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Abstract. We propose a novel network model of spiking neurons, without presag topology and driven

by STDP (Spike-Time-Dependent Plasticity), a temporal Hebbian @mgiged learning mode, based on
biological observations of synaptic plasticity. The model is further driwea supervised learning algorithm,
based on a margin criterion, that has effect on the synaptic delays lithengetwork to the output neurons,
with classification as a goal task. The network processing and the respéifigrmance are completely

explainable by the concept of polychronization, recently introducedzbikévich [9]. On the one hand,

our model can be viewed as a new machine learning concept for giagsgatterns by means of spiking

neuron networks. On the other hand, as a model of natural neuvedrs, it provides a new insight on cell

assemblies, a fundamental notion for understanding the cognitivegges underlying memory.

Keywords. Spiking neuron networks, Synaptic plasticity, STDP, Delay learning, @iks<ell assemblies,
Polychronous groups.
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1 Introduction

Spiking Neuron Networks (SNNs) derive their strength arntdrigst from an accurate modeling of synaptic
interactions between neurons, taking into account the tifrgpike emission. Many biological arguments, as
well as theoretical results (e.g. [12, 21, 23]) convergestaldish that SNNs are potentially more powerful
than traditional artificial neural networks. However, digering efficient learning rules adapted to SNNs is
still a burning topic. At the end of the 90’s, solutions weregosed for emulating classic learning rules in
SNNs [13, 18, 4], by means of drastic simplifications thaewftesulted in losing precious features of firing
time based computing. As an alternative, various resees¢tae proposed different ways to exploit the most
recent advances in neuroscience about synaptic plagtiditgspecially STDP [16, 11], usually presented as
the Hebb rule, revisited in the context of temporal codingculrent trend is to propose computational jus-
tifications for plasticity-based learning rules [6, 25, 9].1But the fact that no specific method does emerge
from a rather confusing landscape mainly prevents engsneeadopt SNNs for practical applications. Two
noticeable attempts in that direction are worth mentionorge from Jaeger [10], with the Echo State Network
(ESN), and the other one from Maass, Natschlager and MarKkdinwith the Liquid State Machine (LSM),
but in both cases, the performance is hard to control and ttels are not yet fully mature.

Here we propose a SNN built on biological bases, with syoggtsticity, but conceived for supervised
classification, a classical machine learning purpose. Tteark architecture is a set of neurons, without
preimposed topology and with sparse connectivity, as in B8N LSM. The learning rule is a combination
of two algorithms for parameter modification: an unsupeiadaptation of weights by synaptic plasticity
(STDP) and a supervised adaptation of synaptic transmisktays towards two output neurons, according to
a margin criterion. Two ideas motivate the latter rule: frisgveral complexity analyses of SNNs have proved
the interest of programmable delays for computational pdiv2, 21] and learnability [15]; Second, Izhike-
vich [9] recently pointed out the activation of polychrosogroups, based on the variability of transmission
delays inside an STDP-driven set of neurons (see Sectiofobdtails), and proposed that the emergence of
several polychronous groups, with persistent activatton)d represent a stimulation pattern.

The basic idea of our model is to adapt the output delays iardaenhance the influence of the groups
activated by a given pattern towards an output neuron quoreing to the pattern class, and to decrease the
influence of the same groups towards the neuron associatieel dpposite class. A margin criterion is applied,
via a stochastic iterative learning process, for strengtitethe separation between the spike-timing of two
output neurons coding for two opposite classes.

Section 2 describes the model of SNN and Section 3 definegé#npihg mechanism. The performance
of the model for a classification task is studied through expents related in Section 4. Section 5 explains
the notion of polychronization and its links with the notiohcell assemblies. Section 6 explains the internal
behavior of the model and proposes a discussion which cauldde a new insight on perceptive memory
representation inside the brain.

2 Spiking Classifier

The classifier is a set a¥/ cells (internal network), interfaced with a layer &f input cells and two output
cells, one for each class (Figure 1). The network is fed bytinpctors of real numbers, represented by spikes
in temporal coding: the higher the value, the earlier th&esgimission towards the network. For clarity in
experiments, successive inputs are presented in largetahvpindows, without overlapping input spike emis-
sions from a pattern to the next. The number of the first firingpot cell provides the class number, as an
answer of the network to the input pattern.

Each cell (input, output, internal network) is a spiking reeu(Section 2.1). Each synaptic connection,
from neuronV; to neuronh;, is defined by a weighi;; and a transmission delal;. The internal network
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Figure 1: Architecture of the classifier network and inteefégreen links) with environment.

is composed oB0% excitatory neurons ané0% inhibitory neurons. The internal connectivity is random
and sparse, with probability.3 for a connection to linkV; to N, for all (i,5) € {1,..., M}?. For pattern
stimulation, the input cells are connected to the interedlsonith probability0.1. For class detection, the
internal cells are fully connected to each output neuron.

2.1 Model of Neuron

The neuron model is an SRM"“Spike Response Model”), as defined by Gerstner [8], whieestate of a
neuronh; is dependent on its last spike tmfﬁé) only. The next firing time ofV; is governed by its membrane
potentlaluj( ) and its threshold, (¢). Both variables are functions of the Iast firing times of tleemonsN;
belonging to the sdt; of neurons presynaptic ;:

JrZw

ui(t)y = n(t—t') (t—t" —dyy) and w(t) >0 =t =1 (1)

threshold kernel potential kernel

where the potential kernel is modelled by a Dirac increasg ifollowed by an exponential decrease, from
valueu,, ., = 8mV in 0" towards0, with a time constant,,, = 2ms. The firing threshold) is set to—50mV
and the threshold kernel simulates an absolute refractenpgr,,s = 7ms, when the neuron cannot fire
again, followed by a reset to the resting potential,, = —65mV (relative refractory period is not simulated).
The simulation is computed in discrete time, wittus steps. The variables of neurd¥; are updated at each
new impact of incoming spike, which is sufficient for comgigaal purpose.

2.2 Synaptic Plasticity

The weightw;; of a synapse from neuraN; to neuronN; can be adapted by STDP (Spike-Time-Dependent
Plasticity), a form of synaptic plasticity based on the exdjye order of pre- and postsynaptic firing times. For
excitatory synapses, if a causal order (pre- just before pisgespected, then the strength of the connection is
increased. Conversely the weight is decreased if the papsignspike arrives at neuraM; just after a postsy-
naptic firing, and has probably no effect, due to the refrggperiod of V;. Temporal windows, inspired from
neurophysiological experiments by Bi & Poo [3], help to cééde the weight modificatioi 1V as a function

of the time difference\t = tyou — tpre = t¥) — (1) + di;) as can be computed at the level of neufén

Following [20], in order to avoid a saturation of the weightsthe extremal values,,;,, = 0 and
wmaezx = 1, We apply a multiplicative learning rule in order to takdV into account in the weight update
rule: See formula in figure 2, wheteis a positive learning rate.

For excitatory synapses as well as for inhibitory synapaesimilar principle is applied, and only the
temporal window differs (see figure 2). In experiments, wexfix oy = o = 0.1.
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Figure 2: Asymmetrical STDP temporal window (from [17]) foxcitatory (left) and inhibitory (right) synapse
adaptation.

3 Learning Mechanisms

There are two concurrent learning mechanisms in the modelingupervised learning of weights by STDP,
operating in the millisecond range, at each new imggct or emissiont,,,s; of a spike, and a supervised
learning of output delays, operating in the rangé @fms, at each pattern presentation.

3.1 STDP Implementation

STDP is applied to the weights of internal cells only. Thegiés$ of connections from input layer to internal
network are kept fixed, with value;ny = 3. The weights of connections from internal network to output
neurons are kept fixed, with value,y7 = 0.5.

Neuroscience experiments [24] give evidence to the vditialif transmission delay values, fromlms
to 44ms. In the present model, the delays take integer values, randomly choser{in. . ., 20}, both in the
internal network and towards output neurons, whereas tlaysiérom input layer to internal network have a
zero value, for an immediate transmission of input infoliorat

A synaptic plasticity rule like STDP could be applied to delearning, as well as to weight learning, but
the biological plausibility of such a plasticity is not yet slear in neuroscience [22]. Hence we do not apply
STDP plasticity to delays, but we switch to machine learmmgdesigning a supervised mechanism, based on a
margin criterion, for adapting the output delays of our miode

3.2 Delay Adaptation Algorithm

The refractory period of the output neurons has been seffo= 80ms, such that each output neuron fires
once and only once insidel®0ms temporal window dedicated to an input pattern presentafidwe goal of
the supervised learning mechanism we propose here is tiusdify the delays from active internal neurons to
output neurons in such a way that the output neuron correfspgito the target class fires before the one corre-
sponding to the non-target class. Moreover, as it has beswsin the machine learning literature, maximizing
a margin between the positive and the negative class yigtsrilexpected generalization performance [26].
More formally, we thus try to minimize the following crite:
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C= Z t1(p) — t2(p) + €[+ + Z lta(p) —t1(p) + €|+ 2)

peEclassl pEclass2

wheret;(p) represents the firing time of output neurpm@nswering to input patterp, e represents the
minimum delay margin we want to enforce between the two fitimgs, andz|, = max(0, z). Hence, for
input patterns belonging to class 2, we want output neurarfi?e at least milliseconds before output neuron
1 (Figure 3).

u(t) | membrane potential of Out 2 u®w b V,\, 77777777777777
mV mV

potential of Out 2

t [ms]
out 2 l out 2
out1 L tims] out1 tms]
u(o_ & u(o.
mv mvV
potential of Out 1 potential of Out 1
t [ms] t [ms]
step k of delay learning iterations step k+1 of delay learning iterations

Figure 3: Membrane potential of the two output neurons afetebf one iteration of delay learning on their
respective firing times, under the hypothesis that the eé@silass is 2. Note that, without loss of generality, the
curves of exponential decrease have been simplified iraggbtroblique lines, to represent variationsudf).

In order to minimize this criterion, we adopt a stochastiirting approach, iterating the loop:

after the presentation of a given input pattern p,
if the difference of firing times between the target and the non-target output

neurons i s higher than e,

then the pattern is well classified and we do not hi ng,

otherw se, for each output neuron, we select the connection that received the
deci sive inpact, anong the last presynaptic neurons responsible for the output spike,
and we decrenent its delay if it corresponds to a connection going to the target class
and increment it otherw se (see Figure 3).

Hence, at each step, we decrease the probability of an artbe inext answer to a similar input.

4 Classifier Performance

A spike raster plot presents all the firing times of all negtomeuron index with respect to time (in ms) with
K = 10 input neurons (bottom), followed hy/ = 100 internal neurons (including0 inhibitory neurons), for
the experiments presented here. Firing times of the twoubutpurons are isolated at the top. A run starts
with initial weightsw;; = 0.5 for all connections in the internal network. Random patieare presented in
input all along the firsB00ms, thus generating a high disordered activity in the netwdidute 4). Output
neurons spike simultaneously, as soon as their refraceigghends. Due to STDP, the internal activity slowly
decreases until complete silence aroufidloms.

Afterwards, a learning phase is run, betwégn and7} 2, with successive alternated presentations of two
input patterns (similar to Izhikevich stimulation patterfrigure 12 in [9]), that represent examples for class 1
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Figure 4: Spike raster plots, for initial random stimulatiérom time0 to 2000.

and class 2 respectively (see Figure 5). Finally, betWiggnand 2, a generalization phase is run, with noisy
patterns: Each spike time occurstat n wheret is the firing time of the corresponding input neuron for the
example pattern of the same class grid some uniform noise.

4.1 Learning

As can be observed on Figure 5, the internal network actiyitigkly decreases and then stabilizes on a per-
sistent alternative between two different spike-timingtgras (lasting slightly longer than the time range of
pattern presentation), one for each class.
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Figure 5: Spike raster plots, for two time slices of a leagninn, one just aftef’,; (left) and the other a long
time after activity has began to stabilize (right).

The evolution of the firing times of the two output neuronseet the application of the delay adaptation
algorithm. Starting from simultaneous firing, they slightissociate their responses, from a pattern presenta-
tion to the next, according to the class corresponding tanit (top of left frame, Figure 5). In the right frame
of the figure, the time interval separating the two outputephas become larger, due to delay adaptation, and
is stable, since the margérhas been reached. The internal activity is quite invarextept seldom differences
due to the still running STDP adaptation of weights (thiswypaiill be further discussed in Section 6).
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4.2 Generalization
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On Figure 6, two noise levels can be compared. Although tteenal network activity is clearly disrupted, the
classification performance remains good: average sucatson100 noisy patterns of each class96% for

n = 4, when noisy patterns are presented alternatively, clafiePdass 1, and stig1% for n = 8, where the
input patterns are hard to discriminate by a human obseeiobserved a slight effect of sequence learning:
only 91% and73% success respectively, when class 1 and class 2 are presemtatiom order (this point

remains to be investigated

in future work).
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18900 19000 19100 19200 19300 19400 19500 19600

Figure 6: Spike raster plots, for two series of noisy patienn= 4 (left) and8 (right).

We observe that the obtained margin between the two outjng fimes can be less or more thanFor
each pattern, this margin could be exploited as a confidem@sune on the network answer. Moreover, most
of the non-successful cases are due to simultaneous firitfiedfvo output neurons (on Figure 6, only one
wrong order near the left af8800m.s). Such ambiguous responses can be considered as “nonsahsavel
could lead to define a subset of rejected patterns. Wrong ordput spike-firing patterns are seldom, which
attest the robustness of the learning algorithm.

4.3 Weight Distributions

In order to illustrate the weight adaptation that occuriginternal network, Figures 7 and 8 show respectively
the distribution of excitatory and inhibitory weights gtiaed into 10 uniform segments of.1 and captured

at different instants. The distribution at tifigs not shown, as all weights were initialized(®. Excitatory
weights (Figure 7) tend to be Gaussian around the origisétildution (time300 and2000). We have measured
that the average amount of time between two spikes durindirttel 700ms corresponds t@ms. In the
excitatory STDP temporal window (Figure 2, top lefd\1¥/| in the range oBms is comparable at both sides
of 0, and thus explains this Gaussian redistribution. Then kisigre mainly uniformly distributed froit to

0.7 at time4000. They finally equilibrate (timd0000) with approximately50% of weights very close t0,
other weights being decreasingly distributed frorhto 0.7.
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Figure 7: Excitatory weights distribution at time 300, 208000, 10000
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Let us now consider inhibitory weights in Figure 8. As thdialiinternal activity is strong, the weights
are modified in a very short time range. Indeed, looking aet60 (Figure 8, left) we see that weights have
already nearly all migrated to a very high value (closd o This surprising violent migration can as well
be explained by the inhibitory STDP function, where closi&epin an inhibitory synapse produce a weight
potentiation (see Figure 2, top right). After the initiahstilation stopped, weights begin to redistribute as the
internal network activity slows down. From then on, weigtstidbution has reached a state that will continue
to evolve, until timel0000, when distribution becomes very similar to ti®000 (end of learning phase).

Inhibitory weights distribution Inhibitory weights distribution Inhibitory weights distribution Inhibitory weights distribution
1 1 1
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2

0 0 0
0 0102030405060.70809 1 0 010203040506070809 1 0 010203040506070809 1 0 010203040506070809 1

Figure 8: Inhibitory weights distribution at time 300, 20@@00, 10000

5 Polychronization

Common thought that interactions between neurons are geddyy their mean firing rates has been the basis
of most traditional artificial neural network models. Sittlse end of the 90's, there is a growing evidence, both
in neuroscience and computer science, that precise tinfisgike emission is a central feature in cognitive
processing. However, although reproducible spike-tiniatierns have been observed in many physiological
experiments, the way these spike-timing patterns, at tilesediond scale, are related to high-level cognitive
processes is still an open question.

Deep attention has been paid to synchronization of firingsifor subsets of neurons inside a network.
The notion of synfire chain [2, 7], a pool of neurons firing dymmously can be described as follows: if
several neurons have a common postsynaptic nedoand if they fire synchronously then their firing will
superimpose in order to triggé¥;. However, the argument falls down if the axonal transmissielays are to
be considered, since the incoming synapses oiave no reason to share a common delay value.

5.1 Cell Assemblies

A cell assembly can be defined as a group of neurons with strarigal excitatory connections. Since a cell
assembly tends to be activated as a whole once a subset efl#@e stimulated, it can be considered as an
operational unit in the brain. An association can be viewetha activation of an assembly by a stimulus or
another assembly. In this context, short term memory woeld Ipersistent activity maintained by reverber-
ations in assemblies, whereas long term memory would quoresto the formation of new assemblies, e.qg.
by a Hebb’s rule mechanism. Inherited from Hebb, currenaigfnds about cell assemblies are that they could
play a role of “grandmother neural groups” as basis of mereagoding, instead of the old debated notion of
“grandmother cell”, and that material entities (e.g. a h@&up, a dog) and, even more, ideas (mental entities)
could be represented by different cell assemblies.

5.2 Polychronous Groups

Synchronization appears to be a too restrictive notion whesmes to grasp the full power of cell assemblies
processing. This point has been highlighted by Izhikev@&wfho proposes the notion of polychronization.
Based on the connectivity between neurons, a polychronmugpds a possible stereotypical time-locked firing
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pattern. For example, in Figure 9, if we consider a delaysfs from neuronN; to neuronN,, and a delay

of 8ms from neuronNs to neuronN,, then neuronV; emitting a spike at time and neuronVs emitting at
timet 4 7 will trigger a spike emission by neura¥, (supposing two coincident spike impacts enough to make
a neuron spike). Since neurons of a polychronous group havehing axonal conduction delays, the group
can be the basis of a reproducible spike-timing pattermdidf the first few neurons with the right timing is
enough to activate most of the group.

Time [ms]

Figure 9: Example of two trigger neurons

Since any neuron can be activated within several polychregooups, at different times (e.g. neuron 76 in
Figure 10), the number of coexisting polychronous groups metwork can be much greater than its number
of neurons, thus opening possibility of high memory capacitVe have detected 104 potentially activable
polychronous groups in a network 8f = 100 neurons, and more than 3000 in a networkléf = 200
neurons.

100 100

80 . 80

60

60

Neurons

Neurons

40 40

20 b i 20
0 t[ms] 0 t[ms]
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Triggering neurons: 19,55,76, with timing pattern (0,11,13) Triggering neurons: 21,52,76, with timing pattern (7,7,0)

Figure 10: Two polychronous groups among 104 detected gro8garting from the three initial triggering
neurons, further neurons of the group can be activated, am¢chvith respect to the spike-timing patterns
represented on the diagrams.

Our model proposes a way to confirm the link between an inpegeptation and persistent spike-timing
patterns inside the network, and the way we take advantag@ythronous groups for deriving our supervised
learning algorithm for classification is explained in thetsection.

6 Network Internal Behavior

Figure 11 presents the evolution of polychronous groupsadlgtactivated in our experiments. All the potential
polychronous groups in the internal network, depending®topology and the values of the internal transmis-
sion delays (that are kept fixed), have been inventoriedr{atel numbers, on Figure 11). We have referenced
only the polychronous groups with 3 triggering neurons (Sigeire 10 for examples). The evolution of acti-
vated polychronous groups is entirely governed by STDPpth learning process acting inside the internal
network.
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6.1 Learning Process Justification

We observe that many polychronous groups are frequentlyaéetl during the initial random stimulation that
generates a strong disordered activity in the internal odt\fbefore2000ms). At the beginning of the learning
phase (which goes fror2000ms to 17000ms), many groups are activated, and then, roughly &ft@0ms,

the activation landscape becomes very stable, with a fewifsppolychronous groups associated to each class:
groups 3, 41, 74, 75 and 83, switching to 85, for class 1, vagegeoups 12, 36, 95, sometimes 99, and 49,
switching to 67, for class 2.

Polychronous groups

i t[ms]
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000

Figure 11: Evolution of polychronous groups that are atégaluring the learning and generalization phases
of experiments reported in Section 4.

Several interesting observations can be reported. Asetty Izhikevich, there exist groups that start to
be activated only after a large number of repeated stinmratfe.g. 41, 49, 67 and 85), but we also observe that
other groups stop their activation after a while (e.g. 5 amues others [activated untll000/5000ms only],

49, 70, 83 and 99 [later]). A very interesting case is the glmignous group number 95 which is first activated
by both example patterns, and then (around tih@)m.s) stops responding for class 1, thus specializing its
activity for class 2. Such phenomenon validates that synadsticity provides the network with valuable
adaptability.

The influence of activated polychronous groups on the laegrprocess can be clearly exhibited. We have
registered (Figure 12) the indices of the presynaptic neresponsible for the application of the output delay
update rule, at each iteration where the example pattewt igat well classified (cf. algorithm, Section 3). For
instance, neuro#42, which is repeatedly responsible for delay adaptationpesaf the triggering neurons of
the polychronous group number 12, activated for class Zduhe training phase. One will notice that delay
adaptation stops before learning phase is over, which meansing process is already efficient around time
10000

In the generalization phase (aftef000ms), the main and most frequently activated groups are thase id
tified during the learning phase. This observation accset hypothesis that polychronous groups are repre-
sentative of the class encoding realized by our two-scal@ieg mechanism.
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Figure 12: Neurons that triggered a delay change. Figunesf on internal excitatory neurons: inhibitory
neurons wouldn't produce a delay shift as they wouldn’tgeiga spike of an output neuron. Red "+": class 1;
blue "x": class 2

6.2 Polychronous Groups vs Cell Assemblies

The behavior of our internal network could bring new arguteen the debate about the definition of cell
assemblies and their role in percept memory processing.bBaferee that the subsets of inactive / highly active
neurons are nearly the same for the two different input pa&tésee Figure 5, left) and that the phenomenon
remains, even when learning is achieved (right). Henceatisdplefinition of cell assemblies fails to validate
the hypothesis of different assemblies coding for diffeieput patterns. However, the spike-timing patterns
of polychronous groups appear to be clearly characteidtibhe pattern class encoding. These observations
could give new tracks for neurophysiological investigasipin order to understand the underlying processes
that govern percept memaorization.

7 Conclusion

With supervised classification as a goal task, we have pezpagwo-scale learning mechanism for spiking
neuron networks, with unconstraint topology. This meck@npresents several interests. First, the algorithm
for delay adaptation is computationally easy to implem&gcond, the way the learning algorithm operates
can be well explained by the concept of polychronization #redinternal network is no longer a black-box,
contrary to the ESN or LSM models. Third, the model helps tbebeinderstand the functional links between
the percept memorization process and the activation ofriateneurons, thus enhancing the advantage of the
concept of spike-timing patterns over the idea of spatitilessemblies. Finally, the model has shown promis-
ing performance for learning and generalization on a diassion task. This latter point is currently being
further tested in larger scale experiments using realisticchmark input patterns. Hence for instance, initial
experiments on a two-class version of the well known USP® dagaset yielded encouraging results.
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