

E
S

E
A

R
C

H
R

E
P

R
O

R
T

I
D

I
A

P

D a l l e M o l l e I n s t i t u t e

for Perceptua l Art i f i c ia l

Intelligence • P.O.Box 592 •
Martigny •Valais • Switzerland

phone +41− 27− 721 77 11

fax +41− 27− 721 77 12

e-mail secretariat@idiap.ch

internet http://www.idiap.ch

Online Policy Adaptation
for Ensemble Classifiers

Christos Dimitrakakis a Samy Bengio b

IDIAP–RR 03-69

December 2003

a IDIAP, CP952, 1920 Martigny, Switzerland, dimitrak@idiap.ch
b IDIAP, CP952, 1920 Martigny, Switzerland, bengio@idiap.ch

IDIAP Research Report 03-69

Online Policy Adaptation for Ensemble

Classifiers

Christos Dimitrakakis Samy Bengio

December 2003

Abstract. Ensemble algorithms can improve the performance of a given learning algorithm
through the combination of multiple base classifiers into an ensemble. In this paper, the idea
of using an adaptive policy for training and combining the base classifiers is put forward. The
effectiveness of this approach for online learning is demonstrated by experimental results on several
UCI benchmark databases.

IDIAP–RR 03-69 1

1 Introduction

The problem of pattern classification has been attacked in the past using supervised learning methods.
In this context, a set of N example patterns DN = {(x1, y1), (x2, y2), ..., (xN , yN)}, is presented to the
learning machine, which adapts its parameter vector so that when input vector xi is presented to it,
the machine outputs the corresponding class yi.

Let us denote the output of a learning machine for a particular vector xi as h(xi). The classification
error for that particular example can be designated as εi = [h(xi) 6= yi]. Thus, the classification error
for the set of examples DN can be summarised as the empirical error L̂ = 1/N

∑
i εi, where N is the

number of instances in DN .
In general, if DN is a sufficiently large representative sample taken from a distribution D, then

the generalization error L =
∫

pD(x)ε(x) would be close to L̂. In practice the training set provides
limited sampling of the distribution D, leading to problems such as overfitting. Adding the effect of
classifier’s inherent bias and variance, ultimately it will be true that L > L̂.

The generalization error cannot be directly observed, so it has been common to use a part of
the training data for validation for its estimation. This has led to the development of techniques
mainly aimed at reducing overfitting caused by limited sampling, such as early stopping and K-fold
cross-validation.

An alternative solution is offered by ensemble methods, such as the mixtures of experts architecture
[7], bagging [4] and boosting [6]. The boosting algorithm AdaBoost in particular, has been shown to
significantly outperform other ensemble techniques. Theoretical results explaining the effectiveness of
AdaBoost relate it to the margin of classification [11].

The margin distribution for the general two class case can be defined as marginf (x, y) = yf(x),
where x ∈ X , y ∈ {−1, 1} and f : X → [−1, 1]. In general, the hypothesis h(x) can be derived from
f(x) by setting h(x) = sign(f(x)). In this case, |f(x)| can be interpreted as the confidence in the
label prediction. For the multi-class case, we assume that label with the highest output is predicted,
i.e. yx = argmaxyfy(x) and thus:

marginf (x, y) = fy(x)−max
y 6=y′

fy′(x). (1)

Thus the classification margin is a particular classification decision’s distance from the decision
threshold. A particularly useful measure is the minimum margin over the set DN , i.e.

marginmin(DN) = min
(x,y)∈DN

marginf (x, y).

It is argued [11] that AdaBoost is indirectly maximising this margin, leading to more robust
performance. Although there exist counterexamples for which the minimum margin is not an adequate
predictor of generalisation [5], attempts to apply algorithms that directly maximise the margin have
obtained some success[10, 9].

In this work, the possibility of using an adaptive, rather than a fixed, policy for training and
combining base classifiers is investigated. The field of reinforcement learning [12] provides natural
candidates for use in adaptive policies. In particular, the policy is adapted using Q-learning [13],
a method that improves a policy through the iterative approximation of an evaluation function Q.
Previously, Q-learning has been applied in a similar mixture model applied to a control task [1]. An
Expectation Maximisation based mixtures of experts (MOE) algorithm for supervised learning was
presented in [8]. In this paper, we attempt to solve the same task as in the standard MOE model, but
through the use of reinforcement learning rather than expectation maximization techniques.

In the rest of this paper, the framework of Reinforcement Learning will be introduced in section 2.
Section 2.1 outlines how the RL methods are employed in this work and describes how the system
is implemented. Experiments are described in section 3, followed by conclusions and suggestions for
future research.

IDIAP–RR 03-69 2

2 General Architecture

The Reinforcement Learning classifier ensemble consists of a set of n base classifiers, or experts,
E = {e1, e2, ..., en} and a controlling agent. By recasting the classification problem as a control
problem, it is possible to apply reinforcement learning techniques to implement the agent. The agent
will be given the task of making a classification decision based on the output hi of each expert ei and
to the problem of choosing which experts to train on a particular example.

For the controlling agent we define a set of states, s ∈ S, a set of actions a ∈ A, with A =
{a1, a2, ..., an}.

At each time step t, the agent is at state s and can choose any action from A. After the action is
taken, the agent receives a reward rt and it enters a new state, s′.

The aim is to maximise the discounted future return of the system, starting at time t:

Rt =
∞∑

k=0

γkrt+k+1

where γ ∈ [0, 1) is a discount factor.
A policy π : (S,A) → [0, 1], is defined as the set of probabilities

π =
{

p(aj |s)
∣∣∣(aj , s) ∈ (A,S)

}

for selecting an action aj given the state s.
We define Qπ(s, aj), with Qπ : (S,A) → <, as the expected return when taking action aj and

following π thereafter.

Qπ(s, aj) = Eπ

{ ∞∑

k=0

γkrt+k+1

∣∣∣st = s, at = aj

}

Since Qπ is unknown, we evaluate it by maintaining an estimate Q. Our aim then is to improve
these estimates by exploring the state-action space, while at the same time improving the policy π,
based on the updated estimates.

A policy π can be derived from the evaluations Q(s, a) either deterministically, by always selecting
the action aj with the largest expected return, or stochastically. ε−greedy action selection selects the
highest evaluated action with probability (1− ε), with ε ∈ [0, 1], otherwise it selects a random action.
Softmax action selection selects action aj with probability eQ(s,aj)/

∑
i eQ(s,ai). After the action is

taken, the next state s′ is observed and the current evaluation is adjusted according to:

Q(s, aj) ← Q(s, aj) + α(r + γ max
i

Q(s′, ai)−Q(s, aj)) with α > 0. (2)

2.1 Implementation

We employ an architecture with n experts, implemented as multi-layer perceptrons (MLPs), and a
further MLP with n outputs and parameters θ which acts as the controlling agent. At each time
step t a new example x is presented to the ensemble and each expert ei emits a decision hi(x). The
state space of the controlling agent is S ≡ X , the same as the classifiers’ input space. Its outputs
approximate Q(s, aj) in order to select actions from A. We examine the case in which each action aj

corresponds to selecting expert ej for training on the current example.
The decisions of the experts themselves can be combined with a weighted sum: f(x) =

∑
i wihi(x),

where wi = eQ(x,ai)P
j eQ(x,aj) . Alternatively we can make hard decisions by setting f(x) = hj(x), where

j = arg maxi Q(s, ai). The classification decision results in a return r ∈ {0, 1}, which is 1 if f(x) = y
and 0 otherwise.

IDIAP–RR 03-69 3

The Q-learning update remains essentially the same as in (2), but because of the parameterised
representation, we perform gradient descent to update our estimates, with the back-propagated error
being δ = r + γ maxi Q(s′, ai) − Q(s, aj) and learning rate α > 0. The algorithm is implemented as
follows:

1. Select example xt randomly from X .

2. Given s = xt, choose aj ∈ A according to a policy derived from Q (for example using ε-greedy
action selection) .

3. Take action aj , observe r and the next state s′ = xt+1, chosen randomly from X .

4. Calculate δ ← r + γ maxi Q(s′, ai)−Q(s, aj).

5. θ ← θ + αδ∇θQ(s, aj) .

6. s ← s′.

7. Loop to 2, unless termination condition is met.

3 Experimental results

A small set of experiments has been performed in order to evaluate the effectiveness of this approach,
on 9 datasets that are available from the UCI Machine Learning Repository [3]. For each dataset,
cross-validation was used to select the number of hidden units for the base classifier. Each classifier
was trained for 100 iterations and a learning rate α = 0.01 was used. The discount parameter γ for
the controlling agent was set to 01. The results reported here are for ε-greedy action selection and for
the hard combination method. Results with softmax action selection and weighted combination are
not significantly different.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

1 expert
2 experts
4 experts
8 experts

16 experts
32 experts

Figure 1: Margin distribution for RL on the iono-
sphere dataset, with an increasing number of ex-
perts

Dataset MLP Boost RL
breast 7.28% 1.21% 2.43%
forest 32.8% 16.2% 29.1%
heart 15.0% 16.2% 15.0%

ionosphere 5.96% 5.96% 3.08%
letter 4.10% 2.52% 3.73%

optdigits 2.63% 1.42% 2.3%
pendigits 2.72% 3.10% 2.69%
spambase 8.33% 6.48% 7.41%

vowel 56.1% 61.9% 48.3%

Table 1: Classification error on the UCI datasets
using 32 experts

The RL-controlled mixture was compared with a single MLP and AdaBoost using MLPs, which
represents the state of the art in ensemble classifiers. As can be seen in Table 1, both ensembles manage
to improve test performance compared to the base classifier, with the RL mixture outperforming

1The classification task is similar to an n-armed bandit problem, since the next state is not influenced by the agent’s
actions. However it is more accurately described as a partially observable process, since the parameters of the classifiers
constitute a state which changes depending on the agent’s actions.

IDIAP–RR 03-69 4

AdaBoost 4 times out of 9. For each dataset we have also calculated cumulative margin distribution
resulting from equation (1). For the RL mixture, in most, but not all, datasets there was a constant
improvement in the distribution with an increasing number of experts (c.f. figure 1), though this did
not always result in an improvement in generalisation performance.

4 Conclusions and Future Research

The aim of this work was to demonstrate the feasibility of using adaptive policies to train and combine a
set of base classifiers. While this purpose has arguably been reached, there still remain some questions
to be answered, such as under what conditions the margin of classification is increased when using
this approach.

In the future we would like to explore the relationship between RL and EM techniques for training
ensembles. Furthermore, it would be interesting to investigate the application of RL when the agent’s
state space is extended to include information about each expert. In this case it would no longer
constitute of i.i.d samples, so the agent’s actions will affect its future state.

For enlarged spaces however it would appear necessary to replace action-value methods for policy
improvement, with direct gradient descent in policy space [2]. The latter methods have also been
theoretically proven to converge in the case of multiple agents and are much more suitable for problems
in partially observable environments and with large state-action spaces.

References

[1] C. Anderson and Z. Hong. Reinforcement learning with modular neural networks for control,
1994.

[2] Jonathan Baxter and Peter L. Bartlett. Reinforcement learning in POMDP’s via direct gradient
ascent. In Proc. 17th International Conf. on Machine Learning, pages 41–48. Morgan Kaufmann,
San Francisco, CA, 2000.

[3] C.L. Blake and C.J. Merz. UCI repository of machine learning databases.
http://www.ics.uci.edu/∼mlearn/MLRepository.html, 1998.

[4] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[5] Leo Breiman. Arcing the edge. Technical report, Department of Statistics, University of Califor-
nia, Berkeley, CA., 1997.

[6] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and
an application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

[7] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures of local experts.
Neural Computation, 3(1):79–87, 1991.

[8] Michael I. Jordan and Robert A. Jacobs. Hierarchical mixtures of experts and the EM algorithm.
Neural Computation, 6(2):181–214, 1994.

[9] Yi Li and Philip M. Long. The relaxed online maximum margin algorithm. Machine Learning,
46(1/3):361, 2002.

[10] Llew Mason, Peter L. Bartlett, and Jonathan Baxter. Improved generalization through explicit
optimization of margins. Machine Learning, 38(3):243, 2000.

[11] Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the margin: a new
explanation for the effectiveness of voting methods. In Proc. 14th International Conference on
Machine Learning, pages 322–330. Morgan Kaufmann, 1997.

IDIAP–RR 03-69 5

[12] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press,
1998.

[13] Christopher J.C.H. Watkins and Peter Dayan. Technical note Q-learning. Machine Learning,
8:279, 1992.

