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Abstract. This paper summarizes some of the current research challenges arising from multi-
channel sequence processing. Indeed, multiple real life applications involve simultaneous recording
and analysis of multiple information sources, which may be asynchronous, have different frame
rates, exhibit different stationarity properties, and carry complementary (or correlated) informa-
tion. Some of these problems can already be tackled by one of the many statistical approaches
towards sequence modeling. However, several challenging research issues are still open, such as
taking into account asynchrony and correlation between several feature streams, or handling the
underlying growing complexity. In this framework, we discuss here two novel approaches, which
recently started to be investigated with success in the context of large multimodal problems. These
include the asynchronous HMM, providing a principled approach towards the processing of multi-
ple feature streams, and the layered HMM approach, providing a good formalism for decomposing
large and complex (multi-stream) problems into layered architectures. As briefly reported here,
combination of these two approaches yielded successful results on several multi-channel tasks,
ranging from audio-visual speech recognition to automatic meeting analysis.
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1 Introduction

Given the proliferation of electronic recording devices (cameras, microphones, EEGs, etc) with ever
cheaper, and ever increasing processing speed, storage, and bandwidth, together with the advances
in automatically extracting and managing information recorded from these devices (such as speech
recognition, face tracking, etc), it becomes more and more feasible to simultaneously capture a same
event (or multiple events) with several devices, generating richer and more robust sets of feature-
streams.

Modeling such data coming from multiple channels (thus resulting in multiple observation streams)
is the goal of multi-channel sequence processing. Examples of practical applications of this field are
numerous, such as audio-visual speech recognition, which can be more robust to ambient noise than
only using an audio stream. While several statistical models were presented recently in the literature
to cope with this growing amount of data accessible in parallel, several open research problems are
still to be solved. The purpose of this paper is thus to discuss some of these solutions, and specifi-
cally addressing two important issues, i.e., asynchrony (when the feature streams are supposed to be
piecewise stationary, but with different stationary properties) and complexity (when it is furthermore
necessary to split the problem into several multi-stream sub-problems).

The outline of the paper is as follows. Section 2 justifies the need for multi-channel sequence
processing by discussing some of the numerous applications that require such a framework. Section 3
reviews some of the current models used in the literature. Section 4 shows that despite all these
models, there is still room for several improvements. Section 5 proposes a model to handle temporal
asynchrony between channels, while Section 6 proposes a principled approach to control the complexity
of multi-channel sequence processing through “optimal” hierarchical processing.

2 Some Applications

Several tasks that are currently handled with only one stream of information could in fact benefit
from the addition of other parallel streams. Furthermore, like in speech recognition (as well as video
processing), it becomes more and more usual to apply different feature extraction techniques to the
same signal, resulting in multiple feature streams

For instance, in audio-visual speech recognition, the audio signal is typically complemented by the
video recording of the face (and thus the lips) of the person. It has already been shown [10, 2] that if
the resulting audio and visual feature streams are properly modeled, such a multi-channel approach
will significantly help in recognizing the speech utterances under noise conditions. Similar settings
have also been used successfully for audio-visual person authentication [2]. In fact, even using only
one raw source of information can yield better results in a multi-channel setting, e.g., using multiple
sampling rates (multi-rate) or feature extraction (multi-stream) techniques, as already demonstrated
for the task of speech recognition [16].

The field of multimedia analysis, which includes analysis of news, sports, home videos, meetings,
etc, is very rich and these events are often recorded with at least two streams of information (audio
and video) and sometimes more (as for the meeting scenario described later in this paper), and
may contain complex human human interactions [15]. These multimedia documents also give rise to
other applications such as multimodal tracking of objects/humans [12]. Furthermore, as the quantity
of such archived documents grows, it becomes important to develop multimedia document retrieval
systems [21, 24] to find relevant documents based not only on their textual content but also on their
joint visual and audio content.

Finally, numerous multi-channel sequence processing processing also appear in the context wearable
computers [14], aiming at assisting people in various everyday activities (e.g., life saving, security,
health monitoring, mobile web services) by using small devices such as cameras, microphones (e.g.,
recording all what you see and all what you hear), and multiple extra sensors (e.g., recording diverse
physiological signals), etc.
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In all the above applications, multi-channel processing presents several challenges. As already
mentioned earlier, we first have to develop new sequence recognition strategies accommodating mul-
tiple frame rates, asynchrony, correlation between stream, etc. One solution to this problem, referred
to as “Asynchronous HMM” (AHMM) will be discussed in the paper (Section 5). Furthermore, multi-
channel processing may also impact differently the different levels of information that we aim at
extracting from the observation streams. While AHMM can be well suited to classify sequential pat-
terns into “low level” classes, they may not be appropriate, or easily tractable (because of training
data and complexity issues), when one aims at extracting higher level information, such as semantic
classes. In this case, it may be necessary to use a “hierarchical HMM” approach, where each “HMM
layer”will use different types of multiple observation streams (possibly resulting of the previous HMM
layer). This layered approach will be discussed in Section 6.

3 Notation and Models

Several models have already been proposed in the literature to handle multi-channel applications. We
briefly discuss here some of the most successful approaches, using a unified notation. Let us denote
an observation sequence O of T feature vectors as

O = (o1,o2, . . . ,oT ) , (1)

where ot is the vector of all multimodal features available at time t. In general, such a set of features
can be broken down into multiple streams (associated with channels, modalities, or different pre-
processing) m. We thus further define the feature vector

om
t ∈ R

Nm , (2)

where Nm is the number of features for stream m, with 1 ≤ m ≤ M (the total number of observation
streams). Each observation sequence is typically associated with a corresponding sequence of high
level classes or “events”. For instance, in speech or handwriting recognition, this would correspond to
a sequence of words. The most successful types of model used to handle observation sequences are
all based on a statistical framework. In this context, the general idea is to estimate, for each type of
high level event vj ∈ V , the parameters θj of a distribution over corresponding observation sequences
p(O|θj), where O would correspond to the event vj . The most well-known solution to efficiently model
such distributions is to use Hidden Markov Models (HMMs).

HMMs have been used with success for numerous sequence recognition tasks, including speech
recognition [20], video segmentation [5], sports event recognition [25], and broadcast news segmen-
tation [11]. HMMs introduce a state variable qt and factor the joint distribution of the observation
sequence and the underlying (unobserved) HMM state sequence into two simpler distributions, namely
emission distributions p(ot|qt) and transition distributions p(qt|qt−1). Such factorization assumes an
underlying piece-wise stationary process (each stationary segment being associated with a specific
HMM state), and yields efficient training algorithms such as the Expectation-Maximization (EM) al-
gorithm [9] which can be used to select the set of parameters θ∗j of the model corresponding to event
vj in order to maximize the likelihood of L observation sequences:

θ∗j = argmax
θj

L∏

l=1

p(Ol|θj). (3)

The success of HMMs applied to sequences of events is based on a careful design of sub-models
(topologies and distributions) corresponding to lexical units (phonemes, words, letters, events), and
possibly semantic units (like the meeting group actions discussed in Section 6.1). Given a training
set of observation sequences for which we know the corresponding labeling in terms of high level
events (but not necessarily the precise alignment), we create a new HMM for each sequence as the
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concatenation of sub-model HMMs corresponding to the sequence of high level events. This HMM
can then be trained using EM, thus adapting each sub-model HMM accordingly.

During testing, when observing a new observation sequence, the objective is simply to find the
optimal sequence of sub-model HMMs (representing high level events) that could have generated the
given observation sequence. Multiple algorithms have been developed to efficiently solve this problem,
even in large search spaces, including stack decoders [13], or different approximations based on the
well-known Viterbi algorithm [23].

While HMMs can be used to model various kinds of observation sequences, several extensions
have been proposed to handle simultaneously multiple streams of observations, all corresponding to
the same sequence of events [16, 10, 17]. The first and simplest solution is to merge all observations
related to all streams into a single stream (frame by frame), and to model it using a single HMM as
explained above. This solution is often called early integration. Note that in some cases, when the
streams represent information collected at different frame rates (such as audio and video streams for
instance), up-sampling or down-sampling of the streams is first necessary in order to align the streams
to a common frame rate.

A better solution may be to use the multi-stream approach [7]. In this case, each stream is modeled
separately using its own HMM. For instance, if we consider the modalities as separate streams, we
would create one model θ∗m,j for each event vj and stream m such that

θ∗m,j = arg max
θm,j

L∏

l=1

p(Om
l |θm,j), (4)

where Om
l is the lth observation sequence of stream m. When a new sequence of events needs to

be analyzed, a special HMM is then created, recombining all the single stream HMM likelihoods at
various specific temporal (“anchor”) points automatically determined during training and decoding.
Depending on these recombination points, various solutions appear. When the models are recombined
after each state, the underlying system is equivalent to making the hypothesis that all streams are
state-synchronous and independent of each other given a specific HMM state. This solution can be
implemented efficiently and has shown robustness to various stream-dependent noises. The emission
probability of the combined observations of M streams in a given state of the model corresponding to
event vj at time t is estimated as:

p(ot|qt) =

M∏

m=1

p(om
t |qt, θm,j). (5)

One can see this solution as searching the best path into an HMM where each state i would be a
combination of all states i of the single stream HMMs1. A more powerful recombination strategy
enables some form of asynchrony between the states of each stream: one could consider an HMM in
which states would include all possible combinations of the single stream HMM states. Unfortunately,
the total number of states of this model would be exponential in the number of streams, hence quickly
intractable. An intermediate solution, which we call composite HMM, considers all combinations of
states in the same event only [19]. Hence, in this model, each event HMM j now contains all possible
combinations of states of the corresponding event vm,j of each stream HMM m. The total number of
states remains exponential but is more tractable, when the number of states of each stream remains
low as well as the number of streams. The underlying hypothesis of this intermediate solution is that
all streams are now event-synchronous instead of state-synchronous.

Several other approaches to combine multiple streams of information have been proposed in the
literature, but generally suffer from an underlying training or decoding algorithm complexity which
is exponential in the number of streams. For instance, Coupled Hidden Markov Models (CHMMs) [8]
can model two concurrent streams (such as one audio and one video stream) with two concurrent

1Note that this solution forces the topology of each single stream to be the same.
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HMMs where the transition probability distribution of the state variable of each stream depends also
on the value of the state variable of the other stream at the previous time step. More formally, let q

and r be respectively the state variables of both streams, then CHMMs model transitions according
to p(qt=i|qt−1=j, rt−1=k) and p(rt=i|rt−1=j, qt−1=k). While the exact training algorithm for such a
model quickly becomes intractable when extended to more than 2 streams, an approximate algorithm
which relaxes the requirement to visit every transition (termed the N-heads algorithm) was proposed
in [8], and can be tractable for a small number of streams.

Two additional approaches have been proposed recently, and will be the focus of Sections 5 and 6.
These are the Asynchronous HMM [1], that can handle asynchrony between streams, and the Layered
HMM [26, 6] than can help in constraining the model according to levels of prior knowledge.

4 Challenges

While there are already several models proposed in the literature to cope with multi channel sequence
processing, we believe that there are still several research challenges that have not been adequately
addressed yet, including:

1. How to handle more than two streams? Most solutions that model the joint probability
of the streams need in general exponential resources with respect to the number of streams, the
number of states of each underlying Markov chain, or the size of each stream. This practically
means that handling more than two streams is already a challenge. One possible alternative is
to limit the search space through the use of reasonable heuristics, which should depend on a
priori knowledge on the interdependencies of the streams.

2. How to handle learning in high dimensional spaces? The observation space (the total
number of observed features per time step) grows naturally with the number of streams. Fur-
thermore, it is often the case that the total number of parameters of the model grows linearly or
more with the number of observations (for instance if the conditional observation distributions
are modeled with Gaussian Mixture Models). Hence, one has to fight the well-known curse of
dimensionality [4].

3. How to handle long term temporal dependencies? This problem deals with sequential
data where one needs to relate information observed at time t with information observed at time
t + k where k is rather large. It has been shown [3] that this becomes exponentially difficult
with k when no structural knowledge is built a priori in the model. Hence, in order for multi
channel processing to be successful, an appropriate structure is necessary.

4. Joint feature extraction and heterogeneity of sources. In current systems involving mul-
tiple streams of information, features used to represent each stream are extracted independently.
On the other hand, if one agrees that there may be some correlation between the streams, one
should therefore devise joint feature extraction techniques, which should then yield more robust
performance. However, what should we then do with streams of different nature (such as the
slides of a presentation, together with the video of the person performing the same presentation)?

5. How to handle different levels of a priori knowledge constraints? It has been known for
decades that in order to obtain good speech recognition performance, one has to constrain the
recognition model with a good language model, that only permits valid and probable sequences
of words to be recognized. The same idea should thus be applied to other domains, such as
videos, which contain rich high level information that should be constrained somehow. Several
levels of description should thus be used in such language model; for instance, a visual scene
could be described by the pixels of the image, the persons present in the image, the action taking
place, the body language, etc. For each of these levels, a probabilistic model of what is possible
and what is not should therefore be trained. Furthermore, one should devise multi channel
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language models in order to take into account information coming from several streams at the
same time.

6. Asynchrony between streams. Let us consider the simplest multi-channel case, with 2
streams, and let us assume that these 2 streams describe the same sequence of 3“events”(classes)
A, B and C. Furthermore, let us assume, as illustrated in Figure 1, that the best piecewise
stationary alignment of each stream to the sequence A-B-C would not coincide temporally with
each other (which we refer to “stream asynchrony”). In such a case (which is discussed in more
details in Section 5), a naive solution to try to model the joint probability of the two streams
(e.g., applying early integration) would need an exponential number of states (with respect to
the number of streams), as depicted in the third line of Figure 1. A better solution, depicted in
the fourth line of Figure 1, would stretch or compress the streams along a single HMM model
with the goal to re-align them during training and decoding. Such a model is described in
Section 5.

Stream 1

Stream 2

Asynchronous
Joint /

Naive
Integration

A B C

A

C

B C

B

A

A B

B

B

CB

C C

A

A

A B C

5 (d1+d2)−dim
states

3 (d1+d2)−dim
states

3 d1−dim states

3 d2−dim states

Figure 1: Complexity issue with asynchronous streams.

7. Available benchmark datasets for evaluation. One of the reasons of the steady progress
of speech recognition has been the ever increasing availability of larger and larger realistic la-
beled datasets, and the yearly organization of international competitions. It is well known
that this is a key point for progress in any scientific research field. However, to date, very lit-
tle material has been recorded and properly annotated for multi channel sequence processing.
Audio-visual speech recognition and person authentication are probably the fields where most
available databases can be found. What about other scenarios, such as multimedia analysis,
multimodal surveillance, etc? In Section 6, we describe a first initiative of such a benchmark
database available for the meeting scenario.

5 Handling Asynchrony

Properly modeling asynchrony and correlation between multiple observation streams is thus a chal-
lenging problem. However, as a matter of fact, there are multiple evidences of real life applications
involving several asynchronous streams. For instance, audio-visual speech recognition usually exhibits
asynchrony. Indeed, the lips of a person often start moving earlier than any sound is uttered, mainly
because the person is preparing to utter the sound. Another example is the speaking and pointing
scenario, where a person complement the speech signal with a pointing gesture (to a point of inter-
est). In this case, of course, although the two streams are related to the same high-level event, the
pointing event will usually never occur exactly at the same time as the vocal event. One last example
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of asynchrony: in a news video, there is almost always a variable delay between the moment when
the newscaster says the name of a public personality and the moment when the personality’s picture
actually appears on the screen.

One can think of several other instances involving asynchrony between streams, and there is thus
a need to model this phenomenon in a principled way. As described below, such a solution, referred
to as Asynchronous HMM was recently proposed.

5.1 The Asynchronous HMM

Let us consider the case where one is interested in modeling the joint probability of two asynchronous
streams, denoted here O1 of length T1 and O2 of length T2 with T2 ≤ T1 without loss of generality2. We
are thus interested in modeling p(O1,O2). Following the ideas introduced for HMMs, we represent
this distribution using a hidden variable Q which represents the (discrete) state of the generating
system, which in our case is synchronized with the longest sequence O1.

Moreover, since we know that O2 is smaller than O1, let the system always emit o1

t at time t but
only sometimes emit o2

s at time t, with s ≤ t. Let us define τt=s as the fact that o1
t is emitted at the

same time as o2

s; τ can thus be seen as the alignment between O1 and O2. Hence, an Asynchronous
HMM (AHMM) [1] models p(O1,O2, Q, τ).

Using these hidden variables, and using several reasonable independence assumptions, we can factor
the joint likelihood of the data and the hidden variables into several simple conditional distributions:

• P (qt=i|qt−1=j), the probability to go from state j to state i at time t,

• p(o1

t ,o
2

s|qt=i), the joint emission distribution of o1

t and o2

s, while in state i at time t,

• p(o1

t |qt=i), the emission distribution of o1

t only, while in state i at time t,

• P (τt=s|τt−1=s− 1, qt=i,o1

1:t,o
2

1:s), the probability to emit on both sequences while in state i at
time t.

We showed in [1] that using these simple distributions, new algorithms could be developed to (1)
estimate the joint likelihood of the two streams, (2) train a model to maximize the joint likelihood of
pairs of streams, and (3) jointly estimate the best sequence of states Q and the best alignment between
pairs of streams.

Furthermore, one can still constrain the model to consider only reasonable alignments, e.g., in-
tegrating some minimum and maximum asynchrony between the streams. Using this constraint
and denoting Nq the number of states of the model, the training and decoding complexity become
O(N2

q · T1 · k), which is only k times the usual HMM complexity.

5.2 Audio-Visual Speech Recognition

The proposed AHMM model was applied to several tasks, including audio-visual speech recognition
and speaker verification [2], as well multi-channel meeting analysis [26]. We report here results on the
M2VTS database [18] for the task of audio-visual speech recognition, where the speech features where
standard Mel-Frequency Cepstral Coefficients (MFCCs), while the visual features where shapes and
intensities around the mouth region, obtained by lip tracking. In order to evaluate the robustness
of audio-visual speech recognition, various levels of noise were injected into the audio stream during
decoding, while training was always done using clean audio only. The noise was taken from the Noisex3

database [22], and added to the speech signal injected to reach segmental signal-to-noise ratios (SNR)
of 10dB, 5dB and 0dB.

2Since all the reasoning below can easily be generalized to sequences (even of the same length) where the warping
(stretching and compressing) can occur at different instances in the different streams.

3We took the stationary speech noise.
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Figure 2: Word Error Rates (in percent, the lower the better), of various systems under various noise
conditions.

Asynchronous HMMs were compared to classical HMMs using only the audio stream, only the video
stream, or both streams combined using the early integration scheme. Figure 2 presents the results in
terms of Word Error Rate (WER), a commonly used measure in the field of speech recognition, which
takes into account the number of insertions, deletions and substitutions4. As observed from Figure 2,
the AHMM consistently yielded lower WER as soon as the noise level was significant. Actually, it
did not yield significantly lower performance (using a 95% confidence interval) than the video stream
alone in case of very low (0dB) SNR, while performing as well as the audio stream alone in case of
“clean” speech (10dB).

An interesting side effect of the model is to provide the “optimal” alignment between the audio
and the video streams, as a by-product of the decoding process. This is illustrated in Figure 3
showing the audio-visual stream alignment resulting from the AHMM decoding of a specific digit
sequence corrupted with 10dB Noisex noise. As it can be seen, the alignment is far from being linear.
This shows that computing and maximizing the joint stream probability using AHMM appears more
informative than using a naive alignment and a normal HMM.

6 A Layered Approach

6.1 The Meeting Scenario

Automatic analysis of meetings (including, e.g., automatic modeling of human interaction in meet-
ings by modeling the joint behavior of participants through multiple audio and visual features) is a

4Basically, the edit (Levenshtein) distance between the recognized and reference word sequences.
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Figure 3: Alignment obtained by the model between video and audio streams on a typical sequence
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particularly challenging application of multi-channel sequence processing. It is multimodal by nature
(meetings can be recorded with several cameras and microphones, as well as with other devices cap-
turing information coming from the white-board, the slide projector, etc) and is also a rich case study
of human interaction.

In [15], a principled approach to the automatic analysis of meetings was proposed, defining meetings
as continuous sequences of group actions chosen from a predefined dictionary of actions (including,
for instance, monologue, discussion, white-board presentation, with or without note-taking, agree-
ment/disagreement, etc). This made the problem well suited for supervised learning approaches. The
group actions should be mutually exclusive, exhaustive, and as much as possible unambiguous to
human observers. To this end, we have collected a corpus of 60 short meetings of about 5 minutes
each (30 for training, and 30 for test purposes) in a room equipped with synchronized multi-channel
audio and video recorders. The resulting corpus, including annotation, is now publicly available at
http://mmm.idiap.ch5. Each meeting consisted of four participants seated at a table in a typical
workplace setting. Three cameras captured the participants, the projector screen and white-board.
Audio was recorded using one lapel microphone per participant and an eight-microphone array located
in the center of the table. The overall goal was to minimize the Action Error Rate (AER), similarly
to what is done in speech recognition with Word Error Rate (WER), but over sequences of high level
group actions. To this end, several extensions of HMMs, including AHMMs, were tested and results

5In the framework of the AMI European Integrated Project (http://www.amiproject.org) this corpus is now ex-
tended to about 100 hours of multimodal meeting data.
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are reported in [15].

More recently, we proposed a multi-layered solution [26, 6] intended at simplifying the complexity
of the task, based on an approach presented in [17].

6.2 A Two-Layer Approach

Let us define two sets of actions, whether they are specific to individual participants or to the group.
While the overall goal is at the level of group actions, we believe that individual actions could act
as a bridge between high level complex group actions and low level features, thus decomposing the
problem into stages, or layers.

To this end, we defined the group action vocabulary set with the following 8 actions: discussion,
monologue, monologue+note-taking, note-taking, presentation, presentation+note-taking, white-board,
white-board+note-taking. Furthermore, we defined the individual action vocabulary with the following
3 actions: speaking, writing, idle.

Obviously, individual actions should be easier to annotate in the corpus (as being less ambiguous)
and should also be easier to learn with some training data, as they are obviously more related to
low level features that can be extracted from the raw multiple channels. Furthermore, knowing the
sequence of individual actions of each participant, one should easily be able to infer the underlying
sequence of group actions. Thus considering every meeting participant as a “multi-stream generator”,
each of the participant’s streams should be processed by a first layer of HMMs, and the resulting
HMM’s outputs (likelihoods/posteriors) will then be combined by a second HMM layer yielding,
higher level, group actions.

Person 2 AV Features

Person N AV Features

Group AV Features

Microphones

Cameras

Person 1 AV Features

I−HMM 2

I−HMM N

G−HMM

I−HMM 1

Figure 4: A two-layer approach

Figure 4 illustrates the overall strategy. Audio-visual features are first extracted for each of the
meeting participants [26], complemented by more general group-level features. An individual HMM
(I-HMM) is then trained for each participant, using the individual action vocabulary. To have these
I-HMMs as much “participant independent” as possible, all parameters are shared among all models,
yielding up to 4 times more data to train the I-HMMs. Several models were compared, including early
integration, multi-stream, and asynchronous HMMs (AHMM).

We then estimate for each participant i the posterior probability of each individual task vi,j at
each time step t given the individual observation sequence up to time t, p(vi,j |o

i
1:t). These posterior

probabilities, together with group-level features, are then used as observations for the second layer, the
group HMM, (G-HMM), which are trained on the group action vocabulary. Again, this G-HMM was
implemented in various flavors, including early integration, multi-stream and asynchronous HMMs.
Section 6.3 below further discusses this aspect and shows how these (lower level) posterior probabilities
can be estimated to guarantee some form of “optimality”, while preserving maximum information (i.e.,
avoiding local decisions) across the different layers.
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Table 1: Action error rates (AER) for various systems applied to the meeting scenario.
Method AER (%)

Visual only 48.20
Audio only 36.70

Single-layer Early Integration 23.74
Multi-Stream 23.13
Asynchronous 22.20

Visual only 42.45
Audio only 32.37

Two-layer Early Integration 16.55
Multi-Stream 15.83
Asynchronous 15.11

Table 1 reports the AER performance achieved by the different systems. It can be seen that (1)
the two-layer approach always outperforms the single-layer one, and (2) the best I-HMM model is the
Asynchronous HMM, which probably means that some asynchrony exists in this task, and is actually
well captured by the model.

6.3 General Multi-Layered (Hierarchical) HMM Approach

As illustrated from the above meeting scenario, the complexity resulting from the processing of multiple
channels of information, in order to extract low-level as well as high-level information (such as the
analysis of multimodal meetings in terms of high level meeting actions), is often such that it will often
be necessary to break down the problem in terms of multiple layers of sub-problems, probably using
different constraints and prior knowledge information sources. The layered approach is one possible
and principled solution to achieve this. Given a complex task, the goal is then to break it down
into several hierarchically embedded sub-tasks, for which one can devise proper models (from enough
training data), and use adequate (level specific) constraints.

We recently proposed such an approach for the task of speech recognition [6], where a general
theoretical framework was proposed to compute low-level (e.g., phoneme) class posteriors, based on
all the acoustic context, and to hierarchically combine those posteriors to yield higher-level (e.g.,
sentence) posteriors. In this approach, each layer is integrating its own prior constraints.

More precisely, a first layer, which could be an HMM or an AHMM, as in the meeting scenario, or
any other model such as an Artificial Neural Network (ANN), is used to estimate posterior probabilities
p(qt = i|O) of sub-classes i (such as phonemes, for the case of speech recognition) at each time
step t given all the available information (for instance, all the acoustic sequence O). In HMM,
as well as in hybrid HMM/ANN systems, this posterior probability estimate is given by the so-
called γ(i, t) = p(qt = i|O), which can be obtained by running and combining the so-called α and
β recurrences through the appropriate HMM. Ideally, this HMM should embed all known lexical
constraints about legal and probable sequences of phonemes. One should then use the resulting
posterior probabilities (of every sub-class at every time step) as input to the next layer model, which
would then estimate the posterior probabilities (again through new γ’s) of higher level classes, such as
words, constraining the underlying HMM model with all known language constraints that pertains to
legal and probable sequences of words. In theory, this operation could be repeated up to the the level
of sentences, and even to the level of summarization, always using posterior probabilities resulting
from the previous layer as intermediate features.

Initial results on several speech tasks, as well as on the meeting task discussed previously, resulted
in significant improvements. In [6], speech recognition results where presented on Numbers’95 (speaker
independent recognition of free format numbers spoken over the telephone) and on a reduced vocab-
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ulary version (1,000 words) of the DARPA Conversational Telephone Speech-to-text (CTS) task, and
both resulted in significant improvements.

7 Conclusion

This paper discussed several issues arising from the processing of complex multi-channel data, including
large multimodal problems (meeting data). More specifically, this paper focused on two important
issues, namely stream asynchrony and complexity of high-level decision processes. The proposed
Asynchronous HMMs (AHMM) actually maximize the likelihood of the joint observation sequences
through a single HMM, while also automatically allowing for stretching and/or compressing of the
different streams. However, in the case of very complex problems, using AHMMs is often not enough,
and the problem needs to be broken down into simpler processing blocks. A solution to this problem,
referred to as “multi-layered/hierarchical HMMs” (and where each layer can integrate different levels
of constraints and prior information) was also proposed and shown to be effective in modeling the
joint behavior of participants in multimodal meetings. A full theoretical motivation of this approach
is described in [6].
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