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Abstract. In this report we address the problem of non-frontal face verification when only a frontal
training image is available (e.g. a passport photograph) by augmenting a client’s frontal face model with
artificially synthesized models for non-frontal views. In the framework of a Gaussian Mixture Model (GMM)
based classifier, two techniques are proposed for the synthesis: UBMdiff and LinReg. Both techniques
rely on a priori information and learn how face models for the frontal view are related to face models
at a non-frontal view. The synthesis and augmentation approach is evaluated by applying it to two face
verification systems: Principal Component Analysis (PCA) based and DCTmod2 [31] based; the two systems
are a representation of holistic and non-holistic approaches, respectively. Results from experiments on the
FERET database suggest that in almost all cases, frontal model augmentation has beneficial effects for both
systems; they also suggest that the LinReg technique (which is based on multivariate regression of classifier
parameters) is more suited to the PCA based system and that the UBMdiff technique (which is based on
differences between two general face models) is more suited to the DCTmod2 based system. The results
also support the view that the standard DCTmod2/GMM system (trained on frontal faces) is less affected by
out-of-plane rotations than the corresponding PCA/GMM system; moreover, the DCTmod2/GMM system
using augmented models is, in almost all cases, more robust than the corresponding PCA/GMM system.
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1 Introduction

In the context offrontal faces, recent approaches to face recognition (here we mean both identification and
verification) are able to achieve very low error rates (e.g. [21]). A more realistic and challenging task is to verify
a face at a non-frontal view when only one (frontal) training image is available (e.g. a passport photograph).

While the task of view-independent recognition has been addressed through the use of training images (for
the person to be recognized) at multiple views (e.g. [24]), the much harder task of using only one training image
has received relatively little attention (e.g. [2, 23]). Whereas it is possible to use 3D approaches to address the
single training image problem (e.g. [1, 17]), here we concentrate on extending two well understood 2D based
techniques. In particular, we will extend the Principal Component Analysis (PCA) based approach [32] and
the recently proposed DCTmod2 based approach [31]. In both cases we employ a Gaussian Mixture Model
(GMM) based classifier [27], which is central to our extensions.

The PCA/GMM system is an extreme example of a holistic system where the spatial relation between face
characteristics (such as the eyes and nose) is rigidly kept (with the advantage of robustness to compression
artefacts & additive noise [30]). Conversely, the DCTmod2/GMM approach is an extreme example of a
non-holistic approach; here, the spatial relation between face characteristics is effectively lost (which results
in robustness to translations [4]). In between the two extremes are systems based on multiple template
matching [3], modular PCA [22, 24], Pseudo 2D Hidden Markov Models (HMMs) [10, 28] and heuristic
approaches such as Elastic Graph Matching (EGM) [8, 16].

Generally speaking, an appearance based face recognition system can be thought of as being comprised of:

1. Face localization and segmentation

2. Normalization

3. Feature extraction

4. Classification

The second stage (normalization) usually involves an affine transformation (to correct for size and rotation), but
it can also involve an illumination normalization (however, illumination normalization may not be necessary if
the feature extraction method is robust). In this paper we shall concentrate on the last stage (and thus postulate
that the preceding steps have been performed correctly).

Some approaches to addressing the single training image problem involve the synthesis of new face images
(at various angles) based ona priori information (e.g. [2, 23]). In these approaches, the image synthesis comes
before the usual step of feature extraction. A question thus arises: if we are only interested in recognition and
hence we are going to extract features from synthesized images, why not synthesize the features instead? If we
follow this line of thinking, a natural followup question is: instead of synthesizing features with which we are
going to train a classifier, why not directly synthesize the classifier’s parameters? This is in fact the central idea
of our proposed extensions, sketched below.

Usinga priori information in the form of a set of faces at different views (these faces will never be used
during performance evaluation), we construct face models for specific views (by “model” we mean a GMM);
we then find thedifferencesbetween the model for the frontal view and, say, the model for the +25o view. Let
us now suppose that we wish to enroll a new client in our face verification system and we only have their frontal
view; given a face model created from their frontal view, we can synthesize a model for +25o by applying the
a priori differences to the client’s frontal model. In order for the system to automatically handle the two views,
we then augment the client’s frontal model by concatenating it with the newly synthesized +25o model. We
can of course repeat this procedure for other views.

The proposed synthesis and augmentation approach thus differs from the approach presented in [2, 23]
where actual face images for non-frontal views were synthesized; the synthesized images shown in [2] have
considerable artefacts, which we believe can easily lead to a decrease in performance. The proposed approach



4 IDIAP–RR 03-60

is somewhat related to [20] where a feature transformation approach is employed in the context of an EGM
based classifier. We note that in [20] manual intervention is required, while our proposed approach is automatic;
moreover, unlike [20], our approach is based on a statistical framework. The augmentation part of our proposed
approach is related to [14]; the main difference being that in [14] features from the client’s manyreal images are
used to extend the client’s face model, while in our proposed approach we synthesize the models to represent
the face of a client at various non-frontal angles, without having access to the client’s real images.

The rest of the paper is organized as follows. In Section 2 we briefly describe the database used in the
experiments and the pre-processing of the images. In Sections 3 and 4 we overview the DCTmod2 and PCA
based feature extraction techniques, respectively. Section 5 provides a concise description of the GMM based
classifier and the different training strategies used when dealing with DCTmod2 and PCA based features. In
Section 6 we describe two techniques used for synthesizing non-frontal models as well as a method to address
the problem of correspondence between two GMMs. Section 7 details the process of concatenating two or more
GMMs. Section 8 is devoted to experiments evaluating the two synthesis techniques and the use of augmented
models. The paper is concluded and future work is suggested in Section 9.

2 FERET Database: Setup & Pre-Processing

In our experiments we utilized face images from the FERET database [25]. In particular, we used images from
the ba, bb, bc, bd, be, bf, bg, bh andbi subsets, which represent views of 200 persons for (approximately)
0o (frontal), +60o, +40o, +25o, +15o, -15o, -25o, -40o and -60o, respectively; thus for each person there are
nine images. Example images are shown in Fig. 1.

The 200 persons were split into three disjoint groups: group A, group B and impostor group; the impostor
group is comprised of 20 persons, resulting in 90 persons in groups A and B. Throughout the experiments,
group A is used as a source ofa priori information while the impostor group and group B are used for
verification tests (i.e. clients come from group B). Thus in each verification trial there is 90 true claimant
accesses and 90×20=1800 impostor attacks; moreover, in each verification trial the view of impostor faces
matched the testing view.

In order to reduce the effects of variations possible in real life (such as facial expressions, hair styles,
clothes and ornaments) closely cropped faces are used instead of full face images [5]. In particular, we used the
location of the eyes to normalize the inter-ocular distance and extract a 56×64 (rows× columns) face window
containing the area from the eyebrows to the nose (inclusive). Example face windows are shown in Fig. 2.

Since in this paper we are proposing extensions to existing 2D approaches, we obtain normalized face
windows for non-frontal views exactly in the same way as for the frontal view; this has a significant side effect:
for large deviations from the frontal view (such as -60o and +60o) the effective size of facial characteristics is
significantly larger than for the frontal view. The non-frontal face windows thus differ from the frontal face
windows not only in terms of out-of-plane rotation of the face, but also scale.

Figure 1: Images of subject00647 from the FERET
database for (from left to right)−60o,−40o,−25o,−15o

and0o views; note that the angles are approximate.

Figure 2:Extracted face windows from images in Fig. 1.
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Overlap (NO) Vectors (NV ) Spatial width
0 30 24
1 35 22
2 56 20
3 80 18
4 143 16
5 255 14
6 621 12
7 2585 10

Table 1:Number of DCTmod2 feature vectors extracted from a 56×64 face usingNP =8 and varying overlap; also shows
the effective spatial width (& height) in pixels for each feature vector.

3 Feature Extraction: DCTmod2 Based System

In DCTmod2 feature extraction [31] a given face image is analyzed on a block by block basis; each block is
NP×NP (here we useNP =8) and overlaps neighboring blocks byNO pixels. Each block is decomposed in
terms of 2D Discrete Cosine Transform (DCT) basis functions [13]. A feature vector for each block is then
constructed as:

~x =
[

∆hc0 ∆vc0 ∆hc1 ∆vc1 ∆hc2 ∆vc2 c3 c4 ... cM−1

]T
(1)

wherecn represents then-th DCT coefficient, while∆hcn and∆vcn represent the horizontal & vertical delta
coefficients respectively; the deltas are computed using DCT coefficients extracted from neighboring blocks.
Compared to traditional DCT feature extraction [10], the first three DCT coefficients are replaced by their
respective horizontal and vertical deltas in order to reduce the effects of illumination changes, without losing
discriminative information. In this study we useM=15 (choice based on [31]), resulting in an18 dimensional
feature vector for each block.

The degree of overlap (NO) has two effects: the first is that as overlap is increased the spatial area used
to derive one feature vector is decreased; the second is that as the overlap is increased the number of feature
vectors extracted from an image grows in a quadratic manner. Table 1 shows the amount of feature vectors
extracted from56× 64 face using our implementation of the DCTmod2 extractor.

As will be shown later, the larger the overlap (and hence the smaller the spatial area for each feature vector),
the more the system is robust to out-of-plane rotations.

4 Feature Extraction: PCA Based System

In PCA based feature extraction [32], a given face image is represented by a matrix containing grey level pixel
values; the matrix is then converted to a face vector,~f , by concatenating all the columns; aD-dimensional
feature vector,~x, is then obtained by:

~x = UT (~f − ~fµ) (2)

whereU containsD eigenvectors (corresponding to theD largest eigenvalues) of the training data covariance
matrix, and~fµ is the mean of training face vectors. In our experiments we use frontal faces from group A to
find U and ~fµ. If robustness to illumination changes is required, an extension such asenhanced PCAcan be
utilized [30].

It must be emphasized that in the PCA based approach, one feature vector represents the entire face, while
in the DCTmod2 approach one feature vector represents only a small portion of the face.
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5 GMM Based Classifier

The distribution of training feature vectors for each person is modeled by a GMM. Given a claim for clientC ’s
identity and a set of (test) feature vectorsX = {~xi}NV

i=1 supporting the claim, the average log likelihood of the
claimant being the true claimant is found with:

L(X|λC) =
1

NV

∑NV

i=1
log p(~xi|λC) (3)

where:

p(~x|λ) =
∑NG

j=1
wj N (~x; ~µj ,Σj) (4)

λ = {wj , ~µj ,Σj}NG

j=1 (5)

Here,N (~x; ~µ,Σ) is aD-dimensional Gaussian function with mean~µ and diagonal covariance matrixΣ:

N (~x; ~µ,Σ) =
1

(2π)
D
2 |Σ| 12 exp

(−1
2

(~x− ~µ)T Σ−1(~x− ~µ)
)

(6)

λC is the parameter set for clientC, NG is the number of Gaussians andwj is the weight for Gaussianj (with
constraints

∑NG

j=1 wj = 1 and∀ j : wj ≥ 0).
Given the average log likelihood of the claimant being an impostor,L(X|λC), an opinion on the claim is

found using:
Λ(X) = L(X|λC)− L(X|λC) (7)

The verification decision is reached as follows: given a thresholdt, the claim is accepted whenΛ(X) ≥ t

and rejected whenΛ(X) < t. In our experiments we use a global threshold to obtain performance as close as
possible to the Equal Error Rate (EER) (i.e. where the false rejection rate is equal to the false acceptance rate),
following the popular practice used in the speaker verification field [7, 11].

Methods for obtaining the parameter set for the impostor model (λC) and each client are described in the
following sections.

5.1 Classifier Training: DCTmod2 Based System

First, a Universal Background Model (UBM) is trained with a form of the Expectation Maximization (EM)
algorithm [6, 9] usingall 0o data from group A; here the EM algorithm tunes the model parameters to optimize
the Maximum Likelihood (ML) criterion (i.e. so that the likelihood of the training data is maximized).

The parameters (λ) for each client model are then found by using the client’s training data and adapting the
UBM (the number of Gaussians is varied in the experiments); the adaptation is accomplished using a different
form of the EM algorithm, often referred to as maximuma posteriori (MAP) estimation [12, 27]. The two
instances of the EM algorithm are summarized in appendixes A and B.

Since the UBM is a good representation of a general face, it is also used to find the likelihood of the claimant
being an impostor, i.e.:

L(X|λC) = L(X|λubm) (8)

5.2 Classifier Training: PCA Based System

The image subset from the FERET database that is utilized in this work has only one frontal image per person;
in PCA-based feature extraction, this results in only one training vector, leading to necessary constraints in the
structure of the classifier and the classifier’s training paradigm.
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The UBM and all client models (for frontal faces) are constrained to have only one component (i.e. one
Gaussian). As for the DCTmod2 system (described above), the parameters for the UBM are found by running
the EM algorithm on all data from group A. Instead of MAP estimation, each client model inherits the
covariance matrix from the UBM; moreover, the mean of each client model is taken to be the single training
vector for that client.

6 Synthesizing Models for Non-Frontal Views

6.1 UBMdiff Technique

Let us suppose that we have two UBMs,λ0o

ubm andλ+25o

ubm (trained usinga priori data) that describe a general
face for a view at0o and +25o, respectively. Let us define the set of parameters which describes the difference
between the two UBMs as:

∆+25o

=
{

w+25o

∆,i , ~µ+25o

∆,i , ~σ+25o

∆,i

}NG

i=1
(9)

The parameters are defined as:

w+25o

∆,i = w+25o

ubm,i/w0o

ubm,i (10)

~µ+25o

∆,i = ~µ+25o

ubm,i − ~µ0o

ubm,i (11)
(
~σ+25o

∆,i

)T

= [ σ∆,i,d ]Dd=1 =
[
Σ+25o

ubm,i,(d,d)/Σ
0o

ubm,i,(d,d)

]D

d=1
(12)

whereΣ+25o

ubm,i,(d,d) denotes the element at rowd and columnd (i.e. d-th diagonal) ofΣ+25o

ubm,i. Since the two
UBMs are a good representation of a general face at the two views, and each client model is derived from the
0o UBM, it is reasonable to assume that we can apply the above difference to clientC ’s 0o model to synthesize
a +25o model. Formally, the parameters for the +25o model are:

λ+25o

C =
{

w+25o

C,i , ~µ+25o

C,i ,Σ+25o

C,i

}NG

i=1
(13)

and are synthesized using:

w+25o

C,i = ŵ+25o

C,i /γ (14)

~µ+25o

C,i = ~µ0o

C,i + ~µ+25o

∆,i (15)

Σ+25o

C,i,(d,d)

∣∣∣
D

d=1
= Σ0o

C,i,(d,d)σ
+25o

∆,i,d

∣∣∣
D

d=1
(16)

where the non-diagonal elements ofΣ+25o

C,i are set to zero and

ŵ+25o

C,i = w0o

C,i w+25o

∆,i (17)

γ =
NG∑

i=1

ŵ+25o

C,i (18)

As can be seen, theγ is a scale factor used to ensure that synthesized weights sum to unity. We can of course
use the above procedure to synthesize models for angles other than +25o.
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6.2 LinReg Technique

Let us suppose that we have the following multi-variate linear regression model:

Y=XB (19)


~y T
1

~y T
2
...

~y T
n


=




~x T
1 1

~x T
2 1
...

~x T
n 1







β(1,1) · · · β(1,D)

β(2,1) · · · β(2,D)

...
...

...
β(D+1,1) · · · β(D+1,D)


 (20)

wheren > D + 1, with D being the dimensionality of each~y and~x. B is a matrix of unknown regression
parameters; under the sum-of-least-squares regression criterion,B can be found using [15]:

B =
(
XT X

)−1
XT Y (21)

Given a set ofa priori models (from group A), representing faces at0o and +25o, we can thus find the
relation between the means (and diagonal covariances) for the two angles; specifically, we findBµ,i andBΣ,i

(i=1,2,· · · ,NG). We can then synthesize model parameters for +25o [c.f. Eqn. (13)] from clientC ’s 0o model
using:

w+25o

C,i = w0o

C,i (22)

~µ+25o

C,i = [ (~µ0o

C,i)
T 1 ] Bµ,i (23)

diag(Σ+25o

C,i ) = [ diag(Σ0o

C,i)
T 1 ] BΣ,i (24)

where the non-diagonal elements ofΣ+25o

C,i are set to zero. It must be noted that unlike the UBMdiff technique
(Section 6.1), there is no guarantee that the diagonal elements ofΣ+25o

C,i are> 0; thus after synthesis, any
diagonal elements which are≤ 0 are set to a small positive value (1−25). By the same token, the weights for
the +25o model are merely copied from the0o model (while this seems drastic, the weights have only a minor
influence on performance [27]).

6.3 The Model Correspondence Problem

The UBMdiff and LinReg synthesis techniques pre-suppose that there is a correspondence between components
of the client’s0o model, the0o UBM, the +25o UBM and all models for group A (loosely speaking, by
correspondence we mean that corresponding components in all three models describe the same areas of the
face). This is true when there is one Gaussian in each model (as for the PCA based system). However, under
traditional training paradigms (as described in Section 5.1), this is generally not true when there is two or more
Gaussians.

To address this issue, we propose the following modified training paradigm. Instead of training the +25o

UBM directly using the ML criterion, we instead adapt the0o UBM using a modified form of MAP estimation;
moreover, whenever adapting any client model from any UBM, the modified MAP estimation is also used.

Traditional MAP estimation by itself will not help with the correspondence problem, as for GMMs it is
a form of probabilistic clustering (albeit constrained clustering). During clustering, the Gaussians tend to
“wander” around before converging to a solution1. We illustrate the wandering problem as follows: let’s say
we have a 32 Gaussian0o UBM and we adapt it to create a +25o UBM; after convergence, it is quite possible
for, say, the tenth Gaussian of the +25o UBM to be the “closest” to the first Gaussian of the0o UBM; moreover,
it is also possible to have more than one Gaussian in the +25o UBM that is the “closest” to a given Gaussian
in the0o UBM. Due to the “wandering” problem, there is no guarantee that the first Gaussian from the +25o

1It must be noted that this observed behaviour is counter-intuitive; it is under further investigation.
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UBM corresponds to the first Gaussian from the0o UBM (or in other words, the first Gaussian from the +25o

UBM may be modeling a completely different area of the face when compared to the first Gaussian from the
0o UBM).

Before describing the modification to the MAP estimation, let us first define a “parent UBM” as the UBM
to be adapted and a “child UBM” as the UBM that resulted from adapting a “parent UBM”; in a similar vein,
let us define a “parent Gaussian” as a Gaussian from the “parent UBM” and a “child Gaussian” as the Gaussian
that resulted from a particular “parent Gaussian” through the process of adaptation. moreover, let us define the
distance between two Gaussians as the Mahalanobis distance [9] between their means:

M (~µa, ~µb) = (~µa − ~µb)T Σ−1
all (~µa − ~µb) (25)

whereΣall is the overall covariance matrix of the “parent UBM”; we shall assume that it is a diagonal matrix.
It can be shown that thed-th diagonal element (Σall,(d,d)) is found using:

Σall,(d,d) = −µ2
all,(d) +

NG∑

i=1

wi

(
Σi,(d,d) + µi,(d)

)
(26)

whereµall,(d) is thed-th element of~µall , which is in turn found using~µall =
PNG

i=1 wi~µi. Here,{wi, ~µi,Σi}NG
i=1

are the components of the “parent UBM”.
Lastly, let us define a measure which will be used for checking whether any “child Gaussian” is closer to

someone else’s parent rather than its own parent:

ψ =
NG∑

i=1

NG∑

j=1

S (
kM(~µ child

i , ~µ parent
i )−M(~µ child

i , ~µ parent
j )

)

−2NG (27)

wherek > 1 and

S(a) =
{

+1 if a > 0
−1 if a ≤ 0

(28)

k designates how close a “child Gaussian” can be to someone else’s parent; ifk=2, then it is closer than two
times the distance between the parent in question and the parent’s true child.

To address the “wandering” problem we modify the EM algorithm for MAP estimation (shown in
Appendix B) by introducing an early stopping criterion: from the second iteration onwards, we check if
ψ 6=−N2

G after each maximization step; if the condition is satisfied we restore the parameters from the last
iteration and deem that we have converged. The check is enabled from the second iteration onwards since we
wish at least for some adaptation to occur (otherwise it would be possible for the “child UBM” to be the same
as the “parent UBM”). In this work we usek=2 (choice based on preliminary experiments).

7 Augmenting Frontal Models

A composite model for clientC is created by augmenting the client’s frontal model (λ0o

C ) as follows:

λaug
C = λ0o

C t λ+60o

C t λ+40o

C · · · t λ-40o

C t λ-60o

C

= ti∈Aλi
C (29)

where
A = { 0o, +60o, +40o, +25o, +15o, -15o, -25o, -40o, -60o } (30)
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andt is an operator for joining GMM parameter sets. Let us suppose we have two GMM parameter sets,λx

andλy, comprised of parameters forNx,G andNy,G Gaussians, respectively. Thet operator is defined as
follows:

λz = λx t λy

= {αwx,i, ~µx,i, Σx,i}Nx,G

i=1 ∪ {βwy,i, ~µy,i, Σy,i}Ny,G

i=1 (31)

where:

α = Nx,G/(Nx,G + Ny,G) (32)

β = 1− α (33)

Here the non-frontal models can be synthesized from the client’s frontal model using the UBMdiff or LinReg
techniques (Section 6).

8 Experiments and Discussion

8.1 PCA Based System

In the first experiment we studied how the dimensionality of the feature vectors used in the PCA system affects
robustness to varying pose. The higher the dimensionality, the more accurately the face image is represented;
we conjecture that as more accurately the face is represented, the more the system will be affected by varying
pose. Client models were trained on frontal faces and tested on faces from -60o to +60o views; impostor faces
matched the testing view. Results for -60o to 0o are shown in Fig. 3 (the results for0o to +60o, not shown here,
have very similar trends).

As can be observed, a dimensionality of 40 is required to achieve perfect verification on frontal faces (this
agrees with results presented in [28]). For non-frontal faces at±60o and±40o, the error rate generally increases
as the dimensionality is increased, saturating when the dimensionality is about 15; hence there is somewhat of
a trade-off between the error rate on frontal faces and non-frontal faces, controlled by the dimensionality. Since
in this work we are pursuing extensions to standard 2D approaches, the dimensionality has been fixed at 40
for further experiments (using a lower dimensionality of, say, 4, offers better (but still poor) performance for
non-frontal faces, however it comes at the a cost of an EER of about 10% on frontal faces, which is unacceptable
in real life applications).

In the second experiment we evaluated the performance of models synthesized using UBMdiff and LinReg
techniques; The client models were synthesized for a given test angle; this pre-supposes that we know what
the test angle isa priori, but is nevertheless useful for comparing performance with augmented models. As
can be seen from the results presented in Fig. 4, both techniques perform better than the standard system and
the LinReg technique offers significantly better performance than UBMdiff. We conjecture the reason for the
betterness of the LinReg technique as follows: the UBMdiff technique only utilizes the difference between two
general models, while the LinReg technique utilizes the differences between two sets of models (90 models for
a frontal view and 90 models for a non-frontal view); in effect, the LinReg technique utilizes more information
than the UBMdiff technique (in the form of 180 mean vectors instead of two) and is thus able to synthesize
the non-frontal models more accurately. While the LinReg technique does not guarantee that valid covariance
matrices will be generated, for the case of the PCA based system no such problem occurred; we conjecture
that this is due to the constrained training strategy (Section 5.2), where client models inherited their covariance
matrix from the UBM; in effect the LinReg technique uses information from two covariance matrices instead
of 180.

In the third experiment we augmented each client’s frontal model with models (for the eight non-frontal
views) synthesized by the LinReg technique; since each frontal model was constrained to have one Gaussian,
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Figure 3: Performance of PCA based system (trained
on frontal faces) for increasing dimensionality and the
following angles: -60o, -40o, -25o, -15o and0o (frontal).
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Figure 4: Performance of various PCA based systems:
standard, UBMdiff, LinReg and augmented; the standard
system used original frontal client models only; UBMdiff
and LinReg systems used client models synthesized
specifically for a given test angle; the augmented system
used client models comprised of original frontal and
synthesized side models (via LinReg technique).

each resulting augmented model had nine Gaussians. From the results shown in Fig. 4, we can see that there is
little difference between using client models specifically synthesized for a given test angle and the augmented
models, which cover all the test angles. These results thus support the use of frontal models augmented with
synthesized models.

8.2 DCTmod2 Based System
In the first experiment we studied how the overlap setting in the DCTmod2 feature extractor and number of
Gaussians in the classifier affects performance & robustness. Client models were trained on frontal faces and
tested on faces at0o and +40o views; impostor faces matched the testing view. Results are shown in Figs. 5
and 6.

As we can see, when testing with frontal faces, the general trend is that as the overlap increases more
Gaussians are needed to decrease the error rate (which can be interpreted as follows: the smaller the spatial
area used by the features, the more Gaussians are required to adequately model the face). When testing with
non-frontal faces, the general trend is that as the overlap increases, the lower the error rate; there is also a less
defined trend when the overlap is 4 pixels or greater: the more Gaussians, the lower the error rate2. While not
shown here, the DCTmod2 based system obtained similar trends for non-frontal views other than +40o.

The best performance for +40o faces is achieved with an overlap of 7 pixels and 32 Gaussians, resulting in
an EER close to 10%. This is quite impressive. considering that the EER of the standard PCA based system is
around 35%; for the PCA system utilizing synthesized models the EER is around 15%. The robustness of the
standard DCTmod2/GMM system can be attributed to two aspects:

1. The small spatial area (especially with an overlap of 7) used by each feature vector, results in out-of-plane
rotations having a smaller effect on DCTmod2 features when compared to PCA based features (which
describe the entire face).

2. The loss of spatial relation between face characteristics (due to use of the GMM classifier), resulting in
the “movement” of facial characteristics (due to out-of-plane rotations) having relatively little effect.

2This is true up to a point: eventually the error rate will go up as there will be too many Gaussians to train adequately with the limited
amount of data.
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Figure 5: Performance of standard DCTmod2 based
system trained and tested on frontal faces, for varying
degrees of overlap and number of Gaussians.
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Figure 6: Performance of standard DCTmod2 based
system trained on frontal faces and tested on +40o faces,
for varying degrees of overlap and number of Gaussians.

For further experiments we have chosen the configuration of 7 pixel overlap and 32 Gaussians. While this
does not achieve perfect verification rate on frontal faces, the EER is quite low at 1.67%; moreover, as will be
shown in the next experiment, the EER is close to zero when the modified MAP estimation is used (described
in Section 6.3).

In the second experiment we evaluated the effects of modified MAP estimation. From the results presented
in Fig. 7 we can see that utilizing the modified training has no adverse effects on the performance when
compared to original MAP estimation.

In the third experiment we evaluated the performance of models synthesized via the UBMdiff technique,
using both original and modified training. In order to provide a fair comparison with the LinReg technique
in later experiments, synthesis of weights was not done; instead, the weights for non-frontal models were
copied from the frontal model. As shown in Fig. 7, using original training causes the UBMdiff technique to
fall apart (the results are worse than the standard approach); in contrast, using the UBMdiff technique with
modified MAP estimation reduces the error rate in almost all cases. These results thus suggest that the model
correspondence problem (described in Section 6.3) is effectively addressed via the modified MAP estimation;
the results also suggest that the UBMdiff technique is useful for synthesizing models.

In the fourth experiment we evaluated the use of the LinReg technique for synthesizing models; results
are presented in Fig. 8. It can be seen that the performance is worse than the UBMdiff technique; a possible
cause of this has been alluded in Section 6.2: there is no guarantee that valid covariance matrices will be
generated. Indeed, during model synthesis it was found that many elements of the covariance matrices had
negative values, and were thus set to a small positive value; this obviously has the effect of making any model
less precise, leading to worse performance.

In the fifth experiment we augmented each client’s frontal model with models synthesized by the UBMdiff
technique for the following angles:±60o, ±40o and±25o. Synthesized models for±15o were not used
since they provided no performance benefit over the0o model. Since each frontal model was set to have 32
Gaussians, each resulting augmented model had 224 Gaussians. From the results shown in Fig. 8, we can see
that there is little difference between using client models specifically synthesized for a given test angle and the
augmented models, which cover all the test angles. Like in the case for the PCA based system, these results
support the use of frontal models augmented with synthesized models.
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Figure 8: Performance of various DCTmod2 based
systems: UBMdiff, LinReg and augmented; UBMdiff and
LinReg systems used client models synthesized specifically
for a given test angle; the augmented system used client
models comprised of original frontal and synthesized side
models (via UBMdiff technique).

8.3 PCA/GMM vs DCTmod2/GMM

Since in this work we have evaluated two significantly different face verification systems (PCA based and
DCTmod2 based), it would be interesting to compare their performance. The results shown in Fig. 9 (created
by reusing results from previous experiments) suggest the following:

1. The standard DCTmod2/GMM system (trained on frontal faces) is less affected than the corresponding
PCA/GMM system.

2. In almost all cases, frontal model augmentation has beneficial effects for both systems.

3. Except for the extreme views at±60o, the DCTmod2/GMM system using augmented models is more
robust than the corresponding PCA/GMM system.

9 Conclusions and Future Work

In this work we proposed to address the problem of non-frontal face verification when only a frontal training
image is available (e.g. a passport photograph) by augmenting a client’s frontal face model with artificially
synthesized models for non-frontal views. In the framework of a GMM based classifier, two techniques
were proposed for the synthesis: UBMdiff and LinReg. Both techniques rely ona priori information and
learn how face models for the frontal view are related to face models at a non-frontal view. The synthesis
and augmentation approach was evaluated by applying it to two face verification systems: PCA based and
DCTmod2 based; the two systems are a representation of holistic and non-holistic approaches, respectively.

Experimental results suggest that in almost all cases, frontal model augmentation has beneficial effects
for both systems; they also suggest that the LinReg technique (which is based on multivariate regression of
classifier parameters) is more suited to the PCA based system and that the UBMdiff technique (which is based
on differences between two general face models) is more suited to the DCTmod2 based system. The results
also support the view that the standard DCTmod2/GMM system (trained on frontal faces) is less affected by
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Figure 9:Performance comparison of standard PCA, augmented PCA, standard DCTmod2 and augmented DCTmod2.

out-of-plane rotations than the corresponding PCA/GMM system; moreover, except for the extreme views at
±60o, the DCTmod2/GMM system using augmented models is more robust than the corresponding PCA/GMM
system.

Currently in the DCTmod2/GMM approach each Gaussian often models disjoint face areas that are similar
in texture (see Appendix A in [29]). This may not be optimal when dealing with out-of-plane face rotations
as different parts of face may very well undergo different transformations. Better performance may be
obtained if the Gaussians are constrained to model non-disjoint areas; to some extent this could be achieved by
incorporating positional information in each feature vector (i.e. augmenting each DCTmod2 vector with the
row and column of where it comes from); another possibility it to use a 2D Hidden Markov Model (HMM)
based classifier [10, 28] in place of the GMM classifier.

Finally we note that, in the context of generative models (such as the GMM), there are probably more
principled ways3 (than UBMdiff and LinReg) of utilizinga priori information; however, the techniques
presented here show that it’s possible to effectively utilizea priori information directly in the model domain,
rather than in the image domain.

Appendix A. EM: Maximum Likelihood

Given a set of training vectors,X = {~xi}NV
i=1, the GMM parameters (λ) are estimated using the Maximum

Likelihood (ML) principle:
λ = arg max

λ̂
p(X|λ̂) (34)

The estimation problem can be solved using a form of the Expectation Maximization (EM) algorithm [6,
9]. The EM algorithm for GMMs is comprised of iterating two steps: theexpectationstep, followed by the
maximizationstep. GMM parameters generated by the previous iteration (λold ) are used by the current iteration
to generate a new set of parameters (λnew ), such that:

p(X|λnew ) ≥ p(X|λold) (35)

The process is usually repeated until convergence (the parameters have not changed from one iteration to the
next), or until the increase in the likelihood after each iteration falls below a pre-defined threshold, or until the
number of iterations is equal to a pre-defined maximum. Reynolds [26] showed that the EM algorithm generally

3We are currently evaluating techniques based on Maximum Likelihood Linear Regression [18, 19].
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converges in 10 to 15 iterations, with further iterations resulting in only minor increases of the likelihood
p(X|λ); this has also been the authors’ experience with various types of data. In our implementation we have
therefore limited the number of iterations to 20. The algorithm is summarized as follows:

Expectation step:
for k = 1, · · · , NG: for i = 1, · · · , NV :

lk,i =
wkN (~xi; ~µk,Σk)∑NG

n=1 wnN (~xi; ~µn,Σn)
(36)

for k = 1, · · · , NG:

Lk =
∑NV

i=1
lk,i (37)

ŵk = Lk/NV (38)

~̂µk =
1

Lk

∑NV

i=1
~xi lk,i (39)

Σ̂k =
1

Lk

(∑NV

i=1
~xi~x

T
i lk,i

)
− ~̂µk~̂µT

k (40)

Maximization step:

{wk, ~µk,Σk}NG

k=1 = {ŵk, ~̂µk, Σ̂k}NG

k=1 (41)

The initial estimate (i.e. the seed) is typically provided by thek-means clustering algorithm [9]. It must be
noted that the above implementation of EM can also be interpreted as an unsupervised probabilistic clustering
procedure, withNG being the assumed number of clusters.

Appendix B. EM: MAP Estimation

The main difference between ML and MAP estimation is in the use ofa priori distribution (f(λ̂)) of the
parameters to be estimated [c.f. Eqn. (34)]:

λ = arg max
λ̂

p(X|λ̂) f(λ̂) (42)

The above estimation problem can be also solved using the EM algorithm, albeit in a different form to the one
described in Appendix A; this form is often referred to as maximuma posterioriestimation [12, 27], and is
summarized as follows.

Given UBM parametersλubm = {w̃k, ~̃µk, Σ̃k}NG
k=1 and a set of training feature vectors for a specific client,

X = {~xi}NV
i=1, the estimated weights (ŵk), means (̂~µk), and covariances (̂Σk) are found as per Eqns. (38)-(40).

The maximization step (fork = 1, · · · , NG) is then defined as:

wk = [αŵk + (1− α)w̃k] γ (43)

~µk = α~̂µk + (1− α)~̃µk (44)

Σk =
[
α
(
Σ̂k + ~̂µk~̂µT

k

)
+ (1−α)

(
Σ̃k + ~̃µk~̃µT

k )
)]
−~µk~µT

k (45)

whereγ is a scale factor to make sure the weights sum to one.α= Lk
Lk+r

is a data-dependent adaptation coefficient
[Lk is found using Eqn. (37)], wherer is a fixed relevance factor [27]; in our experiments we usedr=256 (choice
based on preliminary experiments).

As can be seen, the new parameters are simply a weighted sum ofa priori statistics and new statistics.
Here,α can be interpreted as the amount of faith we have in the new statistics. The choice ofα= Lk

Lk+r
causes
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the adaptation of only the Gaussians for which there is “sufficient” data; in other words, the MAP estimation
approach for finding GMM parameters should be robust to limited amount of training data.

Since the ML EM algorithm for GMMs is a form of unsupervised probabilistic clustering, the MAP EM
algorithm is also a form of unsupervised probabilistic clustering, albeit it is constrained.
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