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Abstract. Although non-parametric tests have already been proposed for that purpose, sta-
tistical significance tests for non-standard measures (different from the classification error) are
less often used in the literature. This paper is an attempt at empirically verifying how these
tests compare with more classical tests, on various conditions. More precisely, using a very large
dataset to estimate the whole “population”, we analyzed the behavior of several statistical test,
varying the class unbalance, the compared models, the performance measure, and the sample size.
A surprising conclusion is that paired tests such as McNemar badly fail when comparing models
which are similar (such as SVMs with different kernels). On the other hand, non-parametric tests
were relatively robust to class unbalance and the closeness of the models.



2 IDIAP–RR 05-38

Contents

1 Introduction 3

2 A Statistical Significance Test for the Difference of F1 3

2.1 The F1 Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Bootstrap Percentile Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Analysis of Statistical Tests 5

3.1 Database, Models and Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Summary of Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Conclusion 9

A The Power of the Test 10

B When is H0 Verified? 10



IDIAP–RR 05-38 3

1 Introduction

Statistical tests are often used in machine learning in order to assess the performance of a new learning
algorithm or model over a set of benchmark datasets, with respect to the state-of-the-art solutions.
Several researchers (see for instance [4] and [8]) have proposed statistical tests suited for 2-class
classification tasks where the performance is measured in terms of the classification error (ratio of the
number of errors and the number of examples), which enables the use of assumptions based on the
fact that the error can be seen as a sum of random variables over the evaluation examples. On the
other hand, various research domains prefer to measure the performance of their models using different
indicators, such as the F1 measure, used in information retrieval [10], described in Section 2.1. Most
classical statistical tests cannot cope directly with such measure as the usual necessary assumptions
are no longer correct, and non-parametric bootstrap-based methods are then used [5].

Since several papers already use these non-parametric tests [2, 1], we were interested in verifying
empirically how reliable they were. For this purpose, we used a very large text categorization database
(the extended Reuters dataset [9]), composed of more than 800000 examples, and concerning more
than 100 categories (each document was labelled with one or more of these categories). We purposely
set aside the largest part of the dataset and considered it as the whole population, while a much
smaller part of it was used as a training set for the models. Using the large set aside dataset part, we
tested the statistical test in the same spirit as was done in [4], by sampling evaluation sets over which
we observed the performance of the models and the behavior of the significance test.

Following the taxonomy of questions of interest defined by Dietterich in [4], we can differentiate
between statistical tests that analyze learning algorithms and statistical tests that analyze classifiers.
In the first case, one intends to be robust to possible variations of the train and evaluation sets, while
in the latter, one intends to only be robust to variations of the evaluation set. While the methods
discussed in this paper can be applied alternatively to both approaches, we concentrate here on the
second one, as it is more tractable (for the empirical section) while still corresponding to real life
situations where the training set is fixed and one wants to compare two solutions (such as during a
competition).

In order to conduct a thorough analysis, we tried to vary the evaluation set size, the class unbalance,
the error measure, the statistical test itself (with its associated assumptions), and even the closeness

of the compared learning algorithms. This paper, and more precisely Section 3, is a detailed account
of this analysis. As it will be seen empirically, the closeness of the compared learning algorithms
seems to be a decisive factor on the resulting quality of the statistical tests: comparing an MLP and
an SVM yields much more reliable statistical tests than comparing two SVMs with a different kernel.
To the best of our knowledge, this has never been considered in the literature of statistical tests for
machine learning.

2 A Statistical Significance Test for the Difference of F1

Let us first remind the basic classification framework in which statistical significance tests are used
in machine learning. We consider comparing two models A and B on a two-class classification task
where the goal is to classify input examples xi into the corresponding class yi ∈ {−1, 1}, using already
trained models fA(xi) or fB(xi). One can estimate their respective performance on some test data by
counting the number of utterances of each possible outcome: either the obtained class corresponds to
the desired class, or not. Let Ne,A (resp. Ne,B) be the number of errors of model A (resp. B) and N

the total number of test examples; The difference between models A and B can then be written as

D =
Ne,A − Ne,B

N
. (1)

The usual starting point of most statistical tests is to define the so-called null hypothesis H0 which
considers that the two models are equivalent, and then verifies how probable this hypothesis is. Hence,
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assuming that D is an instance of some random variable D which follows some distribution, we are
interested in

p (|D| < |D|) < α (2)

where α represents the risk of selecting the alternate hypothesis (the two models are different) while
the null hypothesis is in fact true. This can in general be estimated easily when the distribution of
D is known. In the simplest case, known as the proportion test, one assumes (reasonably) that the
decision taken by each model on each example can be modeled by a Bernoulli, and further assumes
that the errors of the models are independent. This is in general wrong in machine learning since the
evaluation sets are the same for both models. When N is large, this leads to estimate D as a Normal
distribution with zero mean and standard deviation σD

σD =

√

2C̄(1 − C̄)

N
(3)

where C̄ =
Ne,A+Ne,B

2N
is the average classification error. In order to get rid of the wrong indepen-

dence assumption between the errors of the models, the McNemar test [6] concentrates on examples
which were differently classified by the two compared models. Following the notation of [4], let N01

be the number of examples misclassified by model A but not by model B and N10 the number of
examples misclassified by model B but not by model A. It can be shown that the following statistics
is approximatively distributed as a χ2 with 1 degree of freedom:

z =
(|N01 − N10| − 1)2

N01 + N10

. (4)

More recently, several other statistical tests have been proposed, such as the 5x2cv method [4]
or the variance estimate proposed in [8], which both claim to better estimate the distribution of the
errors (and hence the confidence on the statistical significance of the results). Note however that
these solutions assume that the error of one model is the average of some random variable (the error)
estimated on each example. Intuitively, it will thus tend to be Normally distributed as N grows,
following the central limit theorem.

2.1 The F1 Measure

Text categorization is the task of assigning one or several categories, among a predefined set of K

categories, to textual documents. As explained in [10], text categorization is usually solved as K

2-class classification problems, in a one-against-the-others approach. In this field two measures are
considered of importance:

Precision =
Ntp

Ntp + Nfp

, and Recall =
Ntp

Ntp + Nfn

,

where for each category Ntp is the number of true positives (documents belonging to the category
that were classified as such), Nfp the number of false positives (documents out of this category but
classified as being part of it) and Nfn the number of false negatives (documents from the category
classified as out of it). Precision and Recall are effectiveness measures, i.e. inside [0, 1] interval, the
closer to 1 the better. For each category k, Precisionk measures the proportion of documents of the
class among the ones considered as such by the classifier and Recallk the proportion of documents of
the class correctly classified.

To summarize these two values, it is common to consider the so-called F1 measure [11], often used
in domains such as information retrieval, text categorization, or vision processing. F1 can be described
as the inverse of the harmonic mean of Precision and Recall:

F1 =

(

1

2

[

1

Recall
+

1

Precision

])

−1

=
2 · Precision · Recall

Precision + Recall
=

2Ntp

2Ntp + Nfn + Nfp

. (5)
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Let us consider two models A and B, which achieve a performance measured by F1,A and F1,B

respectively. The difference dF1 = F1,A − F1,B does not fit the assumptions of the tests presented
earlier. Indeed, it cannot be decomposed into a sum over the documents of independent random
variables, since the numerator and the denominator of dF1 are non constant sums over documents of
independent random variables. For the same reason F1, while being a proportion, cannot be considered
as a random variable following a Normal distribution for which we could easily estimate the variance.

An alternative solution to measure the statistical significance of dF1 is based on the Bootstrap
Percentile Test proposed in [5]. The idea of this test is to approximate the unknown distribution of
dF1 by an estimate based on bootstrap replicates of the data.

2.2 Bootstrap Percentile Test

Given an evaluation set of size N , one draws, with replacement, N samples from it. This gives the first
bootstrap replicate B1, over which one can compute the statistics of interest, dF1,B1

. Similarly, one
can create as many bootstrap replicates Bn as needed, and for each, compute dF1,Bn

. The higher n is,
the more precise should be the statistical test. Literature [3] suggests to create at least 50

α
replicates

where α is the level of the test; for the smallest α we considered (0.01), this amounts to 5000 replicates.
These 5000 estimates dF1,Bi

represent the non-parametric distribution of the random variable dF1.
From it, one can for instance consider an interval [a, b] such that p(a < dF1 < b) = 1 − α centered
around the mean of p(dF1). If 0 lies outside this interval, one can say that dF1 = 0 is not among the
most probable results, and thus reject the null hypothesis.

3 Analysis of Statistical Tests

We report in this section an analysis of the bootstrap percentile test, as well as other more classical
statistical tests, based on a real large database. We first describe the database itself and the protocol
we used for this analysis, and then provide results and comments.

3.1 Database, Models and Protocol

All the experiments detailed in this paper are based on the very large RCV1 Reuters dataset [9], which
contains up to 806,791 documents. We divided it as follows: 798,809 documents were kept aside and
any statistics computed over this set Dtrue was considered as being the truth (ie a very good estimate
of the actual value); the remaining 7982 documents were used as a training set Dtr (to train models
A and B). There was a total of 101 categories and each document was labeled with one or more of
these categories.

We first extracted the dictionary from the training set, removed stop-words and applied stemming
to it, as normally done in text categorization. Each document was then represented as a bag-of-words
using the usual tfidf coding. We trained three different models: a linear Support Vector Machine
(SVM), a Gaussian kernel SVM, and a multi-layer perceptron (MLP). There was one model for each
category for the SVMs, and a single MLP for the 101 categories. All models were properly tuned
using cross-validation on the training set.

Using the notation introduced earlier, we define the following competing hypotheses:
H0 : |dF1| = 0 and H1 : |dF1| > 0. We further define the level of the test α = p(Reject H0|H0), where
α takes on values 0.01, 0.05 and 0.1. Table 1 summarizes the possible outcomes of a statistical test.
With that respect, rejecting H0 means that one is confident with (1−α) ·100% that H0 is really false.

In order to assess the performance of the statistical test on Type I errors1, we used the following
protocol. For each category Ci, when H0 was verified on Dtrue we sampled S (500) evaluation sets
Ds

te of N documents, ran the significance test over each Ds
te and computed the proportion of sets for

which H0 was rejected. We used this proportion as an estimate of the significance test’s probability,

1For results related to the power of the test see appendix A
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Table 1: Various outcomes of a statistical test, with α = p(Type I error).

Decision
Truth Reject H0 Accept H0

H0 Type I error OK
H1 OK Type II error

αtrue, of making a Type I error. When αtrue is higher than the α fixed by the statistical test, the test
underestimates Type I error, which means we should not rely on its decision regarding the superiority
of one model over the other. Thus, we consider that the significance test fails. On the contrary,
αtrue < α yields a pessimistic statistical test that decides correctly H0 more often than predicted.

3.2 Summary of Conditions

In order to verify the sensitivity of the analyzed statistical tests to several conditions, we varied the
following parameters:

• the value of α: it took on values in {0.1, 0.05, 0.01};

• the two compared models: there were three models, two of them were of the same family (SVMs),
hence optimizing the same criterion, while the third one was an MLP. Most of the times the
two SVMs gave very similar results, (probably because the optimal capacity for this problem
was near linear), while the MLP gave poorer results on average. The point here was to verify
whether the test was sensitive to the closeness of the tested models (although a more formal
definition of closeness should certainly be devised);

• the evaluation sample size: we varied it from small sizes (100) up to larger sizes (6000) to see
the robustness of the statistical test to it;

• the class unbalance: out of the 101 categories of the problem, most of them resulted in highly
unbalanced tasks, often with a ratio of 10 to 100 between the two classes. In order to exper-
iment with more balanced tasks, we artificially created meta-categories, which were random
aggregations of normal categories that tended to be more balanced;

• the tested measure: our initial interest was to directly test dF1, the difference of F1, but given
poor initial results, we also decided to assess dCerr, the difference of classification errors, in
order to see whether the tests were sensitive to the measure itself;

• the statistical test: on top of the bootstrap percentile test, we also analyzed the more classical
proportion test and McNemar test, both of them only on dCerr (since they were not adapted to
dF1).

3.3 Results

Figures 1 and 2 summarize the results. All graphs show αtrue, the number of times the test rejected
H0 while H0 was true, for a fixed α = 0.05, with respect to the sample size, for various statistical
tests and tested measures. Figure 1(a) shows the results for balanced data (where the positive and
negative examples were approximatively equally present in the evaluation set) when comparing two
different models (an SVM and an MLP). Figure 1(b) shows the results for unbalanced data when
comparing two different models. Figure 2(a) shows the results for balanced data when comparing
two similar models (a linear SVM and a Gaussian SVM) for balanced data, and finally Figure 2(b)
shows the results for unbalanced data and two similar models. Note that each point in the graph was
computed over a different number of samples, since over the 500×100 only the ones for which H0 was
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Figure 1: Several statistical tests comparing Linear SVM vs MLP. The proportion of Type I error
equals -1, in Figure 1(b), when there was no data to compute the proportion (ie H0 was always false,
see appendix B, Fig. 6(b)).

true in Dtrue were taken into account (see appendix B). For each of these graphs, when the curves
are over the 0.05 line, that mean that the statistical test is optimistic, while when it is below the line,
the statistical test is pessimistic. As already explained, a pessimistic test should be favored whenever
possible.

Several interesting conclusions can be drawn from the analysis of these graphs. First of all, as
expected, most of the statistical tests are positively influenced by the size of the evaluation set, in the
sense that they tend to converge below α for large sample sizes, apart from some exceptions discussed
later.
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Figure 2: Several statistical tests comparing Linear SVM vs RBF SVM

In the cases where the compared models were different, the two bootstrap-based tests (measuring
either dF1 or dCerr) are much more optimistically biased in the balanced data case than the para-
metric tests. They need very large sample sizes in order to get below the α level. The parametric tests
(McNemar and Proportion) both quickly converged to the pessimistic region. Unfortunatelly, in the
case of the unbalanced data, H0 was always false for dCerr, thus no analysis can be made regarding
the tests based on dCerr values. Comparing the results of the bootstrap test for dF1 on balanced
and unbalanced data, we can see that this test seems to behave better on the unbalanced data.

The case where the compared models were similar (a linear SVM and a Gaussian SVM) is much
more interesting. The first thing to notice is that the McNemar test badly fails in that case. This can be
explained by the fact that this test concentrates on examples for which the two models disagree, which
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can be quite rare for similar models, hence a small number of disagreements may push the statistical
test towards concluding that the two models are different while they were not, hence optimistically
biasing the results.

Note that most papers studying statistical tests, such as [4] or [8], compare models which are
quite different from each other, hence were never exposed to such bad performances. This suggests
that there is an intrinsic bias in statistical tests that does not make the independence assumption
between the evaluation sets, and which is related to the closeness of the compared models. Indeed,
the proportion test, which [4] strongly discouraged to use in machine learning, behaves much better
in that case.

As for the bootstrap tests, the balanced data case shows a particularity which we could not explain:
when the sample size is small, the test deteriorates with the increase of the sample size, while the
trend goes back to normal after some threshold size.

To summarize the findings, bootstrap-based statistical tests obtained reasonable performances in
most conditions, while the McNemar test failed when the compared models were similar.

4 Conclusion

In this paper, we have analyzed several parametric and non-parametric statistical tests for various
conditions often present in machine learning tasks, including the class balancing and the measure to
test. We have also varied the closeness of the compared models, which has not been done previously
in the literature. One surprising conclusion is that when comparing two models which have similar
structure or cost functions (such as a linear SVM and a Gaussian SVM), paired statistical tests which
do not make wrong independence assumptions, such as the McNemar test, badly fail, to the contrary
of other tests, including the simple proportion test.

The starting point of the paper was to verify how non-parametric statistical tests behave when
confronted to non-standard measures, such as dF1, which could not be assessed by most classical
statistical tests. The conclusions were reasonably good with that respect.

It has to be noted that recently, a probabilistic interpretation of F1 was suggested in [7], and a
comparison with bootstrap-based tests should be worthwhile. Note also that in most information
retrieval and text categorization tasks, the interesting measure is not simply dF1 for each category or
query, but some kind of averaging (micro- or macro-), for which a proper statistical test is yet to be
devised.
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A The Power of the Test

In addition to Type I error, it is usual to consider the power of a statistical test in order to measure
its performance:

power = P (RejectH0|H1) = 1 − Type II error.

We report in Figures 3 and 4 an estimate of the power of the tests, for the set of conditions defined
in Section 3.2. In order to compute this estimate we implemented a protocol similar to the one defined
in Section 3.1. For each category Ci, when H0 was not verified on Dtrue we sampled S (500) evaluation
sets Ds

te of N documents, ran the significance test over each Ds
te and computed the estimate of the

power as the proportion of sets for which H0 was rejected.

B When is H0 Verified?

As may be noticed in, for example Figure 5(d), most values of dCerr over Dtrue (noted dC∗

err) range
very near 0 without actually being equal to 0. Thus, in the protocol defined in Section 3.1, in order
to decided whether or not H0 was true on Dtrue we proceeded as follows:

Considering a sample of size N , we will say that H0 is true over Dtrue if |dM∗| < bound

where

bound =
1

N
if dM∗ = dC∗

err

and
bound =

n

N × npos

if dM∗ = dF ∗

1

with n = |Dtrue| and npos being the number of positive examples (documents belonging to the
category) in Dtrue.

In the case of dM∗ = dC∗

err, the use of such a bound can be justified by the fact that in a set Ds

of size N , H0 will be verified whenever |#errorA − #errorB | < 1 ⇔ dCerr < 1

N
. The justification

for dM∗ = dF ∗

1 is quite similar. Given that F1 is computed at the breakeven point we can say that:

F1 = Recall =
Ntp

Npos
(see eq. (5)), where Npos is the number of positive examples in Ds. Thus H0 will

be verified in Ds whenever |NA
tp − NB

tp | < 1 ⇔ dF s
1 < 1

Npos
. Finally, since we assume that the sample

Ds is i.i.d. and from the same distribution than Dtrue we have: N
Npos

= n
npos

.

We report in Figures 6 and 7 the proportion of samples for which H0 was true in the protocol
explained in Section 3.1.
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Figure 3: Power of several statistical tests comparing Linear SVM vs MLP.
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Figure 4: Power of several statistical tests comparing Linear SVM vs RBF SVM. The power equals -1,
in Figure 4, when there was not data to compute the proportion (ie H1 was never true, see appendix
B, Fig. 7(b)).
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Figure 5: Values of the differences over Dtrue.
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Figure 6: Proportion of samples for which H0 was considered as true in Dtrue for several statistical
tests comparing Linear SVM vs MLP.
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(a) Balanced data
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(b) Unbalanced data

Figure 7: Proportion of samples for which H0 was considered as true in Dtrue for several statistical
tests comparing Linear SVM vs SVM.


