : a set of values for a given hyper-parameter
Z i : a tuple (X i,Y i), for i ∈ {train, test} where
X : a set of patterns. Each pattern contains scores/hypothesis from base experts
Y : a set of labels ∈ {client, impostor}
Let ∪K

k=1
Zk = Ztrain

for each hyper-parameter θ ∈ Θ do
for each k = 1, . . . , K do

F̂θ = train(θ, ∪K
j=1,j 6=kZj)

Ŷk
θ = test(F̂θ , X k)

end for
∆θ = thrdHTER

(

{Ŷk
θ }K

k=1
, {Yk}K

k=1

)

end for
θ∗ = arg minθ

(

LHTER

(

∆θ, {Ŷk
θ }K

k=1
, {Yk}K

k=1

))

F̂θ∗ = train(θ∗, Ztrain)
Ŷtest

θ∗ = test(F̂θ∗ , X test)

return LHTER(∆θ∗ , Ŷtest
θ∗ ,Ytest)

this cross-validation different from classical cross-validation is that there is only one single decision
threshold and the corresponding HTER value for all the held-out folds and for a given hyper-parameter
θ. This is because it is logical to union scores of all held-out folds into one single set of scores to select
the decision threshold (and obtain the corresponding HTER).

2.6 Fusions For VR via Samples

All the VR techniques discussed earlier can be treated in a general manner, except VR via samples.
This is because the ordering of scores induced by samples are not important. Simply concatenating
the scores and feeding them to a classifier may not be an optimal solution. Another problem that
might arise is that when there are many scores, possibly in the range of hundreds (one can generate
as many virtual scores as one wishes), matching should be done in terms of their distribution instead.
We hence propose two solutions to handle this: 1) estimate the likelihood of the set of virtual scores
when coming from either a client or an impostor distribution; 2) estimate the distribution of the scores
so that matching will be performed between a competing client and an impostor distribution. Both
approaches assume that the scores are generated independently from some unknown distributions. Of
course this independence assumption is not true, but it is good enough for most practical problems.

The first approach is carried out using Gaussian Mixture Models (GMMs) to model the scores. First
estimate the client and impostor distributions using GMMs by separately maximising the likelihood
of the client and impostor scores using the Expectation-Maximisation algorithm [5]. During an access
request with one real biometric sample, a set of synthetic samples and hence a set of scores are
generated. These scores will be fed to the client and an impostor GMM score distribution. Let
log p(x|θC) be the log likelihood of the set of scores x given the client GMM model θC and log p(x|θI)
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be the same term but for the impostor model. The decision is often taken using the so-called log-
likelihood ratio:

s = log p(x|θC) − log p(x|θI)

In the second approach, we propose to first model the distribution of these synthetic scores using
a Parzen window non parametric density model [5, Chap. 2] and then compute the relative entropy
of each distribution, which is defined as follows:

L(p, q) = −
∑

i

p(yi) log
q(yi)

p(yi)
, (7)

where q and p are two distributions. Entropy can be regarded as a distortion of q(y) from p(y).
This alone does not give discriminative information. To do so, entropies of a client and an impostor
distribution should be used together. Let L(pC , q) be the entropy of q(y) with respect to a client
distribution and L(pI , q) be that of q(y) with respect to an impostor distribution. Then the difference
between these two entropies, can be defined as:

s = L(pI , q) − L(pC , q).

When s > 0, the distortion of q(y) from an impostor distribution is greater than that of a client
distribution, which reflects how likely a set of synthetic scores belong to a client. In fact, for both
approaches, s > 4 is used instead, where 4 is a threshold chosen a priori according to the HTER
criterion.

3 Experimental Settings

3.1 XM2VTS Database Description

The XM2VTS database [18] contains synchronised video and speech data from 295 subjects, recorded
during four sessions taken at one month intervals. On each session, two recordings were made, each
consisting of a speech shot and a head shot. The speech shot consisted of frontal face and speech
recordings of each subject during the recital of a sentence.

The database is divided into three sets: a training set, an evaluation set and a test set. The
training set was used to build client models, while the evaluation set (Eval) was used to compute the
decision thresholds (as well as other hyper-parameters) used by classifiers. Finally, the test set (Test)
was used to estimate the performance.

The 295 subjects were divided into a set of 200 clients, 25 evaluation impostors and 70 test
impostors. There exists two configurations or two different partitioning approaches of the training
and evaluation sets. They are called Lausanne Protocol I and II, denoted as LP1 and LP2 in this
paper. Thus, besides the data for training the model, the following four data sets are available for
evaluating the performance: LP1 Eval, LP1 Test, LP2 Eval and LP2 Test. Note that LP1 Eval and
LP2 Eval are used to calculate the optimal thresholds that will be used in LP1 Test and LP2 Test,
respectively. Results are reported only for the test sets, in order to be as unbiased as possible (using
an a priori selected threshold). Table 1 is the summary of the data. In both configurations, the test
set remains the same. However, there are three training shots per client for LP1 and four training
shots per client for LP2. More details can be found in [19].

3.2 Feature Extraction

For the face data, a bounding box is placed on a face according to manually located eye co-ordinates.
This assumes a perfect face detection3. The face is cropped and the extracted sub-image is down-sized

3Hence, even if this is often done in the literature, the final results using face scores could be optimistically biased
due to this manual detection step. Note on the other hand that due to the clean and controlled quality of XM2VTS,
automatic detectors often yield detection rates of around 99%.
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to a 40×30 (rows × columns) image. After enhancement and smoothing, the face image is represented
as a feature vector with a dimensionality of 1200.

In addition to these normalised features, RGB (Red-Green-Blue) histogram features are used.
For each colour channel, a histogram is built using 32 discrete bins. Hence, the histograms of three
channels, when concatenated, form a feature vector of 96 elements. More details about this method,
including experiments, can be obtained from [20].

Another feature set derived from Discrete Cosine Transform (DCT) coefficients [21, 22] has also
given good performance. The idea is to divide images into overlapping blocks. For each block, a subset
of DCT coefficients is computed. The horizontal and vertical deltas of several DCT coefficients are
also found. It has been shown that this feature set (referred to as DCTmod2) has better performance
than features derived from Principal Component Analysis [21].

For the speech data, the feature sets used in the experiments are Linear Filter-bank Cepstral
Coefficients (LFCC) [23], Phase Auto-correlation derived Mel-scale Frequency Cepstrum Coefficients
(PAC) [24] and Mean-Subtracted Spectral Subband Centroids (SSC) [25]. The speech/silence seg-
mentation is done using two competing Gaussians trained in an unsupervised way by maximising
the likelihood of the data given a mixture of the 2 Gaussians. One Gaussian will end up modelling
the speech and the other will end up modelling the non-speech feature frames [26]. In general, the
segmentation given by this technique is satisfactory.

4 Results

In order to analyse the effects due to VR techniques, we first present the baseline experimental results.
This is followed by results obtained by various VR techniques. Note that all results reported here
are in terms of percentage of HTER, the thresholds are all selected a priori (i.e., tuned on the
training set, hence the threshold is completely independent of the test set and is thus unbiased), and
for the combination strategy, only two experts are used each time.

4.1 Baseline Performance on The XM2VTS Database

The face baseline experts are based on the following features:

1. FH: normalised face image concatenated with its RGB Histogram (thus the abbreviation FH)

2. DCTs: DCTmod2 features extracted from face images with a size of 40× 32 (rows × columns)
pixels. The DCT coefficients are calculated from an 8 × 8 window with horizontal and vertical
overlaps of 50%, i.e., 4 pixels in each direction. Neighbouring windows are used to calculate the
“delta” features. The result is a set of 35 feature vectors, each having a dimensionality of 18. (s
indicates the use of this small image compared to the bigger size image with the abbreviation
b.)

Table 1: The Lausanne Protocols of XM2VTS database

Data sets Lausanne Protocols
LP1 LP2

Training client accesses 3 4
Evaluation client accesses 600 (3 × 200) 400 (2 × 200)
Evaluation impostor accesses 40,000 (25 × 8 × 200)
Test client accesses 400 (2 × 200)
Test impostor accesses 112,000 (70× 8 × 200)
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3. DCTb: Similar to DCTs except that the input face image has 80 × 64 pixels. The result is a
set of 221 feature vectors, each having a dimensionality of 18.

The speech baseline experts are based on the following features:

1. LFCC: The Linear Filter-bank Cepstral Coefficient (LFCC) speech features were computed with
24 linearly-spaced filters on each frame of Fourier coefficients sampled with a window length of
20 milliseconds and each window moved at a rate of 10 milliseconds. 16 DCT coefficients are
computed to decorrelate the 24 coefficients (log of power spectrum) obtained from the linear
filter-bank. The first temporal derivatives are added to the feature set.

2. PAC: The PAC-MFCC features are derived with a window length of 20 miliseconds and each
window moves at a rate of 10 miliseconds. 20 DCT coefficients are computed to decorrelate the
30 coefficients obtained from the Mel-scale filter-bank. The first temporal derivatives are added
to the feature set.

3. SSC: The mean-subtracted SSCs are obtained from 16 coefficients. The γ parameter, which is
a parameter that raises the power spectrum and controls how much influence the centroid, is set
to 0.7. Also The first temporal derivatives are added to the feature set.

Two different types of classifiers were used for these experiments: an MLP and a Bayes Classifier
using GMMs to estimate the class distributions [5]. While in theory both classifiers could be trained
using any of the previously defined feature sets, in practice only some specific combinations appear to
yield reasonable performance.

Whatever the classifier is, the hyper-parameters (e.g. the number of hidden units for MLPs or the
number of Gaussian components for GMMs) are tuned on the evaluation set LP1 Eval. The same set
of hyper-parameters are used in both LP1 and LP2 configurations of the XM2VTS database.

For each client-specific MLP, the samples associated to the client are treated as positive patterns
while all other samples not associated to the client are treated as negative patterns. All MLPs reported
here were trained using the stochastic version of the error-backpropagation training algorithm [5].

For the GMMs, two competing models are often needed: a world and a client-dependent model.
Initially, a world model is first trained from an external database (or a sufficiently large data set) using
the standard Expectation-Maximisation algorithm [5]. The world model is then adapted for each client
to the corresponding client data using the Maximum-A-Posteriori adaptation [27] algorithm.

The baseline experiments based on DCTmod2 feature extraction were reported in [22] while those
based on normalised face images and RGB histograms (FH features) were reported in [20]. Details of
the experiments, coded in the pair (feature, classifier), for the face experts, are as follows:

1. (FH, MLP) Features are normalised Face concatenated with Histogram features. The client-
dependent classifier used is an MLP with 20 hidden units. The MLP is trained with geometrically
transformed images [20].

2. (DCTs, GMM) The face features are the DCTmod2 features calculated from an input face
image of 40 × 32 pixels, hence, resulting in a sequence of 35 feature vectors each having 18
dimensions. There are 64 Gaussian components in the GMM. The world model is trained using
all the clients in the training set [22].

3. (DCTb, GMM) Similar to (DCTs,GMM), except that the features used are DCTmod2 features
calculated from an input face image of 80×64 pixels. This produces in a sequence of 221 feature
vectors each having 18 dimensions. The corresponding GMM has 512 Gaussian components [22].

4. (DCTs, MLP) Features are the same as those in (DCTs,GMM) except that an MLP is used in
place of a GMM. The MLP has 32 hidden units [22]. Note that in this case a training example
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Table 2: Baseline performance in HTER(%) of different modalities evaluated on XM2VTS based on
a priori selected thresholds

Data sets (Features, FAR FRR HTER
classifiers)

Face LP1 Test (FH,MLP) 1.751 2.000 1.875
Face LP1 Test (DCTs,GMM) 4.454 4.000 4.227
Face LP1 Test (DCTb,GMM) 1.840 1.500 1.670
Face LP1 Test (DCTs,MLP) 3.219 3.500 3.359
Face LP1 Test (DCTb,MLP) 4.443 8.000 6.221

Speech LP1 Test (LFCC,GMM) 1.029 1.250 1.139
Speech LP1 Test (PAC,GMM) 4.608 8.000 6.304
Speech LP1 Test (SSC,GMM) 2.374 2.500 2.437

Face LP2 Test (FH,MLP) 1.469 2.250 1.860
Face LP2 Test (DCTb,GMM) 1.039 0.250 0.644

SpeechLP2 Test (LFCC,GMM) 1.349 1.250 1.300
Speech LP2 Test (PAC,GMM) 5.283 8.000 6.642
Speech LP2 Test (SSC,GMM) 2.276 1.750 2.013

consists of a big single feature vector with a dimensionality of 35 × 18. This is done by simply
concatenating 35 feature vectors each having 18 dimensions4.

5. (DCTb, MLP) The features are the same as those in (DCTb,GMM) except that an MLP with
128 hidden units is used. Note that in this case the MLP in trained on a single feature vector
with a dimensionality of 221× 18 [22].

and for the speech experts:

1. (LFCC, GMM) This is the Linear Filter-bank Cepstral Coefficients (LFCC) obtained from
the speech data of the XM2VTS database. The GMM has 200 Gaussian components, with the
minimum relative variance of each Gaussian fixed to 0.5, and the MAP adaptation weight equals
0.1. This is the best known model currently available.

2. (PAC, GMM) The same GMM configuration as in LFCC is used. Note that in general, 200-300
Gaussian components would give about 1% of difference of HTER.

3. (SSC, GMM) The same GMM configuration as in LFCC is used.

The baseline performances are shown in Table 2.
As can be seen, among the face experiments, (DCTb,GMM) performs the best across all config-

urations while (DCTb,MLP) performs the worst. In the speech experiments, LFCC features are the
best features, followed by SSC and PAC, in decreasing order of accuracy. Regardless of strong or weak
classifiers, as long as their correlation is weak, they can be used in the VR techniques.

4.2 VR via Different Modalities, Extractors, Classifiers

Table 3 shows the results combining scores of two modalities, two extractors and two classifiers (work-
ing on the same feature space). The second to last column shows the mean HTER of each of the two

4This may explain why MLP, an inherently discriminative classifier, has worse performance compared to GMM, a
generative classifier. With high dimensionality yet having only a few training examples, the MLP cannot be trained
optimally. This may affect its generalisation on unseen examples. By treating the features as a sequence, GMM was
able to generalise better and hence is more adapted to this feature set.
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Table 3: Performance in (%) of HTER of VR via modalities on XM2VTS based on a priori selected
thresholds

(a) Face experts and (LFCC,GMM) expert

Data sets Face, Joint HTER mean min
Experts mean MLP SVM HTER HTER

LP1 Test (FH,MLP) 0.399 0.366 0.381 1.507 1.139
LP1 Test (DCTs,GMM) 0.537 0.576 0.613 2.683 1.139
LP1 Test (DCTb,GMM) 0.520 0.483 0.475 1.405 1.139
LP1 Test (DCTs,MLP) 0.591 0.611 0.587 2.249 1.139
LP1 Test (DCTb,MLP) 0.497 0.489 0.485 3.680 1.139
LP2 Test (FH,MLP) 0.151 0.150 0.389 1.580 1.300
LP2 Test (DCTb,GMM) 0.147 0.130 0.252 0.972 0.644

(b) Face experts and (PAC,GMM) expert

Data sets Face, Joint HTER mean min
Experts mean MLP SVM HTER HTER

LP1 Test (FH,MLP) 1.114 0.856 0.970 4.090 1.875
LP1 Test (DCTs,GMM) 1.407 1.425 1.402 5.266 4.227
LP1 Test (DCTb,GMM) 0.899 0.900 0.923 3.987 1.670
LP1 Test (DCTs,MLP) 1.248 1.056 1.009 4.832 3.359
LP1 Test (DCTb,MLP) 3.978 2.455 2.664 6.263 6.221
LP2 Test (FH,MLP) 1.282 0.765 0.855 4.251 1.860
LP2 Test (DCTb,GMM) 0.243 0.222 0.431 3.643 0.644

(c) Face experts and (SSC,GMM) expert

Data sets Face, Joint HTER mean min
Experts mean MLP SVM HTER HTER

LP1 Test (FH,MLP) 0.972 0.786 0.742 2.156 1.875
LP1 Test (DCTs,GMM) 1.028 1.175 1.213 3.332 2.437
LP1 Test (DCTb,GMM) 0.756 0.704 0.742 2.053 1.670
LP1 Test (DCTs,MLP) 1.167 0.829 0.850 2.898 2.437
LP1 Test (DCTb,MLP) 2.986 1.176 1.121 4.329 2.437
LP2 Test (FH,MLP) 0.901 0.302 0.404 1.937 1.860
LP2 Test (DCTb,GMM) 0.049 0.162 0.383 1.329 0.644

underlying experts while the last column shows the minimum HTER of the two experts. The three
sub-columns under the heading “joint HTER” are the HTERs of the combined experts via the mean
operator, MLP and SVM. Numbers in bold are the best HTER among the three fusion methods.
A quick examination of this table reveals that all combined experts via modalities are better than
the best underlying expert (compare min HTER with the scores in the joint HTER). However, the
combined experts via extractors and classifiers, as shown in Table 4, are not always better than their
participating experts.

4.3 VR via Virtual Samples

The experiments on VR via samples are presented differently than the rest because they cannot be
evaluated using the mean HTER and min HTER. Instead, the combined experts are compared to the
original baseline experts (compare the first row of Table 5 against the other rows). The two numbers
in bold are the best fusion technique for LP1 and LP2 configurations, respectively. The Entropy and
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Table 4: Performance in (%) of HTER of VR via extractors and classifiers on XM2VTS based on a
priori selected thresholds

Data sets (Features, Joint HTER mean min
classifiers) mean MLP SVM HTER HTER

LP1 Test (FH,MLP)
(DCTs,GMM)

1.641 1.379 1.393 3.051 1.875

LP1 Test (FH,MLP)
(DCTb,GMM)

1.123 1.151 1.528 1.772 1.670

LP1 Test (FH,MLP)
(DCTs,MLP)

1.475 1.667 1.476 2.617 1.875

LP1 Test (FH,MLP)
(DCTb,MLP)

1.948 1.933 1.938 4.048 1.875

LP1 Test (LFCC,GMM)
(SSC,GMM)

1.296 1.444 1.142 1.788 1.139

LP1 Test (PAC,GMM)
(SSC,GMM)

3.594 2.954 2.663 4.370 2.437

LP2 Test (FH,MLP)
(DCTb,GMM)

0.896 0.670 0.488 1.252 0.644

LP2 Test (LFCC,GMM)
(SSC,GMM)

1.107 1.034 1.063 1.656 1.300

LP2 Test (PAC,GMM)
(SSC,GMM)

2.614 2.316 2.125 4.328 2.013

LP1 Test (DCTs,GMM)
(DCTs,MLP)

2.873 2.486 2.697 3.793 3.359

LP1 Test (DCTb,GMM)
(DCTb,MLP)

2.898 1.532 1.471 3.946 1.670

GMM approaches are discussed in Sec. 2.6. The median technique refers to combining synthetic scores
using the median operator which is known to be robust to outlier scores. We note that the best fusion
techniques on these datasets are the entropy approach and the GMM approach for LP1 and LP2,
respectively. For LP1, the entropy approach is significantly better with 90% confidence level than the
mean operator according to the McNemar’s Test5 [28] (i.e., with a difference of 0.006 HTER% between
the two approaches). For LP2, the GMM approach is significantly better than the mean operator with
99% confidence level. This shows that exploiting the distribution of scores is better than using the
simple mean operator.

4.4 Evaluation of Experiments

Let us define two measures of gain so as to draw a summary of the experiments carried out above, as
below:

βmean =
meani(HTERi)

HTERc

(8)

βmin =
mini(HTERi)

HTERc

, (9)

5This is done by calculating ((n01 − n10)2 − 1)/(n01 + n10) > p where p is the inverse function of X 2 distribution
(with 1 degree of freedom) at a desired confidence interval (i.e., 90%), and n01 and n10 are the number of different

mistakes done by the two systems on the same accesses
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Table 5: Performance in (%) of HTER of different combination methods of synthetic scores.

Method HTER
LP1 LP2

Original 1.875 1.737
Mean 1.612 1.518

Median 1.667 1.547
GMM 1.709 1.493

Entropy 1.606 1.559

where βmean and βmin measure how many times the HTER of the combined expert c is smaller than
the mean and the min HTER of the underlying experts i = 1, . . . , N . βmean is designed to verify
Eq. 6, which is somewhat akin to α. According to the theoretical analysis presented in Sec. 2.1, α ≥ 1
should be satisfied. The βmin, on the other hand, is a more realistic criterion, i.e., one wishes to obtain
better performance than the underlying experts, but there is no analytical proof that βmin ≥ 1.

The βmean for each experiment are shown in Table 6(a) for VR via modalities, extractors and
classifiers, (b) for VR via synthetic samples and (c) for the gain ratio βmin. Note that VR via
synthetic samples cannot be evaluated with the βmin criterion. It can only be compared to its original
method (i.e., with real samples). This gain ratio can be defined as:

βreal =
HTERreal

HTERc

,

where real is the expert that takes real samples and c is the expert that combines scores obtained
from synthetic samples (in addition to the real sample).

Note that the βmean for VR via modalites are sub-divided into 3 parts according to the 3 baseline
speech experts (LFCC,GMM), (SSC,GMM) and (PAC,GMM) in a significantly decreasing order of
accuracy. In such situations, the βmean for these 3 baselines still have comparable range of values,
which are bigger than other VR techniques. One possible conclusion is that regardless of the degree of
accuracy of participating experts, as long as they are weakly correlated, high βmean can be achieved.
Although the mean operator seems to perform the best in the overall VR via modalities based on
βmean, it should be noted that out of the 27 experiments in Table 3, 4 experiments are best combined
with the mean operator, while there are 10 and 7 best results for MLPs and SVMs, respectively.
Moreover, the standard deviation of the mean operator is much larger than that of MLPs and SVMs.
In these experiments, MLP turns out to be a good candidate for fusion in most situations for VR
via modalities. It should be emphasized that the success application of MLPs or SVMs in this fusion
problem depends largely on the correct capacity estimate of cross-validation.

Note that Table 6(a) shows that βmean ≥ 1 for all fusion techniques but in (c), βmin ≥ 1 is only true
for MLPs and SVMs, but not for the mean operator, which we cannot guarantee. According to βmean

on the mean operator, VR via modalities achieves the highest gain, followed by VR via extractors,
VR via classifiers and VR via synthetic samples. A similar trend is observed in (c) according to
βmin. Such ordering is not a coincidence. It reveals that the correlation is greater and greater in
the list just mentioned. In other words, βmean is inversely proportional to the correlation of the
underlying experts. However, with MLP and SVM as non-linear fusion techniques, this ordering is
slightly perturbed because both the βmean and βmin show that VR via classifiers are better than VR
via extractors. Clearly, in highly correlated problems such as these, non-linear fusion techniques are
better than the simple mean operator (but they come at an increase in complexity).
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Table 6: Comparison of various VR techniques based on all experiments carried out using βmean, βmin

and βreal

(a) βmean of all experiments

VR Table No. Joint HTER
techniques of exp. mean MLP SVM
Modalities 3(a) 21 5.559 5.390 4.164

(all) ±5.879 ±3.287 ±1.474
3(a) 7 5.680 5.843 4.375

(LFCC) ±2.683 ±2.744 ±1.482
3(a) 7 5.086 5.999 4.694

(PAC) ±4.459 ±4.686 ±1.869
3(a) 7 5.910 4.326 3.422

(SSC) ±9.365 ±2.128 ±0.733
Extractors 4 9 1.604 1.719 1.842

±0.269 ±0.313 ±0.420
Classifiers 4 2 1.341 2.051 2.044

±0.029 ±0.742 ±0.902
Synthetic samples 5 2 1.154 MLP and SVM

±0.0002 not used; see (b)

(b) βreal of VR via synthetic samples

Methods Gain ratio
Mean 1.154 ± 0.000178

Median 1.124 ± 0.000002
GMM 1.130 ± 0.002198

Global Entropy 1.141 ± 0.001422
Local Entropy 0.854 ± 0.000028

(c) βmin of all VR techniques except synthetic samples

VR Table No. Joint HTER
techniques of exp. mean MLP SVM
Modalities 3(a) 21 3.043 3.109 2.459
Extractors 3(b) 9 1.009 1.067 1.120
Classifiers 3(c) 2 0.873 1.221 1.190

5 Conclusions

Variance reduction (VR) is an important technique to increase accuracy in regression and classifica-
tion problems. In this study, several approaches are explored to improve Biometric Authentication
systems, namely VR via modalities, VR via extractors, VR via classifiers and VR via synthetic sam-
ples. The experiments carried out on the XM2VTS database show that the combined experts due
to VR techniques always perform better than the average of their participating experts, which can
be explained by VR using the mean operator. Furthermore, all combined experts via modalities
outperform the best participating expert based on the HTER. By means of non-linear variance re-
duction techniques, i.e., the use of MLPs and SVMs for combing scores obtained from participating
experts, empirical study shows that, in average, these techniques could produce better results than
their participating experts, in the context of VR via extractors and classifiers. In the context of VR
via samples, exploiting the distribution of synthetic scores using GMM or Parzen-windows is better
than the mean operator. In short, this study shows that non-linear fusion techniques using MLPs and
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SVMs, and incorporating other a priori information (i.e., distribution of synthetic scores in the case of
synthetic samples) are vital to achieve high gain of fusion. In highly correlated situations (i.e., VR via
extractors and classifiers), non-linear fusion techniques are very useful. In weakly correalted situations
(i.e., VR via modalities), the mean operator could be feasible but non-linear fusion techniques are still
useful if the capacity search using cross-validation is reliable. As new and more powerful extraction
and classification algorithms become available, they can all be integrated into the VR framework.
Therefore, VR techniques are potentially very useful for biometric authentication.
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