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Abstract. In this paper, we show that the hinge loss can be interpreted as the neg-log-likelihood
of a semi-parametric model of posterior probabilities. From this point of view, SVMs represent the
parametric component of a semi-parametric model fitted by a maximum a posteriori estimation
procedure. This connection enables to derive a mapping from SVM scores to estimated posterior
probabilities. Unlike previous proposals, the suggested mapping is interval-valued, providing a
set of posterior probabilities compatible with each SVM score. This framework offers a new way
to adapt the SVM optimization problem when decisions result in unequal losses. Experiments on
an unbalanced classification loss show improvements over state-of-the-art procedures.
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1 Introduction

In this paper, we show that support vector machines (SVMs) are the solution of a relaxed maximum
a posteriori (MAP) estimation problem. This relaxed problem results from fitting a semi-parametric
model [7] of posterior probabilities. This model is decomposed into two components: the parametric
component, which is a function of the SVM score, and the non-parametric component which we call
a nuisance function. Given a proper binding of the nuisance function adapted to the considered
problem, this decomposition enables to concentrate on selected ranges of the probability spectrum.
The estimation process can thus allocate model capacity to the neighborhoods of decision boundaries.

The connection to semi-parametric models provides a probabilistic interpretation of SVM scores,
which may have several applications, such as estimating confidences over the predictions, or dealing
with unbalanced losses (which occur in domains such as diagnosis, intruder detection, etc). Several
mappings relating SVM scores to probabilities have already been proposed [9, 8], but they are subject
to arbitrary choices, which are avoided here by their integration to the nuisance function.

The paper is organized as follows. Section 2 presents the semi-parametric modeling approach.
Section 3 shows how we can reformulate SVM within this framework. Section 4 proposes several
outcomes of this formulation, including a new method to handle unbalanced losses, which is then
tested empirically in Section 5. Finally, Section 6 briefly concludes the paper.

2 Semi-Parametric Classification

We address the binary classification problem of estimating a decision rule from a learning set Ln =
{(xi, yi)}n

i=1, where the ith example is described by the pattern xi ∈ X and the associated response
yi ∈ {−1, 1}. In the framework of maximum likelihood estimation, classification can be addressed
either via generative models, i.e. models of the joint distribution P (X, Y ), or via discriminative
methods modeling the conditional P (Y |X).

2.1 Complete and Marginal Likelihood, Nuisance Functions

Let p(1|x;θ) denote the model of P (Y = 1|X = x), p(x;ψ) the model of P (X) and ti the binary
response variable such that ti = 1 when yi = 1 and ti = 0 when yi = −1. Assuming independent
examples, the complete log-likelihood can be decomposed as

L(θ,ψ;Ln) =
n∑

i=1

ti log(p(1|xi;θ)) + (1− ti) log(1− p(1|xi;θ)) + log(p(xi;ψ)) , (1)

where the two first terms of the right-hand side represent the marginal or conditional likelihood, that
is, the likelihood of p(1|x;θ).

For classification purposes, the parameter ψ is not relevant, and may thus be qualified as a nuisance
parameter [4]. When θ can be estimated independently of ψ, maximizing the marginal likelihood
provides the estimate returned by maximizing the complete likelihood with respect to θ and ψ. In
particular, when no assumption whatsoever is made on P (X), maximizing the conditional likelihood
amounts to maximize the joint likelihood [5]. The density of inputs is then considered as a nuisance
function.

2.2 Semi-Parametric Models

Again, for classification purposes, estimating P (Y |X) may be considered as too demanding. Indeed,
taking a decision only requires the knowledge of sign(2P (Y = 1|X = x) − 1). We may thus con-
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Figure 1: Two examples of ε−(x) (dashed) and ε+(x) (plain) vs. g(x) and resulting ε-tube of possible
values for the estimate of P (Y = 1|X = x) (gray zone) vs. g(x).

sider looking for the decision rule minimizing the empirical classification error, but this problem is
intractable for non-trivial models of discriminant functions.

Here, we briefly explore how semi-parametric models [7] may be used to reduce the modeliza-
tion effort as compared to the standard likelihood approach. For this, we consider a two-component
semi-parametric model of P (Y = 1|X = x), defined as p(1|x;θ) = g(x;θ) + ε(x), where the para-
metric component g(x;θ) is the function of interest, and where the non-parametric component ε is
a constrained nuisance function. Then, we address the maximum likelihood estimation of the semi-
parametric model p(1|x;θ)

min
θ,ε

−
n∑

i=1

ti log(p(1|xi;θ)) + (1− ti) log(1− p(1|xi;θ))

s. t. p(1|x;θ) = g(x;θ) + ε(x)
0 ≤ p(1|x;θ) ≤ 1
ε−(x) ≤ ε(x) ≤ ε+(x)

(2)

where ε− and ε+ are user-defined functions, which place constraints on the non-parametric component
ε. According to these constraints, one pursues different objectives, which can be interpreted as either
weakened or focused versions of the original problem of estimating precisely P (Y |X) on the whole
range [0, 1].

At the one extreme, when ε− = ε+, one recovers a parametric maximum likelihood problem, where
the estimate of posterior probabilities p(1|x;θ) is simply g(x;θ) shifted by the baseline function
ε. At the other extreme, when ε−(x) ≤ −g(x) and ε+(x) ≥ 1 − g(x), p(1|·;θ) perfectly explains
(interpolates) any training sample for any θ, and the optimization problem in θ is ill-posed. Note
that the optimization problem in ε is always ill-posed, but this is not of concern as we do not wish to
estimate the nuisance function.

Generally, as ε is not estimated, the estimate of posterior probabilities p(1|x;θ) is only known to
lie within the interval [g(x;θ) + ε−(x), g(x;θ) + ε+(x)]. In what follows, we only consider functions
ε− and ε+ expressed as functions of the argument g(x), for which the interval can be recovered from
g(x) alone. We also require ε−(x) ≤ 0 ≤ ε+(x), in order to ensure that g(x;θ) is an admissible value
of p(1|x;θ).

Two simple examples are displayed in Figure 1. The two first graphs represent ε− and ε+ designed
to estimate posterior probabilities up to precision ε, and the corresponding ε-tube of admissible esti-
mates knowing g(x). The two last graphs represent the same functions for ε− and ε+ defined to focus
on the only relevant piece of information regarding decision: estimating where P (Y |X) is above 1/2. 1

1Of course, this naive attempt to minimize the training classification error is doomed to failure. As shown in the
following section, this reformulation of the classification error does not affect its convexity, hence the optimization
problem typically remains NP-hard.
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Figure 2: Losses for positive examples (plain) and neg-log-likelihood of g(x) (dotted) vs. g(x). Left:
for the function ε+ displayed on the left-hand side of Figure 1; right: for the function ε+ displayed on
the right-hand side of Figure 1.

2.3 Estimation of the Parametric Component

The definitions of ε− and ε+ affect the estimation of the parametric component. Regarding θ, when
the values of g(x;θ) + ε−(x) and g(x;θ) + ε+(x) lie within [0, 1], the semi-parametric estimation
problem (2) is equivalent to the following relaxed maximum likelihood problem min

θ,ε
−

n∑
i=1

ti log(g(xi;θ) + εi) + (1− ti) log(1− g(xi;θ)− εi)

s. t. ε−(xi) ≤ εi ≤ ε+(xi) i = 1, . . . , n

(3)

where ε is an n-dimensional vector of slack variables. The problem is qualified as relaxed compared
to the the maximum likelihood estimation of posterior probabilities by g(xi;θ), because modeling
posterior probabilities by g(xi;θ) + εi is a looser objective.

The monotonicity of the objective function with respect to εi implies that the constraints ε−(xi) ≤
εi and εi ≤ ε+(xi) are saturated at the solution of (3) for ti = 0 or ti = 1 respectively. Thus, the
loss in (3) is the neg-log-likelihood of the lower or the upper bound on p(1|xi;θ) respectively, and the
optimization problem with respect to θ reduces to

min
θ

−
n∑

i=1

ti log(g(xi;θ) + ε+(xi)) + (1− ti) log(1− g(xi;θ)− ε−(xi)) , (4)

where we assumed that g, ε− and ε+ are defined such that ε−(x) ≤ ε+(x), 0 ≤ g(x) + ε−(x) ≤ 1 and
0 ≤ g(x) + ε+(x) ≤ 1.

Figure 2 displays the losses for positive examples corresponding to the choices of ε− and ε+ depicted
in Figure 1 (the losses are symmetrical around 0.5 for negative examples). Note that the convexity
of the objective function with respect to g depends on the choices of ε− and ε+. One can show that,
providing ε+ and ε− are respectively concave and convex functions of g, then the loss (4) is convex in
g.

When ε−(x) ≤ 0 ≤ ε+(x), g(x) is an admissible estimate of P (Y = 1|x). However, the relaxed loss
(4) is optimistic, below the neg-log-likelihood of g. This optimism usually results in a non-consistent
estimation of posterior probabilities, a common situation in semi-parametric modeling [4].2 This lack of
consistency should not be a concern here, since the non-parametric component is purposely introduced
to address a looser estimation problem. We should therefore restrict consistency requirements to the
primary goal of having posterior probabilities in the ε-tube [g(x) + ε−(x), g(x) + ε+(x)].

3 Semi-Parametric Formulation of SVMs

Several authors pointed the close relationship between the SVM criterion and the MAP approach to
Gaussian processes (see [9] and references therein). However, this similarity is not perfect, prevent-

2That is, g(x) does not converge towards P (Y = 1|X = x) as the sample size goes to infinity.
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ing the unambiguous interpretation of SVM scores as posterior probabilities. Here, we resolve this
difficulty thanks to the additional degrees of freedom provided by semi-parametric modelling.

3.1 SVMs and Gaussian Processes

In its primal Lagrangian formulation, the SVM optimization problem reads

min
f,b

1
2
‖f‖2

H + C
n∑

i=1

[1− yi(f(xi) + b)]+ , (5)

where H is a reproducing kernel Hilbert space with norm ‖ · ‖H, C is a regularization parameter and
[f ]+ = max(f, 0).

The penalization term in (5) can be interpreted as a Gaussian prior on f , with a covariance
function proportional to the reproducing kernel of H [9]. Then, the interpretation of the hinge loss
as a marginal log-likelihood requires to identify an affine function of the last term of (5) with the two
first terms of (1). We thus look for two constants c0 and c1 6= 0, such that, for all values of f(x) + b,
there exists a value 0 ≤ p(1|x) ≤ 1 such that{

p(1|x) = exp−(c0 + c1[1− (f(x) + b)]+)
1− p(1|x) = exp−(c0 + c1[1 + (f(x) + b)]+) . (6)

The system (6) has a solution over the whole range of possible values of f(x) + b if and only if
c0 = log(2) and c1 = 0. Thus, the SVM optimization problem does not implement the MAP approach
to Gaussian processes.

To proceed with a probabilistic interpretation of SVMs, one should thus depart from standard
Gaussian processes. [9] proposed a normalized probability model, but the normalization functional
was chosen arbitrarily, and the consequences of this choice on the probabilistic interpretation was
not evaluated. In what follows, we derive an imprecise mapping, with interval-valued estimates of
probabilities, representing the set of all admissible semi-parametric formulations of SVM scores.

3.2 SVMs and Semi-Parametric Models

With the semi-parametric models introduced in Section 2.2, one has to identify an affine function of
the hinge loss with the two terms of (4). Compared to the previous situation, the identification is
eased, as one has the freedom to define the slack functions ε− and ε+. The identification problem is
now 

g(x) + ε+(x) = exp−(c0 + c1[1− (f(x) + b)]+)
1− g(x)− ε−(x) = exp−(c0 + c1[1 + (f(x) + b)]+)
s.t. 0 ≤ g(x) + ε−(x) ≤ 1

0 ≤ g(x) + ε+(x) ≤ 1
ε−(x) ≤ ε+(x)

. (7)

Provided c0 = 0 and 0 < c1 ≤ log(2), there are functions g, ε− and ε+ such that the above problem
has a solution. Hence, semi-parametric models provide a set of probabilistic interpretations fully
compatible with SVM scores. The subsets of solutions indexed by c1 are nested, in the sense that,
for any x, the length of the uncertainty interval, ε+(x)− ε−(x), is monotonically decreasing in c1. In
other words, the interpretation of SVM scores as posterior probabilities gets tighter as c1 increases.

The most restricted subset of admissible interpretations, with the shortest uncertainty intervals,
obtained for c1 = log(2), is represented in the left-hand side of Figure 3. The loss incurred by a positive
example is represented on the central graph, where the gray zone represents the neg-log-likelihood of
all admissible solutions of g(x). Note that the hinge loss is proportional to the neg-log-likelihood
of the upper posterior probability g(x) + ε+(x), which is the loss for positive examples in the semi-
parametric model in (4). Conversely, the hinge loss for negative examples is reached for g(x)+ ε−(x).
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Figure 3: Left: lower (dashed) and upper (plain) posterior probabilities [g(x) + ε−(x), g(x) + ε+(x)]
vs. SVM scores f(x) + b; center: corresponding neg-log-likelihood of g(x) for positive examples vs.
f(x)+ b. right: lower (dashed) and upper (plain) posterior probabilities vs. g(x), for g defined in (8).

An important observation, that will be useful in Section 4.2 is that the neg-log-likelihood of any
admissible functions g(x) is tangent to the hinge loss at f(x) + b = 0.

The solution is unique in terms of the admissible interval [g + ε−, g + ε+], but many definitions of
(ε−, ε+, g) solve (7). For example, g may be defined as

g(x; θ) =
2−[1−(f(x)+b)]+

2−[1+(f(x)+b)]+ + 2−[1−(f(x)+b)]+
, (8)

which is essentially the posterior probability model proposed by [9], represented dotted in the first
two graphs of Figure 3.

The last graph of Figure 3 displays the mapping from g(x) to admissible values of p(1|x) which
results from the choice described in (8). Although the interpretation of SVM scores does not require
to specify g, it may worth to list some features common to all options. First, g(x) + ε−(x) = 0 for all
g(x) below some threshold g0 > 0, and conversely, g(x)+ ε+(x) = 1 for all g(x) above some threshold
g1 < 1. These two features are responsible for the sparsity of the SVM solution. Second, the estimation
of posterior probabilities is accurate at 0.5, and the length of the uncertainty interval regarding p(1|x)
monotonically increases in [g0, 0.5] and then monotonically decreases in [0.5, g1]. These observations
corroborate that the training objective of SVMs is intermediate between the accurate estimation of
posterior probabilities on the whole range [0, 1] and the minimization of the classification risk.

4 Outcomes of the Probabilistic Interpretation

This section gives two consequences of our probabilistic interpretation of SVMs. Further outcomes,
still reserved for future research are listed in Section 6.

4.1 Pointwise Posterior Probabilities from SVM Scores

[8] proposed to estimate posterior probabilities from SVM scores by fitting a logistic function over the
SVM scores. The only logistic function compatible with the most stringent interpretation of SVMs in
the semi-parametric framework,

g(x; θ) =
1

1 + 4−(f(x)+b))
, (9)

is identical to the posterior probability model proposed by [9] (8) when f(x) + b lies in the interval
[−1, 1].

Other logistic functions are compatible with the looser interpretations obtained by letting c1 <
log(2), but their use as pointwise estimates becomes even more questionable, since the associated
interval of admissible posterior probabilities is wider. In particular, these looser interpretations do
not ensure that f(x) + b = 0 corresponds to g(x) = 0.5. Then, the decision function based on the
estimated posterior probabilities by g(x) may differ from the SVM decision function.



8 IDIAP–RR 05-26

Thus, pointwise estimates of posterior probabilities derived from SVM scores should be interpreted
with caution, as they require an arbitrary choice of g(x). As discussed by [11], one should not expect
accuracy from these estimates, even asymptotically, except at f(x) + b = 0, where the estimated
posterior probability converges towards 0.5.

4.2 Unbalanced Classification Losses

SVMs are known to perform well regarding misclassification error, but they also have been recognized
to provide skewed decision boundaries for unbalanced classification losses, where the losses associated
with incorrect decisions differ according to the true label. The mainstream approach used to address
this problem consists in using different losses for positive and negative examples [6, 10], i.e.

min
f,b

1
2
‖f‖2

H + C+
∑

{i|yi=1}

[1− (f(xi) + b)]+ + C−
∑

{i|yi=−1}

[1 + (f(xi) + b)]+ , (10)

where the coefficients C+ and C− are constants, whose ratio is equal to the ratio of the losses `FN and
`FP pertaining to false negatives and false positives, respectively [3].3 Bayes’ decision theory defines
the optimal decision rule by positive classification when P (y = 1|x) > P0, where P0 = `FP

`FP+`FN
.

We may thus rewrite C+ = C · (1 − P0) and C− = C · P0. With such definitions, the optimization
problem may be interpreted as an upper-bound on the classification risk defined from `FN and `FP.
However, the machinery of Section 3.2 unveils a major problem: the SVM decision function provided
by sign(f(xi) + b) is not consistent with the probabilistic interpretation of SVM scores.

We address this problem by deriving another criterion, by requiring that the neg-log-likelihood of
any admissible functions g(x) is tangent to the hinge loss at f(x) + b = 0. This leads to the following
problem:

min
f,b

1
2
‖f‖2

H + C

 ∑
{i|yi=1}

[− log(P0)− (1− P0)(f(xi) + b)]+ +

∑
{i|yi=−1}

[− log(1− P0) + P0(f(xi) + b)]+

 . (11)

This loss differs from (10) whatever C+ and C− may be, in the respect that the margin for positive
examples are smaller than the one for negative examples when P0 < 0.5. In particular, (10) does not
affect the SVM solution for separable problems, while in (11), the decision boundary moves towards
positive support vectors when P0 decreases. Note that The analogue of Figure 3, displayed on Figure 4,
shows that one recovers the characteristics of the standard SVM loss, except that the focus is now on
the posterior probability P0 defined by Bayes’ decision rule.

5 Experiments with Unbalanced Classifications Losses

It is straightforward to modify standard SVM packages to implement (11). For experimenting with
difficult unbalanced two-class problems, we used a subset of the Forest database4 which is currently
the largest available UCI dataset. We consider the subproblem of discriminating the positive class
Krummholz (20510 examples, originally labeled 7) against the negative class Spruce/Fir (211840
examples, originally labeled 1). The ratio of negative/positive examples is higher than 10, a feature
commonly encountered with unbalanced classification losses.

3False negatives/positives respectively designate positive/negative examples incorrectly classified.
4Available at http://kdd.ics.uci.edu/databases/covertype/covertype.data.htm.
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Figure 4: Left: lower (dashed) and upper (plain) posterior probabilities [g(x)+ε−(x), g(x)+ε+(x)] vs.
SVM scores f(x) + b obtained from (11) with P0 = 0.25; center: corresponding neg-log-likelihood of
g(x) for positive examples vs. f(x)+b. right: lower (dashed) and upper (plain) posterior probabilities
vs. g(x), for g defined by ε+(x) = 0 for f(x) + b ≤ 0 and ε−(x) = 0 for f(x) + b ≥ 0.

We randomly selected from the original dataset 3 000 examples for the positive class and 30 0000
for the negative class. Each set of examples was further divided into three equal parts corresponding
to the training, validation and test sets.

The performance is measured by the weighted risk function R = 1
n (NFN`FN + NFP`FP), where

NFN and NFP are the number of false negatives and false positives, respectively. The loss `FP was
set to one, and `FN was successively set to 1, 10 and 100, in order to penalize more and more heavily
errors from the under-represented class.

All approaches were tested using SVMs with a Gaussian kernel. All hyper-parameters were tuned
on the validation set for each of the `FN values. The bias b was also tuned on the validation set, to
improve the results for the baseline and C+/C− optimizers, which do not estimate this parameter
correctly for `FN 6= `FP. Table 1 compares the risk R obtained with the three approaches for the
different values of `FN.

Table 1: Errors for 3 different criteria and for 3 different models over the Forest database

`FN Baseline, problem (5) C+/C−, problem (10) P0, problem (11)
1 2.52 2.52 2.52
10 11.69 10.73 10.91
100 45.23 36.81 30.67

The first line, with `FN = 1 corresponds to the standard classification error, where all criteria are
equivalent in theory and in practice. For `FN = 10, the models obtained by optimizing C+/C− (10)
and P0 (11) give similar results, better than the baseline. Finally, for the highly unbalanced loss, the
novel approach provides statistically significantly better results (where significance was tested at the
5% level, using a bootstrap-based statistical test similar to [1]). The new optimization criterion can
thus outperform standard approaches for highly unbalanced problems.

6 Conclusion

This paper introduced a semi-parametric model for classification which provides an interesting view-
point on SVMs. The non-parametric component provides an intuitive means of transforming the
likelihood into a decision-oriented criterion. This framework was used here to propose a new pa-
rameterization of the hinge loss, dedicated to unbalanced classification problems, yielding significant
improvements over the classical procedure.

Among other prospectives, we plan to apply the same framework to investigate hinge-like criteria
for decision rules including a reject option, where the classifier abstains when a pattern is ambiguous.
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We also aim at defining losses encouraging sparsity in probabilistic models, such as kernelized logistic
regression. We could thus build sparse probabilistic classifiers, providing an accurate estimation of
posterior probabilities on a (limited) predefined range of posterior probabilities. In particular, we
could derive decision-oriented criteria for multi-class probabilistic classifiers. For example, minimizing
classification error only requires to find the class with highest posterior probability, and this search
does not require precise estimates of probabilities outside the interval [1/K, 1/2], where K is the
number of classes.
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