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Abstract. Local state (or phone) posterior probabilities are often investigated as local classifiers
(e.g., hybrid HMM/ANN systems) or as transformed acoustic features (e.g., “Tandem”) towards
improved speech recognition systems. In this paper, we present initial results towards boost-
ing these approaches by improving the local state, phone, or word posterior estimates, using all
possible acoustic information (as available in the whole utterance), as well as possible prior infor-
mation (such as topological constraints). Furthermore, this approach results in a family of new
HMM based systems, where only (local and global) posterior probabilities are used, while also
providing a new, principled, approach towards a hierarchical use/integration of these posteriors,
from the frame level up to the sentence level. Initial results on several speech (as well as other mul-
timodal) tasks resulted in significant improvements. In this paper, we present recognition results
on Numbers’95 and on a reduced vocabulary version (1000 words) of the DARPA Conversational
Telephone Speech-to-text (CTS) task.
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1 INTRODUCTION

Over the last 10-15 years, posterior probabilities have been increasingly explored as a possible way
to improve automatic speech recognition (ASR) systems, initially with the goal of providing more
discriminant training and local HMM probabilities, and more recently as compact features (possibly
resulting of the merging of several features).

Both approaches are certainly valid and have shown some success, e.g., in the case of hybrid
HMM/ANN system (where posteriors are used as local classifiers) or in the case of “Tandem” sys-
tems (where posteriors are used as features fed into standard HMMs). However, their efficacy strongly
depends on the quality of these posterior estimates, usually based on statistical tools such as multi-
layer perceptrons (MLP) or normalized Gaussian mixture models (GMM), possibly exploiting some
contextual acoustic input.

In this paper, we present the results of some initial investigation towards new ways to improve
the estimation of local posteriors (hence the resulting performance) by using the so called “gamma”
recursion (as usually referred to in the HMM formalism) to generate local posteriors taking into ac-
count all the acoustic information available in each utterance, possibly complemented by additional
prior information. Interestingly, using these “state/phone gammas” not only yields improved recogni-
tion performance, as shown here on Numbers’95 and CTS, but also opens up several innovative and
principled approaches towards the hierarchical use of posterior probabilities from the frame level up
to the sentence level.

Finally, we believe that what is presented in the present paper provides a general framework for a
theory of using posteriors as local measures (classifiers) or features in hierarchical, with the additional
advantage of being able to accommodate, and possibly take advantage of, larger acoustic context, as
well as specifically designed prior knowledge such as topological constraints.

The notation used in this paper will be the following:

• X = xT
1 = {x1, . . . , xT } an acoustic observation sequence

• qt be an HMM state at time t, which value can range from 1 to Nq (total number of possible
HMM states)

• pt be a phoneme at time t, which value ranges from 1 to Np (total number of phones)

• wt be a word at time t, which value ranges from 1 to Nw (total number of words)

• Events “qt = i”, “pt = i” and “wt = i” will, respectively, often be written as qi
t, pi

t, and wi
t.

2 POSTERIORS AS LOCAL CLASSIFIERS OR AS FEA-

TURES

2.1 Posteriors as local classifiers

Hybrid HMM/ANN approaches were probably among the first ones to make extensive use of a poste-
riori probabilities in speech recognition. In these approaches, Artificial Neural Networks (ANN), and
more specifically MLPs are used to compute the emission probabilities required in HMM systems [6].
It has indeed been shown that if each output unit of an MLP is associated with a particular state k of
the set of possible HMM states Q = {1, 2 . . . , k, . . . , Nq}, it is possible to train the MLP to generate a
posteriori probabilities of the output classes conditioned on the input, i.e., p(qi

t|xt). While allowing for
discriminant training, such an approach also has the advantage of possibly accommodating acoustic
context by providing several frames at the MLP input, thus estimating p(qi

t|x
t+c
t−c), where c is typically

equal to 4. However, context of up to c = 50 has also been successfully used [15].
More recently, a posteriori probabilities started to be used as local measures for different ASR

purposes, such as (1) estimating confidence measures [5, 12, 27], (2) beam search pruning [1], or (3)
word lattice rescoring [20].

In all of these cases, posterior probability estimates appear to have been quite useful.
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Figure 1: Standard approach for deriving Tandem features.

2.2 Posteriors as features

2.2.1 General idea

More recently, the properties described above were also extended by using the MLP-generated poste-
rior probabilities as acoustic features, which (after some transformation) can be used alone or appended
to other sets of (more traditional) features as inputs to HMMs. In this case, the MLP is considered as
performing some kind of “optimal” feature extraction (using acoustic context and nonlinear discrimi-
nant analysis). In the case of multiple features (e.g., multi-band and multi-stream speech recognition),
this MLP can also be used as a convenient way to integrate multiple features and generate the most
compact and most discriminant representation to be used in standard HMMs.

The purpose of feature extraction in ASR is often to reduce dimensionality of data while preserving
(or enhancing) the discriminant information of the data. In the process the irrelevant variability should
be alleviated and the relevant variability preserved. To ensure Bayes error of the classification, at least
L− 1 features are required for discrimination among L classes (see [11], p. 444). Techniques that can
satisfy this requirement based on optimal rotation of feature space such as linear discriminant analysis
(LDA) has been used in feature extraction in ASR for quite some time, e.g., [17].

2.2.2 Tandem technique for deriving features for HMM-based ASR

Nonlinear alternatives for such data-guided feature extraction start to emerge. One of the earlier
and most successful approach is Tandem [16]. For every speech instant (i.e. about every 10 ms in
a typical ASR system), the Tandem technique derives a vector of posterior probabilities of sub-
word speech events from any relevant evidence presented to its input. Posteriors of classes form
a particularly convenient smallest set of features since the highest posterior determines the class
assignment. Typically, a properly trained MLP, trained in one-hot encoding paradigm [6], is used
for estimating posterior probabilities of context-independent phonemes. Alternatives such as GMM-
derived posteriors were also investigated [24]. Hierarchical classification schemes in Tandem estimator
were also investigated [26].

As illustrated in Figure 1, the MLP posterior probability estimates are gaussianized by a static
nonlinearity and whitened by the Karhunen-Loeve transform (KLT) derived from training data. Three
different techniques were investigated for the gaussianization: 1) computing logarithm of the MLP
output, 2) taking MLP outputs prior to its final nonlinearities, and 3) deriving the non-linear function
that properly gaussianized the histogram of posteriors from the training data. Observed differences
in performance were typically minor. In the case of the experiments reported here, the logarithm was
used to roughly gaussianize the features.

Such gaussianized and whitened posterior probabilities form the feature vector for the subsequent
HMM recognizer. Thus, the conventional features derived from a spectral density vector representing
the spectral envelope are replaced by the transformed posteriors of acoustic events (in the origi-
nal concept the events were context-independent phonemes). If the targeted events are independent,



4 IDIAP–RR 04-58

the output of the trained Tandem MLP could represent an estimate of the efficient low-entropy
statistically-independent code, hypothesized in perceptual processing [3, 19].

Input to Tandem can be any data that are believed to provide a relevant evidence for the classi-
fication. In its simplest form, Tandem takes as an input a superframe of speech typical conventional
speech features such as 9 frames of concatenated PLP static and dynamic features. Often, Tandem
inputs are concatenated outputs from other sub-band classifiers (TRAP [15] or HATS [8]). TRAP
has been also reported to be efficient in combining of different features and for alleviating irrelevant
information [30] [18].

In several aspects, Tandem represents a significant conceptual departure from the current practice
in feature extraction for ASR:

1. The knowledge used for feature extraction is not only coming from beliefs and convictions of the
designer but is mostly derived from development data. While LDA could be viewed as doing a
similar function, Tandem provides a more general transformation.

2. In conjunction with sub-band classifiers (TRAP or HATS), the frequency-localized evidence is in
the early stages of the feature extraction converted to frequency-localized estimates of likelihoods
of speech events. In that way, many vulnerabilities of the short-term spectral envelope of speech
are alleviated. Evidence used for deriving the features does not all come from the relatively short
segment of speech representing a short part of the underlying sub-word class (phoneme) but the
employed time span covers at least the typical coarticulation span of the phoneme. In that way,
each feature vector could carry most of the available information about the underlying phoneme.
While HATS/TRAP are not used in the experiments described here, they are an integral part
of the larger EARS system developed by our team.

The Tandem-based ASR has been so far found most useful in combination with the conventional
spectrum-based (PLP, Mel Cepstrum, etc) ASR. Thus, e.g. the system with Tandem module was
shown to perform the best among all presented feature extraction techniques (including the officially
accepted ETSI standard) on the small vocabulary Aurora task [2]. More recently, the Tandem-derived
features were successfully used in DARPA EARS program, where they brought more than 10% relative
improvement in error rate on a smaller (1000 word task) and scaled successfully on a full vocabulary
task [22, 8, 30].

2.3 Layered Approaches Based on Posteriors

Recently, several researchers have proposed the use of a layered approach to simplify the encoding
of relations between observations and high-level events (such as sentences) [23, 29]. In this approach,
an HMM is built for each layer of semantic complexity; for instance, in speech recognition, one could
think of a layer encoding phonemes, followed by a layer encoding words and a final layer encoding
sentences. One advantage of such an approach is that by decomposing the problem hierarchically,
learning is performed on lower-dimensional observation spaces and, prior information related to each
level of semantic can more easily be included. While in the literature [23, 29] the observations of each
layer was encoded using some form of event likelihoods, we believe that they would probably be best
encoded using local posteriors. Section 5 explains how these posteriors could be computed from layer
to layer and how these layers could incorporate different prior information.

3 IMPROVING STATE POSTERIOR ESTIMATION

In this section, we show how the estimation of local posterior probabilities can be improved by using
all the acoustic information available, as well as possible prior knowledge. We recall and discuss here
possible ways to estimate and use “state gammas” (state posteriors taking into account all available
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acoustic, as well as possible prior information and/or topological constraints M) to improve state-of-
the-art speech recognition systems. As further discussed later, the resulting approach is illustrated in
Figure 2.

In the following, we show that these state gammas can be estimated in two different ways, depend-
ing on whether the local estimators being used are likelihoods or posteriors (MLP).

3.1 Standard likelihood based systems

In standard (likelihood based) HMMs, using local emission likelihoods p(xt|q
i
t) (usually modeled by

GMMs), we know that we can compute the “state gamma” γ(i, t), defined as p(qi
t|x

T
1 , M), thus esti-

mating state posterior probabilities, but actually taking into account the whole acoustic sequence xT
1 ,

as well as some possible prior information encapsulated through some HMM underlying topology M .
In the following, we will often drop the M , keeping in mind that all recursions are processed through
some prior (Markov) model M .

These “state gammas” are typically estimated by using the following α recursion:

α(i, t) = p(xt
1, q

i
t) (1)

= p(xt|q
i
t)

∑

j

p(qi
t|q

j
t−1)α(j, t − 1)

and β recursion:

β(i, t) = p(xT
t+1|q

i
t) (2)

=
∑

j

p(xt+1|q
j
t+1)p(qj

t+1|q
i
t)β(j, t + 1)

thus yielding the estimate of p(qi
t|x

T
1 ):

γ(i, t) = p(qi
t|x

T
1 ) (3)

=
α(i, t)β(i, t)
∑

j α(j, T )

3.2 Posterior based systems

Similar recursions, also yielding to “state gammas”, can also be developed for systems based on local
posterior probabilities, such as hybrid HMM/ANN systems using MLPs to estimate HMM emission
probabilities [6]. In this case, typically, an MLP is fed with the local acoustic vector xt, possibly
complemented by its acoustic context, i.e., xt+c

t−c (with c typically equal to 4), and is trained to estimate
p(qi

t|xt) or p(qi
t|x

t+c
t−c) at its output. In standard HMM/ANN systems, these local posteriors are usually

turned into “scaled likelihood” by dividing MLP outputs by their respective a priori probability p(qi
t),

as estimated on the training data, i.e.:

p(xt|q
i
t)

p(xt)
=

p(qi
t|xt)

p(qi
t)

(4)

where the left hand side1 of the equality is referred to as “scaled likelihood” and can be used in
standard HMMs since, during recognition, 1/p(xt) is simply a normalization factor independent of the
state qi

t.
In [13], it was shown that these scaled likelihood models can be used in “scaled alpha” αs(i, t)

and “scaled beta” βs(i, t) recursions to yield other gamma estimates. A different way of using scaled

1In the sequel of this paper, and for simplicity sake, we will often write MLP posterior outputs as p(qi

t
|xt), keeping

in mind though that there are often estimating p(qi

t
|xt+c

t−c
) if acoustic context is provided at the input.
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likelihoods was also given in [10], where the goal was initially to alleviate the scaling (underflow)
problems inherent in Baum’s original formulation of the forward-backward algorithm [4]. Of course, all
these gammas (computed from local likelihoods or local posteriors) have the same theoretical definition
(i.e., local posteriors integrating all available acoustic information, as well as possible topological
constraints) and thus result in the same theoretical value. However, their estimate may be better, or
have different properties, depending on the properties of the local estimators being used.

To use scaled likelihoods, we start by defining “scaled” α as:

αs(i, t) =
p(xt

1, q
i
t)

∏t

τ=1 p(xτ )
(5)

We note here that this is simply a definition. Thus, the product in the denominator does not imply
that we have made any explicit temporal independence assumption. In fact, all the recursions used
below, as well as in Section 3.1, will never make any additional temporal independence assumption
than the usual state conditional independence assumption.2

Starting from (5), we can the express the scaled α recursion as follows:

αs(i, t) =
p(xt|q

i
t)

p(xt)

∑

j

p(qi
t|q

j
t−1)

p(xt−1
1 , qj

t−1)
∏t−1

τ=1 p(xτ )

=
p(xt|q

i
t)

p(xt)

∑

j

p(qi
t|q

j
t−1)α

s(j, t − 1)

αs(i, t) =
p(qi

t|xt)

p(qi
t)

∑

j

p(qi
t|q

j
t−1)α

s(j, t − 1) (6)

Similarly, we can define the “scaled” β and β recursion as follows:

βs(i, t) =
p(xT

t+1|q
i
t)

∏T

τ=t+1 p(xτ )
(7)

=
∑

j

p(qj
t+1|xt+1)

p(qj
t+1)

p(qj
t+1|q

i
t)β

s(j, t + 1)

(8)

Given that all values required in (6) and (8) are available from the MLP output, another estimate

2Which, in fact, may even be relaxed a bit in the case of hybrid HMM/ANN systems where we used acoustic context
to estimate local posteriors.
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of the state gammas p(qi
t|x

T
1 ) (3), denoted here as γs(i, t), can thus be obtained as:

γs(i, t) = p(qi
t|x

T
1 ) (9)

=
p(qi

t, x
T
1 )

p(xT
1 )

=
p(xT

t+1|q
i
t)p(qi

t, x
t
1)

p(xT
1 )

=
p(xT

t+1|q
i
t)p(qi

t, x
t
1)

∏T

τ=1 p(xτ )

p(xT
1 )

∏T

τ=1 p(xτ )

=
p(xT

t+1|q
i
t)p(qi

t, x
t
1)

∏T

τ=1 p(xτ )

p(xT
1 )

∏t

τ=1 p(xτ )
∏T

τ=t+1 p(xτ )

=
αs(i, t)βs(i, t)

∏T

τ=1 p(xτ )

p(xT
1 )

=
αs(i, t)βs(i, t)

∏T

τ=1 p(xτ )
∑

j p(xT
1 , qj

T )
(10)

=
αs(i, t)βs(i, t)
∑

j αs(j, T )
(11)

Again, in theory, we have:

γ(i, t) = γs(i, t) = P (qi
t|x

T
1 ) (12)

although their estimated values will be different since different local estimators, possibly with different
properties, will usually be used.

3.3 Special Case: Ergodic HMM with uniform transition probabilities

As already mentioned above, and further illustrated later, the advantages in using γ(i, t)’s, defined as
p(qi

t|x
T
1 , M), as “local” posterior probabilities are numerous, including:

1. Possibility of generating better posterior estimates:

(a) By making use of a large acoustic context, which can easily extend to the whole utterance
xT

1 .

(b) Integrating specific prior knowledge, e.g., using specific HMM topologies M .

2. Possibility of using these posterior probabilities in hierarchical structures, focusing on differ-
ent blocks of the recognition system, and possibly using more “optimal” (better suited) prior
knowledge (e.g., HMM topologies) to the recognition level being considered (e.f., phones, words,
sentences). When used as features, these γ’s could also be complemented with level-specific
additional features.

For our initial investigations though, we often experimented with a special case where we do not
make use of any specific prior information, thus equivalent to using an ergodic HMM with uniform
transition probabilities for M . In this case, we show below that the resulting γ estimates are well
known values, which can be estimated locally (without requiring to run the α and β recursions).
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Starting from the following equality (still requiring no additional assumption than the usual tem-
poral state conditional independence assumption):

p(xT
1 ) =

∑

k

p(xT
1 , qk

t ), ∀t

=
∑

k

p(xT
t+1|q

k
t )p(xt

1, q
k
t )

=
∑

k

p(xT
t+1|q

k
t )

∏T

τ=t+1 p(xτ )
∏T

τ=t+1 p(xτ )

·
p(xt

1, q
k
t )

∏t

τ=1 p(xτ )
∏t

τ=1 p(xτ )

p(xT
1 ) =

∑

k

αs(t, k)βs(t, k)

T
∏

τ=1

p(xτ ) (13)

Thus, using the fact that

∑

k

p(xT
1 , qk

t ) =
∑

k

αs(t, k)βs(t, k)

T
∏

τ=1

p(xτ ), ∀t

in (10), we get the following expression for the ergodic gamma estimate γs
e (i, t)

γs
e(i, t) =

αs(i, t)βs(i, t)
∑

k αs(k, t)βs(k, t)
(14)

Integrating the definition of αs(i, t) in (14), we obtain:

γs
e(i, t) =

p(qi
t |xt)

p(qi
t)

∑

j p(qi
t|q

j
t−1)α

s(j, t − 1)βs(i, t)
∑

k

p(qk
t |xt)

p(qk
t )

∑

j p(qk
t |q

j
t−1)α

s(j, t − 1)βs(k, t)

In the case of ergodic HMM with uniform transition probabilities, the sum factors in the above
numerator and denominator are constant and identical and can thus be dropped, yielding:

γs
e(i, t) =

p(qi
t |xt)

p(qi
t)

∑

k

p(qk
t |xt)

p(qk
t )

(15)

where (15) will be referred to as “normalized scaled likelihood”. Thus, estimating “state gammas”
from local posteriors through an ergodic, uniform transition probability model, doesn’t require to run
α and β recursions, and it is enough to compute the above local normalized scaled likelihoods.

Furthermore, in the case of likelihood-based systems where we only have access to local likelihoods
p(xt|q

i
t), equation (15) can, of course, be rewritten as:

γe(i, t) =
p(xt|q

i
t)

∑

k p(xt|qk
t )

(16)

which is then the usual “normalized likelihood” typically used to get posterior estimates from
likelihoods (as often used, e.g., to estimate confidence measures).
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Figure 2: Approach for deriving state/phone gamma features, used as HMM-GMM features after
gaussianization through log and KL transformations.

4 USING STATE GAMMAS AS FEATURES

In the next sections, and building upon the success of the Tandem approach, we investigate how our
new “local” posteriors (state/phone gammas) can be used to improve state-of-the-art ASR perfor-
mance. In this case, the resulting (MLP, posterior-based) system is illustrated in Figure 2. Compared
with Tandem (Figure 1), we now divide the MLP output by the state priors, resulting in scaled like-
lihoods which are used in some HMM structure M to estimate the state gammas γs(i, t), which are
then used as HMM-GMM features after gaussianization through log and KL transformations.

Results are presented on Numbers’95 and a reduced vocabulary version of the DARPA Conversa-
tional Telephone Speech-to-text (CTS) task (1’000 words).

It is also possible to use gammas to recurrently compute and integrate phone gammas, word gam-
mas, and sentence gammas, providing a convenient approach towards hierarchical HMM structures.
Although we haven’t yet experimented with these approaches, we discussing these ideas towards the
end of the paper, in Section 5.

4.1 Numbers’95

We used the OGI Numbers database for connected word recognition task [9]. The definition of the
training set, validation set and test set is similar to the one defined in [21]. The training set contains
3’233 utterances spoken by different speakers (approximately 1.5 hours) and the validation set consists
of 357 utterances (used during MLP training). The test set contains 1’206 utterances. The vocabulary
consists of 31 words (including silence) with a single pronunciation for each word.

The acoustic vector xt is the PLP cepstral coefficients [14] extracted from the speech signal using
a window of 25 ms with a shift of 12.5 ms, followed by cepstral mean subtraction. At each time frame
t, 13 PLP cepstral coefficients, their first-order and second-order derivatives were extracted, resulting
in 39 dimensional acoustic vector. There were 24 context-independent phonemes including silence.

We trained an MLP with 351 input nodes (9x39 vector), 1200 hidden units and 24 output units
corresponding to the 24 context-independent phonemes. After training, the phoneme posteriors for the
training set and test set were estimated and, were scaled by their respective priors (estimated from the
training segmentation) to obtain scaled-likelihoods. The scaled-likelihoods were then used to estimate
the state gammas according to (15). Finally, the state gammas at each frame t were transformed to 24
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dimensional gamma feature vector by performing log operation and KLT3, as done in case of tandem
feature extraction [16].

For comparison purpose, we also extracted the regular tandem features by taking the value of
output units prior to the nonlinearity and performing KLT, resulting in a 24 dimensional tandem
feature vector at every time frame t.

For each type of feature, we trained a HMM-GMM system with 80 context-dependent phonemes, 3
emitting states per phoneme and 12 mixtures per state using the HTK-toolkit [28]. The results of the
recognition studies are given in Table 1. The system using “state gamma” features performs better
than both conventional ASR system using PLP features and standard Tandem system.

Features WER
PLP 6.9%

Tandem phone posteriors (alone) 4.9%
Gamma phone posteriors (alone) 4.6%

Table 1: Word error rate (WER) on the Numbers’95 task: 31 lexicon words, 9x39(PLP)-1200-24 MLP
(resulting in 25 features after KLT), 80 CD HMM/GMM phone models , 24 dimensional Tandem
features, 1206 test utterances.

4.2 DARPA CTS task

The use of “state gamma” as features was further evaluated on a conversational telephone speech
(CTS) recognition task. The training set for this task contained 32 hours of gender balanced CTS
speech randomly selected from the Fisher Corpus and the Switchboard Corpus. The tuning/test set
was a subset selected from the the NIST 2003 evaluation set. Only those utterances that covered the
top most frequent 500 words with lower than 10% OOV rate were selected, resulting in 2.5 hours of
data, which was further divided into a 1.2 hour tuning set and a 1.3 hour test set. The tuning and test
set contained similar ratio of the number of utterances from Fisher corpus to the number of utterances
from the Switchboard corpus.

Gender dependent MLPs (with 9 frames of PLP acoustic features) were trained using the training
set. Each MLP was trained with 14.6 hours of speech with the remaining 1.4 hours of speech used as
a cross-validation set to prevent over-training. The input layer of the MLP had 351 nodes containing
9 frames of PLP features, together with their first and second order derivatives. The hidden layer
had 1300 nodes and the output layer had 46 outputs, associated with the 46 phones defined in the
2003 SRI Decipher system. This resulted in an MLP with about 500K parameters. After training, the
phone posteriors for the training set and the test set were computed, and used to estimate the “state
gammas”, which were then sent as features to a HMM-GMM system for recognition.

The baseline system used PLP with the first two derivatives as the feature. It was computed
with vocal tract normalization and mean and variance normalization. The SRI decipher system was
used for the recognition (HMM-GMM) experiments. Gender dependent models were trained through
7 iterations: 2 on context independent models, 2 on context dependent models, and 3 on Genone
clustered models [25] using an ML criterion. The trained model had 1498 Gaussian clusters for female
and 1725 clusters for male. Each Gaussian cluster contained 64 Gaussians. A 1000 word dictionary
with multi-words and multi-pronunciations was used in decoding, using a bi-gram language model
(LM) based on the 1000 words and extracted from the LM in the 2004 SRI system.

State posteriors (as typically used in Tandem systems) or “state gammas” (as proposed here) were
combined with the baseline PLP feature in the same way as described in [30] through log, KLT and
truncation. The resulting 25 dimension feature vector is then appended to the baseline PLP feature
vector. For such a long feature, the Gaussian weight [30] is set to 0.3 compared to 0.8 for the baseline

3PCA statistics obtained from the training data.
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system. The resulting augmented feature then go through the same HMM-GMM decoding processing
as the baseline feature.

For the initial experiments we only tested on one gender (male, which for these data is more
difficult to recognize than the female test set), and only used an ergodic HMM for the estimation of
the state gamma, which is thus equivalent to using the normalized scaled likelihoods (15) estimated
from the MLP output as features.

The results reported in Table 2 show that the “state gamma” features (i.e., PLP features augmented
with Gamma phone posteriors) give significant improvement compared with the PLP baseline, and
the PLP feature augmented with phone posteriors (Tandem).

Features WER
PLP 44.3%

PLP+Tandem phone posteriors 42.5%
PLP+Gamma phone posteriors 41.7%

Table 2: Word error rate (WER) on the male part of a reduced vocabulary version of the DARPA
Conversational Telephone Speech-to-text (CTS) task: 1’000 lexicon words, with multi-words and multi-
pronunciations, 9x39(PLP)-1300-46 MLP (resulting in 25 features after KLT).

5 HIERARCHICAL POSTERIOR BASED ASR

5.1 Hierarchical gamma estimation

Although not evaluated here, another extension to the approach discussed in the present paper, is
to integrate the state gammas γ (i.e., improved local posterior estimates, taking all acoustic data, as
well as possible prior information or topological constraints, into account), estimated according to (3)
or (11), into new recursions, yielding estimates of phone gammas γp and word gammas γw.

Phone gammas γp(i, t) can indeed be expressed in terms of state gammas γ(i, t) as follows:

γp(i, t) = p(pi
t|x

T
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=
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∑
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where probability p(pi
t|q

j
t , x

T
1 ) represents the probability of being in a given phoneme pi

t at time t
knowing the state qi

t at time t. If there is no parameter sharing between phonemes, this is deterministic
and equal to 1 or 0. Otherwise, this can also easily be estimated from the training data.

Similarly, at a next level, we can also integrate phone gammas γp(i, t) into word gammas γw(i, t)
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as follows:
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where the last sum factor is nothing else but γp(k, t−1). Probability p(wi
t|p

j
t , p

k
t−1, x

T
1 ) now represents

the probability of being in a given word knowing the phoneme sequence {pk
t−1, p

j
t}, which thus encodes

some form of lexical information. Obviously, this probability is also independent of xT
1 , and can easily

be estimated during training from the results of forced alignment. Probability p(pj
t |p

k
t−1, x

T
1 ) represents

the phoneme transition probability. Assuming this probability to be independent of xT
1 , it can be

estimated from the training data.4

5.2 Decoding

Decoding can then be performed in different ways using gammas. In the case of Viterbi decoding, we
define

V (i, t) = max
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which can be derived recursively as follows:
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We can now for instance reasonably decide to estimate p(wi
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1 ) as follows:

p(wi
t|w

j
t−1, w

t−2
1 , xT

1 ) (23)

=

{

p(wi
t|x

T
1 ) if i = j

p(wi
t|x

T
1 )p(wi

t|w
j
t−1) otherwise.

4We note here that the value of those transition probabilities will now have a bigger impact than in standard
likelihood-based systems since they are combined only with a posteriori probabilities.
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hence, the gamma term on the words reappear, as well as a language model over words.

6 CONCLUSIONS

In this paper, we first briefly discussed the approaches currently using local posterior probabilities as
local measures or as features in ASR systems. Indeed, several approaches in that direction have recently
been shown to have a significant potential to improve state-of-the-art ASR systems. However, we also
believe that further progress in that direction will critically depend on several factors such as (1)
improving the quality of these posterior estimates (using, e.g., GMMs or MLPs), while (2) preserving
a strong theoretical framework, permitting the hierarchical integration of posteriors corresponding
to processing level, while also integrating at each of these levels all possible information present in
the data, as well as all possible appropriate a priori information (e.g., represented as specific HMM
topological constraints).

We believe that the present paper introduced a general framework in this direction. Simply stated,
we proposed here to replace the use of local posterior probabilities (used as local measures or as
features) by new estimates of those local posteriors, usually referred to as “gamma posteriors”, using
different versions of the α and β (likelihood or posterior-based) recursions.

When used as features, even for the simplified case that corresponds to the scaling and normalizing
of local posteriors, we have shown here that gammas can yield significant performance improvements
on two different speech recognition tasks.5
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