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Abstract. Assessing whether two models are statistically significantly different from each other
is a very important step in research, although it has unfortunately not received enough attention
in the field of person authentication. Several performance measures are often used to compare
models, such as half total error rates (HTERs) and equal error rates (EERs), but most being
aggregates of two measures (such as the false acceptance rate and the false rejection rate), simple
statistical tests cannot be used as is. We show in this paper how to adapt one of these tests in
order to assess the statistical significantness of the difference between two HTER measures. We
also compare our technique with other naive solutions that are sometimes used in the literature
and show why they yield often too optimistic results (resulting in false statements about statistical
significantness).
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1 Introduction

The general field of biometric person authentication is concerned with the use of several biometric
traits such as the voice, the face, the signature, or the fingerprints of persons in order to assess their
identity [8]. In all these cases, researchers tend to use the same performance measures to estimate
and compare their models. Most of them, such as the half total error rate (HTER) or the detection

cost function (DCF) are in fact aggregates of other measures such as false acceptance rates (FARs)
and false rejection rates (FRRs). However, when it is time to compare a novel model to existing
solutions on the same problem, a quick review of the current literature in person authentication shows
that either no statistical test is used to assess the difference between models, or, worse, wrongly used
statistical tests, which often ends up in over-optimistic results, tending to show, for instance, that the
new model is indeed statistically significantly better than the state-of-the-art while it might not be
the case in fact.

In this paper, we present a proper method to compute a simple statistical test, known as the test

of two proportions, or z-test, adapted to the problem of aggregate measures such as HTER and DCF.

In section 2, we first review the main performance measures used in verification tasks, then in
section 3 we recall the purpose of the z-test, based on the Binomial distribution, and some of its
variants. In section 4, we extend this test to the case of aggregate measures such as HTER, while in
section 5, we present other possible solutions, which, as explained, can lead to improper results. In
fact, section 6 compares our solution to these other methods and show why they yield over-optimistic
results. Section 7 concludes this paper with some proposed future work.

2 Person Authentication Measures

A verification system has to deal with two kinds of events: either the person claiming a given identity
is the one who he claims to be (in which case, he is called a client), or he is not (in which case, he is
called an impostor). Moreover, the system may generally take two decisions: either accept the client

or reject him and decide he is an impostor.

Thus, the system may make two types of errors: a false acceptance, when the system accepts an
impostor, and a false rejection, when the system rejects a client.

Let FA be the total number of false acceptances made by the system, FR be the total number of
false rejections, NC be the number of client accesses, and NI be the number of impostor accesses.

In order to be independent on the specific dataset distribution, the performance of the system is
often measured in terms of rates of these two different errors, as follows:

FAR =
FA

NI
, FRR =

FR

NC
. (1)

A unique measure often used combines these two ratios into the so-called detection cost function

(DCF) [5] as follows:

DCF =

{

Cost(FR) · P (client) · FRR+
Cost(FA) · P (impostor) · FAR

(2)

where P (client) is the prior probability that a client will use the system, P (impostor) is the prior
probability that an impostor will use the system, Cost(FR) is the cost of a false rejection, and Cost(FA)
is the cost of a false acceptance.

A particular case of the DCF is known as the half total error rate (HTER) where the costs are
equal to 1 and the probabilities are 0.5 each:

HTER =
FAR + FRR

2
. (3)
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Most authentication systems are measured and compared using HTERs or variations of it. The
main question we address in this paper is thus: how can we compute a confidence interval around an
HTER or assess the difference between two systems yielding different HTERs.

Note that in most benchmark databases used in the authentication literature, there is a significant
unbalance between the number of client accesses and the number of impostor accesses. This is probably
due to the relatively higher cost of obtaining the formers with respect to the latters. This unbalance
is the main reason why people use the HTER to compare models and not the classical classification
error used in the machine learning literature.

3 The Z-Test on Proportions

Several statistical tests are available in the literature. For standard classification tasks, a simple yet
often used test is known as the z-test, or test between two proportions. The rationale of this test is the
following: given a set of n examples, each drawn independently and identically distributed (i.i.d.) from
an unknown distribution, our system is going to take a decision for each example, and this decision
will be correct or not. Let us now look at the distribution of the number of errors that will be made
by our classification system. Since each decision is independent from the others and is binary, it is
reasonable to assume that the random variable X representing1 the number of errors should follow a
Binomial distribution B(n, p) where n is the number of examples and p is the percentage of errors.

Moreover, it is known that a Binomial B(n, p) can be approximated by a Normal distribution
N (µ, σ2) with

µ = np and σ2 = np(1 − p)

when n is large enough2.

Finally, if X ∼ N (np, np(1−p)), then the distribution of the proportion of errors X

n ∼ N
(

p,
p(1−p)

n

)

.

under the curve

δ = Area

p − β p + β

X

n

P
(
X n

)

Figure 1: Confidence intervals are computed using the area under the Normal curve.

1In this paper we use the following notation: bold letters such as FA represent random variables, while normal letters
such as FA represent a particular value of the underlying random variable.

2A rule of thumb often used is to have np(1 − p) larger than 10.
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Now, in order to compute a confidence interval around p, we can search for bounds {p− β, p + β}
such that

P

(

p − β <
X

n
< p + β

)

= δ (4)

where δ represents our confidence. This is called a two-sided test since we are searching for two bounds
around p. Fortunately, finding β in (4) for a given δ can be done efficiently for the Normal distribution.
Figure 1 illustrates graphically the problem.

Alternatively, if one wants to verify whether a given proportion of errors pA is statistically signif-
icantly different from another proportion pB , a similar test can be performed. In the case where we
already know that pA cannot be lower than pB , a one-sided test is used, otherwise we use a two-sided

test. Noting respectively YA and YB the random variables representing the distribution of pA and
pB , the one-sided test is based on

P (YA −YB < pA − pB) = δ (5)

while the two-sided test is based on

P (|YA −YB | < |pA − pB |) = δ (6)

which can be solved using the fact that the difference between two independent Normal distributions
is a Normal distribution where the mean is the difference between the two Normal means and the
variance is the sum of the two Normal variances, hence

YA −YB ∼ N

(

pA − pB,
pA(1 − pA) + pB(1 − pB)

n

)

. (7)

If δ is higher than a predefined value (such as 95%), then one can state that pA is significantly different
from pB . Note that a better estimate of the variance of (7) can be obtained when assuming pA = pB

(which should be the case if they are not significantly different). In that case, equation (7) becomes

YA −YB ∼ N

(

0,
2p(1− p)

n

)

(8)

with

p =
pA + pB

2
.

Finally, note that using this test to verify whether two models give statistically significantly dif-
ferent results on the same test database makes a wrong hypothesis, since YA and YB are not really
independent as they are computed on the same test set. One possible solution proposed in [7] is to only
take into account the examples for which the two models disagree. Nevertheless, several statistical
tests makes this wrong assumption but are still often used in the literature.

4 A Statistical Test Between Two HTERs

HTERs are not proportions, but they are an average of two well-defined proportions (FAR and FRR).
Given this, and assuming some hypotheses regarding FAR and FRR3, we can extend the test between
two proportions for the case of HTERs as follows.

3such that the distributions of FAR and FRR should be independent, which may look false since they are both linked
by the same model and threshold, but in fact, given a model and associated threshold these two quantities are indeed
independent since they are computed on separate data (the client accesses and the impostor accesses) and the model
was estimated on a separate training set.
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Let the random variable FA represent the number of false acceptances. We can model it by a
Binomial, and hence by a Normal, as follows:

FA ∼ B

(

NI,
FA

NI

)

∼ N

(

NI ·
FA

NI
, NI ·

FA

NI
·

(

1 −
FA

NI

))

∼ N (FA, FA · (1 − FAR)) . (9)

The random variable FR can be modeled accordingly. We can now write the distribution of the
random variable FAR representing the ratio of false acceptances:

FAR ∼ N

(

FA

NI
,
FA (1 − FAR)

NI · NI

)

∼ N

(

FAR,
FAR (1 − FAR)

NI

)

(10)

and similarly for the random variable FRR. Given the distribution of FAR and FRR, we can estimate
the distribution of the random variable HTER as follows:

FAR+FRR ∼ N

(

FAR+FRR,
FAR (1 − FAR)

NI
+

FRR (1 − FRR)

NC

)

FAR+FRR

2
∼ N

(

FAR+FRR

2
,
FAR (1− FAR)

4 · NI
+

FRR (1 − FRR)

4 · NC

)

HTER ∼ N

(

HTER,
FAR(1 − FAR)

4 · NI
+

FRR(1 − FRR)

4 · NC

)

(11)

Using this last definition, we can now compute easily statistical tests such as confidence intervals
or statistical significant differences between models measured by HTERs, using the methodology
presented in section 3.

Moreover, the tests can be easily extended to variations of HTER, such as the DCF. For instance,
in the case of the well-known NIST evaluations performed yearly to compare speaker verification
systems, and which use the DCF measure described by equation (2) with Cost(FR) = 10, P(client)
= 0.01, Cost(FA) = 1 and P(impostor) = 0.99, the underlying Normal becomes:

DCF ∼ N

(

DCF,
FAR (1 − FAR)

0.99−2 · NI
+

FRR (1 − FRR)

100 · NC

)

. (12)

Hence, in summary, and using the standard confidence values used in the scientific literature, and
with no a priori between compared models, we obtain the simple methodology described in Figure 2
in order to compute statistical tests for person authentication tasks4.

5 Other Statistical Tests

While several researchers have pointed out the use of the z-test to compute statistical tests around
values such as FAR or FRR (see for instance [9]), we are not aware, to the best of our knowledge, of
any similar attempt for aggregate measures such as HTERs (or EER, or DCF). However, most people
publishing results in verification use HTERs or DCF to assess the quality of their methods.

4While this summary concerns HTERs, it should now be obvious to extend it to the general DCF function.
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The confidence interval (CI) around an HTER
is

HTER ± σ · Zα/2 with

σ =

√

FAR(1−FAR)

4·NI + FRR(1−FRR)

4·NC

Zα/2 =















1.645 for a 90% CI

1.960 for a 95% CI

2.576 for a 99% CI

and similarly, HTERA and HTERB are statis-
tically significantly different if z > Zα/2 with

z =
|HTERA−HTERB|

v

u

u

u

u

u

u

u

u

t

FARA(1−FARA)+FARB(1−FARB)

4·NI +

FRRA(1−FRRA)+FRRB(1−FRRB)

4·NC

Figure 2: Methology for statistical tests around HTERs.

One simple solution could be to consider the classification error instead of the HTER and compute
statistical tests around it. Since the classification error is a well-defined proportion, we can apply the
z-test as well; Let CLASS be defined as the following random variable:

CLASS =
FA+FR

NC+NI

then, the corresponding underlying Normal becomes:

CLASS ∼ N

(

FA+FR

NC+NI
,

FA+FR

(NC+NI)2

(

1 −
FA+FR

NC+NI

))

(13)

but remember that while this test is correct to assess models according to their respective classification
error, it does not say anything on the confidence one has over the corresponding HTER, which is the
measure of interest in person authentication. In fact, we will show in section 6.1 that, under reasonable
assumptions, the variance of CLASS in equation (13) is always smaller than the variance of HTER

in equation (11), hence confidence tests using (13) will always result in over-confident statistical
significance (or smaller confidence intervals). This will be explored further in the following section.

Another possible solution is to consider directly the HTER as a proportion (which it is not directly)
and compute the statistical test directly on it. Let NAIVE be the random variable of this value; the
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underlying Normal becomes:

NAIVE ∼ N

(

HTER,
HTER(1 − HTER)

NC+NI

)

(14)

Again, we will show in section 6.1 that under reasonable assumptions, the variance of NAIVE

in equation (14) is always smaller than the variance of HTER in equation (11), hence confidence
tests using (13) should always result in over-confident statistical significance (or smaller confidence
intervals).

Yet another solution that has been proposed by some researchers (see for instance [2]) is to compute
a statistical test for FAR and FRR separately and then combine the results. For instance, in order
to compute a confidence interval for HTER, one would average both upper bounds and both lower
bounds found separately by the FAR and FRR tests. On top of the fact that there is no theoretical
ground to justify such an approach, there is an evident problem with all approaches that consider
separately FARs and FRRs. Two models could yield very similar HTERs but for some reason (in
general linked to the choice of the threshold, which is done in general on a separate data set) one
could be slightly biased towards FRRs and the other one slighly biased towards FARs. In such a
case, these tests would consider them statistically significantly different while they would not be when
considering globally their respective HTER instead. For this reason, we will not consider this solution
further here.

6 Analysis

We would like to compare in this section the use of the correct statistical test for HTERs, with respect
to the two other tests presented in section 5. We will first show that under some reasonable conditions,
increasing the ratio between NI and NC will increase the difference between the variance of the correct
test and the variance of the other tests. Afterward, we present two real case studies where the use
of the correct statistical test would have yielded a different conclusion with regard to the difference
between the compared models.

6.1 Theoretical Analysis

Let us first look in which conditions σ2(11), the variance of HTER as written in equation (11) is
higher than σ2(14), the variance of NAIVE as written in equation (14):

σ2(11) > σ2(14) (15)

implies that
FAR (1 − FAR)

4 · NI
+

FRR (1 − FRR)

4 · NC
>

HTER(1 − HTER)

NC+NI

which can be simplified and yields

0 > (FAR · NC − FRR · NI)(NI(1 − FRR) − NC(1 − FAR))

which means that inequation (15) will be true when either NC is much less or much higher than NI
(which is in general the case), and FAR is similar to FRR (again, when the threshold is chosen such
that we have equal error rate (EER) on a separate validation set, as it is often done, this is reasonable).

Let us now look in which conditions σ2(11) is higher than σ2(13), the variance of CLASS, repre-
senting the classification error:

σ2(11) > σ2(13) (16)
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implies that
FAR(1 − FAR)

4 · NI
+

FRR(1 − FRR)

4 · NC
>

FA+FR

(NC+NI)2
·
(FA+FR)2

(NC+NI)3

which can be re-written as

(1 − FRR)NI(3NC + NI) > (1 − FAR)NC(3NI + NC)

and assuming FAR is similar to FRR, it can be simplified into

NI2 > NC2 (17)

which is true as long as NI is higher than NC, which is in general the case, again.
In order to verify these relations graphically, we have fixed some variables to reasonable values

(FAR = 0.1, FRR = 0.2, NC = 100) and have varied NI, the number of impostor accesses. Figure 3
shows the relation between the standard deviation of the underlying Normal distributions and the

ratio between NI and NC. As expected, the higher the ratio NI
NC, the bigger the difference between

0.001

0.01

0.1

1 10 100

S
ta

nd
ar

d 
D

ev
ia

tio
n

Ratio NI/NC

FAR = 0.1, FRR = 0.2, NC = 100

HTER
NAIVE

CLASS
FAR
FRR

Figure 3: Standard deviation of the Normal distributions underlying the three different choices of
distributions for a statistical test on HTERs. Also shown: standard deviations of both the FAR and
FRR distributions. All curves are in log-log scale.

the standard deviation of the Normal distributions related to the three statistical tests. Moreover, we
see that the standard deviation of the correct HTER distribution stays close to the one of the FRR

distribution, which is mostly influenced by NC, the number of client accesses, and does not decrease
with the increase of NI, contrary to the two other solutions. Since the size of the confidence interval
is directly related to the standard deviation, this Figure essentially shows that the confidence interval
computed using the correct technique will always be larger than that of the two other techniques.
Hence two verification methods yielding two different HTERs could easily be considered statistically
significantly different using one of the methods described in section 5, while they would not be con-
sidered statistically significantly different using the correct technique. In fact, the Figure shows that
the confidence interval is directly influenced by the minimum of NC and NI and not their sum.

In the next two subsections, we present two real case studies where the use of the correct statistical
test would have yielded a different conclusion.

6.2 Empirical Analysis on XM2VTS

In the first case, the well-known text-independent audio-visual verification database XM2VTS [3] was
used. In this database, the test set consists of up to 112000 impostor accesses and only 400 client
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accesses, for a total of 112400 accesses. In a recent competition [6], several models were compared5 on
a face verification task and we will look here at the results of the best model, hereafter called model A,
and the third best model, hereafter called model B, apparently significantly worse. Table 1 shows the
difference of performance in terms of HTER between models A and B. Having up to 112400 examples,
one could indeed expect the difference between the two models to be statistically significant.

Method FAR (%) FRR (%) HTER (%)

Model A 1.36 2.50 1.93
Model B 1.95 2.75 2.35

Table 1: HTER Performance comparison on the test set between models A and B when the threshold
was selected according to the Equal Error Rate criterion (EER) on a separate validation set.

δ HTER NAIVE CLASS
eq (11) eq (14) eq (13)

90% 1.285% 0.135% 0.114%
95% 1.532% 0.161% 0.136%
99% 2.013% 0.211% 0.178%

Table 2: Confidence intervals around results of model A, computed using three different hypotheses
(and their respective equation).

Table 2 shows the size of the confidence intervals computed around the result (using HTER or
the classification error) obtained by model A for the three methods for three different values of δ

(90%, 95% and 99%). As we can see, for all values of δ, the size of the interval is about one order of
magnitude larger for the correct method than for the two other methods.

HTER NAIVE CLASS
eq (11) eq (14) eq (13)
54.2% 100.0% 100.0%

Table 3: Confidence value on the fact that model A is statistically significantly different from model B,
according to their respective performance (HTER or classification error), and computed using three
different hypotheses (and their respective equation).

Table 3 verifies whether the HTER obtained by model A gives statistically significantly different
results than the one obtained by model B, using the two-sided test of equation (6) together with,
respectively, equations (11), (14) and (13) for the three compared confidence methods. According to
the correct HTER method, both models are equivalent (the confidence on their difference is much less
than, say, 90%), while according to both other methods, the models would be different (with 100%
confidence!). Remember that there was only 400 client accesses during the test, hence it is reasonable
that only one error on these accesses makes a visible difference in HTER while it cannot seriously be
considered statistically significant. This is well captured by our technique, but not by the other ones.

5While this is not the topic of this paper (since it should apply to any data/model), people interested in knowing
more about the problem tackled in this case study are referred to [6]; we used results of the models of IDIAP and
UniS-NC on the automatic registration task, using Lausanne Protocol I.
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6.3 Empirical Analysis on NIST’2000

In the second case, the well-known text-independent speaker verification benchmark database NIST’2000
was used. Here, the test set consists of 57748 impostor accesses and 5825 client accesses, for a total of
63573 accesses. We compared the performance of two models6 hereafter called models C and D. Note
that, while on XM2VTS the ratio between the number of impostor and client accesses was very high
(280 times more), for the NIST database, the ratio is more reasonable, but still high (around 10).

Method FAR (%) FRR (%) HTER (%)

Model C 13.1 9.6 11.4
Model D 15.8 7.8 11.8

Table 4: HTER Performance comparison on the test set between models C and D when the threshold
was selected according to the Equal Error Rate criterion (EER) on a separate validation set.

δ HTER NAIVE CLASS
eq (11) eq (14) eq (13)

90% 0.676% 0.414% 0.436%
95% 0.805% 0.493% 0.519%
99% 1.058% 0.648% 0.682%

Table 5: Confidence intervals around results of model C, computed using three different hypotheses
(and their respective equation).

HTER NAIVE CLASS
eq (11) eq (14) eq (13)
89.1% 98.9% 100.0%

Table 6: Confidence value on the fact that model C is statistically significantly different from model D,
according to their respective performance (HTER or classification error), and computed using three
different hypotheses (and their respective equation).

We now present the same kinds of results as for the XM2VTS case. Table 4 shows the difference
of performance in terms of HTER between models C and D; Table 5 shows the size of the confidence
intervals computed around the result obtained by model C; Table 6 verifies whether the HTER ob-
tained by model C gives statistically significantly different results than the one obtained by model
D.

These results show that, given a ratio of impostor and client accesses around 10 instead of 280, the
difference between all the tests is less drastic but still exists. In fact, according to the correct HTER
method, both models are still equivalent with a confidence of 90%, while they would be different
according to both other methods.

7 Conclusion

In this paper, we have proposed a proper method to compute statistical tests on aggregate measures
such as HTER or DCF often used in person authentication. We have also shown why using other ap-

6Once again, while this is not the topic of this paper, people interested in knowing more about the problem tackled
in this case study are referred to [4]
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proximations such as tests on the classification error instead would result in over-optimistic decisions.
We have given some empirical evidence using a benchmark database. It is important to note that
the test of two proportions is not the ultimate statistical test and there exist many other tests that
are known to be sometimes more appropriate for classification tasks (such as the McNemar test or
complex cross-validation techniques for instance [1]). It thus remains to be verified whether one can
adapt them to person authentication in the same spirit as presented in this paper. Nevertheless, an
important finding of this paper is that when people design new databases for person authentication,
they should keep in mind that it is probably not worth having a huge unbalance between client and
impostor access numbers, since the statistical significantness of the results will mainly depend on the
smallest of these two numbers.
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