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Abstract. Standard ASR systems typically use phoneme as the subword units. Preliminary stud-
ies have shown that the performance of the ASR system could be improved by using grapheme
as additional subword units. In this paper, we investigate such a system where the word models
are defined in terms of two different subword units, i.e., phoneme and grapheme. During train-
ing, models for both the subword units are trained, and then during recognition either both or
just one subword unit is used. We have studied this system for a continuous speech recognition
task in American English language. Our studies show that grapheme information used along with
phoneme information improves the performance of ASR.
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1 Introduction

State-of-the-art HMM-based Automatic Speech Recognition (ASR) systems model p(Q,X), the evo-
lution of the hidden space Q = {q1, · · · , qn, · · · qN} and the observed feature space X = {x1, · · · ,
xn, · · ·xN} also denoted XN

1 over time frame 1, · · · , N [RJ93]. The states represent the subword units
which describe the word model. Standard ASR typically use phoneme as subword units. In recent
studies, good results have been reported using grapheme as subword units.

There are certain advantages in using graphemes as subword unit such as, the word models could be
easily derived from the orthographic transcription of the word and it is relatively “noise free” as com-
pared to word models based upon phoneme units, for e.g. the word ZERO can be pronounced as /z/
/ih/ /r/ /ow/ or /z/ /iy/ /r/ /ow/; but the grapheme-based representation remains as [Z][E][R][O].
At the same time there are certain drawbacks, such as, acoustic feature vectors derived from the
smoothed spectral envelope of the speech signal typically depict the characteristics of phonemes and
there is a weak correspondence between the graphemes and the phonemes in languages such as English,
e.g., the grapheme [E] in word ZERO associates itself to phoneme /ih/, where as, in word EIGHT
it associates itself to phoneme /ey/. In [KN02], the orthographic transcription of the words are used
to map them onto acoustic HMM state models using phonetically motivated decision tree questions,
for instance, a grapheme is assigned to a phonetic question if the grapheme is part of the phoneme.
This, however, makes the modelling process complex.

In [MDSBB03], the approach to model grapheme is similar to modelling auxiliary information
[SMDB03, MDSB03]. The grapheme is treated as an auxiliary information L = {l1, · · · , ln, · · · lN} and
the evolution of the hidden spaces Q and L over X is modelled (i.e. p(Q,X, L) instead of p(Q, X)).
This system could be seen as a system where word models are described by two different subword
units, the phonemes and the graphemes. During training, models are trained for both the subword
units maximizing the likelihood of the training data. During recognition, decoding is performed using
either one or both the subword units. This system is similar to factorial HMMs [GJ97], where there
are several chains of states as opposed to a single chain in standard HMMs. Each chain has its own
states and dynamics; but the observation at any time depends upon the current state in all the chains.
In [MDSBB03], the preliminary studies conducted on isolated word recognition task showed that the
performance of the ASR could be improved by using phoneme and grapheme subword units together.

In this paper, we further investigate the system proposed in [MDSBB03] in the context of continu-
ous speech recognition task. In Section 2, we briefly describe the system we are investigating. Section 3
presents the experimental studies. Finally in Section 4, we summarize and conclude with future work.

2 Modelling Phoneme Grapheme

Standard ASR models p(Q,X) as

p(Q,X) ≈
∑

Q

N∏
n=1

p(xn|qn) · P (qn|qn−1) (1)

where qn ∈ Q = {1, · · · , k, · · · , K}, represents the phoneme.
Similarly for a system with L as the hidden space we model

p(L,X) ≈
∑

L

N∏
n=1

p(xn|ln) · P (ln|ln−1) (2)

where ln ∈ L = {1, · · · , r, · · · , R}, the grapheme set.
We are interested in an ASR where the word models are described by two different subword units,

and hence, interested in modelling the evolution of two hidden spaces Q and L (instead of just one)
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and the observed space X over time i.e. p(Q, L,X)

p(Q, L, X) ≈
X
Q

X
L

NY
n=1

p(xn|qn, ln)P (qn|qn−1)P (ln|ln−1) (3)

For such a system, the forward recurrence can be written as:

α(n, k, r)= p(qn = k, ln = r,Xn
1 )

= p(xn|qn =k, ln =r)
K∑

i=1

P (qn =k|qn−1 = i)

R∑

j=1

P (ln = r|ln−1 = j) α(n− 1, i, j) (4)

During recognition, we decode in the joint phoneme and grapheme spaces. The Viterbi decoding
algorithm that gives the best sequence in the Q and L spaces, can be written as:

V (n, k, r) = p(xn|qn = k, ln = r)max
i

P (qn =k|qn−1 = i)

max
j

P (ln = r|ln−1 = j) V (n− 1, i, j) (5)

For task such as isolated word recognition studied in [MDSBB03], this decoding step could be re-
duced to two independent decoding steps in Q and L space, respectively; but for continuous speech
recognition we need to perform 2D decoding as described above.

We are investigating the proposed system in the framework of hybrid HMM/ANN ASR [BM94].
In hybrid HMM/ANN ASR, during training a Multilayer Perceptron (MLP) is trained say, with K
output units for system in (1). The likelihood estimate is replaced by the scaled-likelihood estimate
which is computed from the output of the MLP (posterior estimates) and priors of the output units
(hand counting). For instance, p(xn|qn) in (1) is replaced by its scaled-likelihood estimate psl(xn|qn),
which is estimated as [BM94]:

psl(xn|qn) =
p(xn|qn)
p(xn)

=
P (qn|xn)

P (qn)
(6)

The emission distribution p(xn|qn = k, ln = r) of the phoneme-grapheme system could be esti-
mated in different ways, such as, we could train an MLP with K × R output units and estimate the
scaled-likelihood as

p(xn|qn = k, ln = r)
p(xn)

=
P (qn = k, ln = r|xn)

P (qn = k, ln = r)
(7)

Such a system, during training would automatically, model the association between the subword units
in Q and L. This system has an added advantage that it could be reduced to a single hidden variable
system by marginalizing any one of the hidden variables, yielding:

p(xn|qn = k)
p(xn)

=

∑R
j=1 P (qn = k, ln = j|xn)

P (qn = k)
(8)

p(xn|ln = r)
p(xn)

=
∑K

i=1 P (qn = i, ln = r|xn)
P (ln = r)

(9)

and using this scaled-likelihood estimate to decode according to (1) or (2), respectively.
Yet another approach would be to assume independence between the two hidden variables Q and

L, train two separate systems one for each phoneme and grapheme, and estimate the scaled-likelihood
as following:

p(xn|qn = k, ln = r)
p(xn)

≈psl(xn|qn=k)psl(xn|ln=r) (10)

In [MDSBB03], the phoneme-grapheme system studies were conducted in the lines of (10). In this
paper, we will be investigating phoneme-grapheme systems in the lines of both (7) and (10).
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3 Experimental Studies

Standard ASR typically use phonemes as subword units. The lexicon of an ASR contains the ortho-
graphic transcription of the word and its phonetic transcription. During decoding, standard ASR uses
the phonetic transcription only, ignoring the orthographic transcription. In this paper, we are mainly
interested in investigating the use of the orthographic information for automatic speech recognition.

We use OGI Numbers database for connected word recognition task [CFL94]. The training set
contains 3233 utterances spoken by different speakers and the validation set consists of 357 utterances.
The test set contains 1206 utterances. The vocabulary consists of 31 words with single pronunciation
for each word.

The acoustic vector xn is the PLP cepstral coefficients [Her90] extracted from the speech signal
using a window of 25 ms with a shift of 12.5 ms, followed by cepstral mean subtraction. At each
time frame, 13 PLP cepstral coefficients c0 · · · c12, their first-order and second-order derivatives are
extracted, resulting in 39 dimensional acoustic vector. All the MLPs trained in our studies take nine
frames input feature (4 frames of left and right context, each) and have the same number of parameters.

There are 24 context-independent phonemes including silence associated with Q, each modelled
by a single emitting state. We trained a phoneme baseline system (System P) via embedded Viterbi
training [BM94] and performed recognition using single pronunciation of each word. The performance
of the phoneme baseline system is given in Table 1.

There are 19 context-independent grapheme subword units including silence associated with L
representing the characters in the orthographic transcription of the words. Similar to phonemes each
of the grapheme units are modelled by a single emitting state. We trained a grapheme baseline sys-
tem (System G) via embedded Viterbi training and performed recognition experiments using the
orthographic transcription of the words. The performance of the grapheme baseline system is given
in Table 1. The phoneme baseline system performs significantly better than the grapheme baseline
system.

Table 1: Performance of phoneme and grapheme baseline systems. The performance is expressed in
terms of Word Error Rate (WER).

System # of output units WER
System P 24 9.6%
System G 19 17.8%

As suggested in Section 2, we study the two approaches to model phoneme and grapheme subword
units,

(a) Modelling the phoneme and grapheme subword units with a single MLP.

(b) Modelling the phoneme and grapheme subword units through separate MLPs.

For (a), we trained an MLP with 24× 19 = 456 output units (System PG). During training, at
each iteration, we marginalize out the phoneme information as per (9) and perform Viterbi decoding
according to (2) to get the segmentation in terms of graphemes. We performed recognition experiments
by marginalizing the grapheme subword units according to (8) and decoding according to (1), and
vice versa. The performances are given in Table 2. There is no improvement in the performance of the
phoneme system; but there is a significant improvement in the performance of the grapheme system.

We also studied systems where the phoneme is reduced to its broad-phonetic-class representation.
By broad-phonetic-class, we refer to the phonetic features, such as manner, place, height. In our studies,
we use the phonetic feature values similar to the one used in [Hos00, Chapter 7] and [MDSBB03]. The
mapping between the phonemes and the values of the broad-phonetic-class could be obtained from a
International Phonetic Alphabet (IPA) chart.
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Table 2: Performance of phoneme-only and grapheme-only system by marginalizing (hide) grapheme
and phoneme, respectively, at the output of phoneme-grapheme MLP (System PG). The performance
is expressed in terms of Word Error Rate (WER).

Subword Unit Subword Unit WER
Hidden

Phoneme Grapheme 9.6%
Grapheme Phoneme 14.5%

We studied three different grapheme-broad-phonetic-class systems corresponding to the different
broad-phonetic-classes, (1) manner (System GBM), (2) place (System GBP) and (3) height (Sys-
tem GBH). We train acoustic models for both grapheme units and values of the broad-phonetic-class
by training a single MLP via embedded Viterbi training, similar to the phoneme-grapheme MLP. We
performed recognition studies:

1. Marginalizing the broad-phonetic-class according to (9) and performing decoding just using
grapheme transcription.

2. Performing 2D decoding in the grapheme and broad-phonetic-class space according to (5).

Table 3 presents the experimental results of this study. The grapheme systems perform significantly
better than the grapheme baseline system; but the grapheme-broad-phonetic-class system performs
significantly better than all the grapheme systems.

Table 3: Performance of grapheme-broad-phonetic-class based system. The performance is expressed
in terms of Word Error Rate (WER). The results of the grapheme systems (Graph) are given in
column 3 and of the grapheme-broad-phonetic-class systems (GB) in column 4.

System Broad-phonetic WER WER
class Graph GB

System G - 17.8% -
System GBM Manner 15.3% 13.1%
System GBP Place 14.4% 11.9%
System GBH Height 15.0% 11.7%

Next, we study the performance of the phoneme-grapheme system. As mentioned earlier in this
paper, we study two different kinds of system.

(a) Modelling the phoneme and grapheme subword units through single MLP. For such a system the
scaled-likelihood is estimated as per (7) from the posterior output of the MLP and the decoding
is performed according to (5) (System PG).

(b) Assuming independence between the phoneme units and the grapheme units, i.e., modelling
them through different MLPs. The scaled-likelihood p(xn|qn, ln) is then obtained from the scaled-
likelihood estimate of phoneme units and grapheme units according to (10) and the decoding is
performed according to(5). In [MDSBB03], the best results were obtained by weighting the log
probability streams of phoneme and grapheme differently. However, in this paper we estimate
p(xn|qn, ln) exactly according to (10).

The results of this study are given in Table 4. The first row contains the performance of the phoneme
baseline system. The second row contains the performance of System PG. This system performs
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slightly poorer compared to the baseline system. The remaining rows are the results obtained for
phoneme-grapheme system where the phoneme units and grapheme units are modelled by different
MLPs. These systems perform better than the baseline system.

Table 4: Performance of phoneme-grapheme system. Columns 1 and 2 indicate from which of the MLPs
the phoneme and grapheme scaled-likelihood estimates were estimated, respectively for the system
where the independence between phoneme units and grapheme units is assumed. The performance is
expressed in terms of Word Error Rate (WER).

Phoneme Grapheme WER
System P - 9.6%

System PG System PG 9.9%
System P System PG 9.0%
System P System GBM 9.0%
System P System GBP 8.9%
System P System GBH 9.2%

4 Conclusion and Future Work

In this paper, we investigated a continuous speech recognizer which uses both phoneme and grapheme
as subword units. ASR using just grapheme as subword unit yields acceptable performance, which
could be further improved by introducing phonetic knowledge in it.

We studied two different phoneme-grapheme systems. The results obtained from phoneme-
grapheme system studies suggest that modelling phoneme and grapheme subword units, and using
them together during recognition could help in improving the performance of ASR. This has to be
further studied for large vocabulary continuous speech recognition task.

In this paper, our primary focus was upon using the grapheme information at model level. In future
work, we intend to investigate combining hypotheses generated by separate phoneme and grapheme
recognizers.

In languages such as English, there is a weak correspondence between the graphemes and the
phonemes. So, it would be worth investigating this approach for languages such as German which has
strong correspondence between the graphemes and the phonemes.
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