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Abstract. We propose a novel network model of spiking neurons, without preimposed topology and driven
by STDP (Spike-Time-Dependent Plasticity), a temporal Hebbian unsupervised learning mode, based on
biological observations of synaptic plasticity. The model is further driven by a supervised learning algorithm,
based on a margin criterion, that has effect on the synaptic delays linkingthe network to the output neurons,
with classification as a goal task. The network processing and the resultingperformance are completely
explainable by the concept of polychronization, recently introduced by Izhikevich [9]. On the one hand,
our model can be viewed as a new machine learning concept for classifying patterns by means of spiking
neuron networks. On the other hand, as a model of natural neural networks, it provides a new insight on cell
assemblies, a fundamental notion for understanding the cognitive processes underlying memory.
Keywords. Spiking neuron networks, Synaptic plasticity, STDP, Delay learning, Classifier, Cell assemblies,
Polychronous groups.
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1 Introduction

Spiking Neuron Networks (SNNs) derive their strength and interest from an accurate modeling of synaptic
interactions between neurons, taking into account the timeof spike emission. Many biological arguments, as
well as theoretical results (e.g. [12, 21, 23]) converge to establish that SNNs are potentially more powerful
than traditional artificial neural networks. However, discovering efficient learning rules adapted to SNNs is
still a burning topic. At the end of the 90’s, solutions were proposed for emulating classic learning rules in
SNNs [13, 18, 4], by means of drastic simplifications that often resulted in losing precious features of firing
time based computing. As an alternative, various researchers have proposed different ways to exploit the most
recent advances in neuroscience about synaptic plasticity[1], especially STDP [16, 11], usually presented as
the Hebb rule, revisited in the context of temporal coding. Acurrent trend is to propose computational jus-
tifications for plasticity-based learning rules [6, 25, 5, 19]. But the fact that no specific method does emerge
from a rather confusing landscape mainly prevents engineers to adopt SNNs for practical applications. Two
noticeable attempts in that direction are worth mentioning: one from Jaeger [10], with the Echo State Network
(ESN), and the other one from Maass, Natschläger and Markram[14], with the Liquid State Machine (LSM),
but in both cases, the performance is hard to control and the models are not yet fully mature.

Here we propose a SNN built on biological bases, with synaptic plasticity, but conceived for supervised
classification, a classical machine learning purpose. The network architecture is a set of neurons, without
preimposed topology and with sparse connectivity, as in ESNand LSM. The learning rule is a combination
of two algorithms for parameter modification: an unsupervised adaptation of weights by synaptic plasticity
(STDP) and a supervised adaptation of synaptic transmission delays towards two output neurons, according to
a margin criterion. Two ideas motivate the latter rule: First, several complexity analyses of SNNs have proved
the interest of programmable delays for computational power [12, 21] and learnability [15]; Second, Izhike-
vich [9] recently pointed out the activation of polychronous groups, based on the variability of transmission
delays inside an STDP-driven set of neurons (see Section 5.2for details), and proposed that the emergence of
several polychronous groups, with persistent activation,could represent a stimulation pattern.

The basic idea of our model is to adapt the output delays in order to enhance the influence of the groups
activated by a given pattern towards an output neuron corresponding to the pattern class, and to decrease the
influence of the same groups towards the neuron associated tothe opposite class. A margin criterion is applied,
via a stochastic iterative learning process, for strengthening the separation between the spike-timing of two
output neurons coding for two opposite classes.

Section 2 describes the model of SNN and Section 3 defines the learning mechanism. The performance
of the model for a classification task is studied through experiments related in Section 4. Section 5 explains
the notion of polychronization and its links with the notionof cell assemblies. Section 6 explains the internal
behavior of the model and proposes a discussion which could provide a new insight on perceptive memory
representation inside the brain.

2 Spiking Classifier

The classifier is a set ofM cells (internal network), interfaced with a layer ofK input cells and two output
cells, one for each class (Figure 1). The network is fed by input vectors of real numbers, represented by spikes
in temporal coding: the higher the value, the earlier the spike emission towards the network. For clarity in
experiments, successive inputs are presented in large temporal windows, without overlapping input spike emis-
sions from a pattern to the next. The number of the first firing output cell provides the class number, as an
answer of the network to the input pattern.

Each cell (input, output, internal network) is a spiking neuron (Section 2.1). Each synaptic connection,
from neuronNi to neuronNj , is defined by a weightwij and a transmission delaydij . The internal network
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Figure 1: Architecture of the classifier network and interface (green links) with environment.

is composed of80% excitatory neurons and20% inhibitory neurons. The internal connectivity is random
and sparse, with probability0.3 for a connection to linkNi to Nj , for all (i, j) ∈ {1, ...,M}2. For pattern
stimulation, the input cells are connected to the internal cells with probability0.1. For class detection, the
internal cells are fully connected to each output neuron.

2.1 Model of Neuron

The neuron model is an SRM0 (“Spike Response Model”), as defined by Gerstner [8], where the state of a
neuronNj is dependent on its last spike timet

(f)
j only. The next firing time ofNj is governed by its membrane

potentialuj(t) and its thresholdθj(t). Both variables are functions of the last firing times of the neuronsNi

belonging to the setΓj of neurons presynaptic toNj :

uj(t) = η(t− t
(f)
j )

︸ ︷︷ ︸

threshold kernel

+
∑

i∈Γj

wij ǫ(t− t
(f)
i − dij)

︸ ︷︷ ︸

potential kernel

and uj(t) ≥ ϑ =⇒ t
(f+1)
j = t (1)

where the potential kernel is modelled by a Dirac increase in0, followed by an exponential decrease, from
valueumax = 8mV in 0+ towards0, with a time constantτm = 2ms. The firing thresholdϑ is set to−50mV
and the threshold kernel simulates an absolute refractory period τabs = 7ms, when the neuron cannot fire
again, followed by a reset to the resting potentialurest = −65mV (relative refractory period is not simulated).
The simulation is computed in discrete time, with1ms steps. The variables of neuronNj are updated at each
new impact of incoming spike, which is sufficient for computational purpose.

2.2 Synaptic Plasticity

The weightwij of a synapse from neuronNi to neuronNj can be adapted by STDP (Spike-Time-Dependent
Plasticity), a form of synaptic plasticity based on the respective order of pre- and postsynaptic firing times. For
excitatory synapses, if a causal order (pre- just before post-) is respected, then the strength of the connection is
increased. Conversely the weight is decreased if the presynaptic spike arrives at neuronNj just after a postsy-
naptic firing, and has probably no effect, due to the refractory period ofNj . Temporal windows, inspired from
neurophysiological experiments by Bi & Poo [3], help to calculate the weight modification∆W as a function
of the time difference∆t = tpost − tpre = t

(f)
j − (t

(f)
i + dij) as can be computed at the level of neuronNj .

Following [20], in order to avoid a saturation of the weightsto the extremal valueswmin = 0 and
wmax = 1, we apply a multiplicative learning rule in order to take∆W into account in the weight update
rule: See formula in figure 2, whereα is a positive learning rate.

For excitatory synapses as well as for inhibitory synapses,a similar principle is applied, and only the
temporal window differs (see figure 2). In experiments, we fixα = αexc = αinh = 0.1.
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if ∆t ≤ 0 then decrease the weight:
wij ← wij + α ∗ (wij − wmin) ∗∆W

if ∆t ≥ 0 then increase the weight:
wij ← wij + α ∗ (wmax − wij) ∗∆W

Figure 2: Asymmetrical STDP temporal window (from [17]) forexcitatory (left) and inhibitory (right) synapse
adaptation.

3 Learning Mechanisms

There are two concurrent learning mechanisms in the model: an unsupervised learning of weights by STDP,
operating in the millisecond range, at each new impacttpre or emissiontpost of a spike, and a supervised
learning of output delays, operating in the range of100ms, at each pattern presentation.

3.1 STDP Implementation

STDP is applied to the weights of internal cells only. The weights of connections from input layer to internal
network are kept fixed, with valuewIN = 3. The weights of connections from internal network to output
neurons are kept fixed, with valuewOUT = 0.5.

Neuroscience experiments [24] give evidence to the variability of transmission delay values, from0.1ms
to 44ms. In the present model, the delaysdij take integer values, randomly chosen in{1, . . . , 20}, both in the
internal network and towards output neurons, whereas the delays from input layer to internal network have a
zero value, for an immediate transmission of input information.

A synaptic plasticity rule like STDP could be applied to delay learning, as well as to weight learning, but
the biological plausibility of such a plasticity is not yet so clear in neuroscience [22]. Hence we do not apply
STDP plasticity to delays, but we switch to machine learningin designing a supervised mechanism, based on a
margin criterion, for adapting the output delays of our model.

3.2 Delay Adaptation Algorithm

The refractory period of the output neurons has been set toτout
abs = 80ms, such that each output neuron fires

once and only once inside a100ms temporal window dedicated to an input pattern presentation. The goal of
the supervised learning mechanism we propose here is thus tomodify the delays from active internal neurons to
output neurons in such a way that the output neuron corresponding to the target class fires before the one corre-
sponding to the non-target class. Moreover, as it has been shown in the machine learning literature, maximizing
a margin between the positive and the negative class yields better expected generalization performance [26].
More formally, we thus try to minimize the following criterion:
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C =
∑

p∈class1

|t1(p)− t2(p) + ǫ|+ +
∑

p∈class2

|t2(p)− t1(p) + ǫ|+ (2)

whereti(p) represents the firing time of output neuroni answering to input patternp, ǫ represents the
minimum delay margin we want to enforce between the two firingtimes, and|z|+ = max(0, z). Hence, for
input patterns belonging to class 2, we want output neuron 2 to fire at leastǫ milliseconds before output neuron
1 (Figure 3).

u(t)
mV

t [ms]

u(t)
mV

t [ms]

ε

Out 2
Out 1

t [ms]

u(t)
mV

t [ms]

u(t)
mV

t [ms]

ε
Out 1
Out 2

t [ms]

potential of Out 1 potential of Out 1

potential of Out 2

membrane potential of Out 2

step k of delay learning iterations step k+1 of delay learning iterations

Figure 3: Membrane potential of the two output neurons and effect of one iteration of delay learning on their
respective firing times, under the hypothesis that the desired class is 2. Note that, without loss of generality, the
curves of exponential decrease have been simplified into straight oblique lines, to represent variations ofu(t).

In order to minimize this criterion, we adopt a stochastic training approach, iterating the loop:

after the presentation of a given input pattern p,

if the difference of firing times between the target and the non-target output

neurons is higher than ǫ,

then the pattern is well classified and we do nothing,

otherwise, for each output neuron, we select the connection that received the

decisive impact, among the last presynaptic neurons responsible for the output spike,

and we decrement its delay if it corresponds to a connection going to the target class

and increment it otherwise (see Figure 3).

Hence, at each step, we decrease the probability of an error in the next answer to a similar input.

4 Classifier Performance

A spike raster plot presents all the firing times of all neurons: neuron index with respect to time (in ms) with
K = 10 input neurons (bottom), followed byM = 100 internal neurons (including20 inhibitory neurons), for
the experiments presented here. Firing times of the two output neurons are isolated at the top. A run starts
with initial weightswij = 0.5 for all connections in the internal network. Random patterns are presented in
input all along the first300ms, thus generating a high disordered activity in the network (figure 4). Output
neurons spike simultaneously, as soon as their refractory period ends. Due to STDP, the internal activity slowly
decreases until complete silence around1750ms.

Afterwards, a learning phase is run, betweenTL1 andTL2, with successive alternated presentations of two
input patterns (similar to Izhikevich stimulation patterns, Figure 12 in [9]), that represent examples for class 1
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Figure 4: Spike raster plots, for initial random stimulation, from time0 to 2000.

and class 2 respectively (see Figure 5). Finally, betweenTG1 andTG2, a generalization phase is run, with noisy
patterns: Each spike time occurs att ± η wheret is the firing time of the corresponding input neuron for the
example pattern of the same class andη is some uniform noise.

4.1 Learning

As can be observed on Figure 5, the internal network activityquickly decreases and then stabilizes on a per-
sistent alternative between two different spike-timing patterns (lasting slightly longer than the time range of
pattern presentation), one for each class.

 0

 20

 40

 60

 80

 100

 120

 2300  2400  2500  2600  2700  2800  2900  3000  3100  3200  8500  8600  8700  8800  8900  9000  9100

Figure 5: Spike raster plots, for two time slices of a learning run, one just afterTL1 (left) and the other a long
time after activity has began to stabilize (right).

The evolution of the firing times of the two output neurons reflects the application of the delay adaptation
algorithm. Starting from simultaneous firing, they slightly dissociate their responses, from a pattern presenta-
tion to the next, according to the class corresponding to theinput (top of left frame, Figure 5). In the right frame
of the figure, the time interval separating the two output spikes has become larger, due to delay adaptation, and
is stable, since the marginǫ has been reached. The internal activity is quite invariant,except seldom differences
due to the still running STDP adaptation of weights (this point will be further discussed in Section 6).
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4.2 Generalization

On Figure 6, two noise levels can be compared. Although the internal network activity is clearly disrupted, the
classification performance remains good: average success rate, on100 noisy patterns of each class, is96% for
η = 4, when noisy patterns are presented alternatively, class 2 after class 1, and still81% for η = 8, where the
input patterns are hard to discriminate by a human observer.We observed a slight effect of sequence learning:
only 91% and73% success respectively, when class 1 and class 2 are presentedin random order (this point
remains to be investigated in future work).

0
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80

100

120

 18500  18600  18700  18800  18900  19000  19100  19200  18900  19000  19100  19200  19300  19400  19500  19600

Figure 6: Spike raster plots, for two series of noisy patterns: η = 4 (left) and8 (right).

We observe that the obtained margin between the two output firing times can be less or more thanǫ. For
each pattern, this margin could be exploited as a confidence measure on the network answer. Moreover, most
of the non-successful cases are due to simultaneous firing ofthe two output neurons (on Figure 6, only one
wrong order near the left of18800ms). Such ambiguous responses can be considered as “non-answers”, and
could lead to define a subset of rejected patterns. Wrong orderoutput spike-firing patterns are seldom, which
attest the robustness of the learning algorithm.

4.3 Weight Distributions

In order to illustrate the weight adaptation that occurs in the internal network, Figures 7 and 8 show respectively
the distribution of excitatory and inhibitory weights quantized into10 uniform segments of0.1 and captured
at different instants. The distribution at time0 is not shown, as all weights were initialized to0.5. Excitatory
weights (Figure 7) tend to be Gaussian around the original distribution (time300 and2000). We have measured
that the average amount of time between two spikes during thefirst 1700ms corresponds to8ms. In the
excitatory STDP temporal window (Figure 2, top left),|∆W | in the range of8ms is comparable at both sides
of 0, and thus explains this Gaussian redistribution. Then weights are mainly uniformly distributed from0 to
0.7 at time4000. They finally equilibrate (time10000) with approximately50% of weights very close to0,
other weights being decreasingly distributed from0.1 to 0.7.
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Figure 7: Excitatory weights distribution at time 300, 2000, 4000, 10000
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Let us now consider inhibitory weights in Figure 8. As the initial internal activity is strong, the weights
are modified in a very short time range. Indeed, looking at time 300 (Figure 8, left) we see that weights have
already nearly all migrated to a very high value (close to1). This surprising violent migration can as well
be explained by the inhibitory STDP function, where close spikes in an inhibitory synapse produce a weight
potentiation (see Figure 2, top right). After the initial stimulation stopped, weights begin to redistribute as the
internal network activity slows down. From then on, weight distribution has reached a state that will continue
to evolve, until time10000, when distribution becomes very similar to time17000 (end of learning phase).
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Figure 8: Inhibitory weights distribution at time 300, 2000, 4000, 10000

5 Polychronization

Common thought that interactions between neurons are governed by their mean firing rates has been the basis
of most traditional artificial neural network models. Sincethe end of the 90’s, there is a growing evidence, both
in neuroscience and computer science, that precise timing of spike emission is a central feature in cognitive
processing. However, although reproducible spike-timingpatterns have been observed in many physiological
experiments, the way these spike-timing patterns, at the millisecond scale, are related to high-level cognitive
processes is still an open question.

Deep attention has been paid to synchronization of firing times for subsets of neurons inside a network.
The notion of synfire chain [2, 7], a pool of neurons firing synchronously can be described as follows: if
several neurons have a common postsynaptic neuronNj and if they fire synchronously then their firing will
superimpose in order to triggerNj . However, the argument falls down if the axonal transmission delays are to
be considered, since the incoming synapses ofNj have no reason to share a common delay value.

5.1 Cell Assemblies

A cell assembly can be defined as a group of neurons with strongmutual excitatory connections. Since a cell
assembly tends to be activated as a whole once a subset of its cells are stimulated, it can be considered as an
operational unit in the brain. An association can be viewed as the activation of an assembly by a stimulus or
another assembly. In this context, short term memory would be a persistent activity maintained by reverber-
ations in assemblies, whereas long term memory would correspond to the formation of new assemblies, e.g.
by a Hebb’s rule mechanism. Inherited from Hebb, current thoughts about cell assemblies are that they could
play a role of “grandmother neural groups” as basis of memoryencoding, instead of the old debated notion of
“grandmother cell”, and that material entities (e.g. a book, a cup, a dog) and, even more, ideas (mental entities)
could be represented by different cell assemblies.

5.2 Polychronous Groups

Synchronization appears to be a too restrictive notion whenit comes to grasp the full power of cell assemblies
processing. This point has been highlighted by Izhikevich [9] who proposes the notion of polychronization.
Based on the connectivity between neurons, a polychronous group is a possible stereotypical time-locked firing
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pattern. For example, in Figure 9, if we consider a delay of15ms from neuronN1 to neuronN2, and a delay
of 8ms from neuronN3 to neuronN2, then neuronN1 emitting a spike at timet and neuronN3 emitting at
time t+7 will trigger a spike emission by neuronN2 (supposing two coincident spike impacts enough to make
a neuron spike). Since neurons of a polychronous group have matching axonal conduction delays, the group
can be the basis of a reproducible spike-timing pattern: firing of the first few neurons with the right timing is
enough to activate most of the group.

8 ms

15 ms

N3

N2

N1

Time [ms]

Figure 9: Example of two trigger neurons

Since any neuron can be activated within several polychronous groups, at different times (e.g. neuron 76 in
Figure 10), the number of coexisting polychronous groups ina network can be much greater than its number
of neurons, thus opening possibility of high memory capacity. We have detected 104 potentially activable
polychronous groups in a network ofM = 100 neurons, and more than 3000 in a network ofM = 200
neurons.
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Figure 10: Two polychronous groups among 104 detected groups: Starting from the three initial triggering
neurons, further neurons of the group can be activated, in chain, with respect to the spike-timing patterns
represented on the diagrams.

Our model proposes a way to confirm the link between an input presentation and persistent spike-timing
patterns inside the network, and the way we take advantage ofpolychronous groups for deriving our supervised
learning algorithm for classification is explained in the next section.

6 Network Internal Behavior

Figure 11 presents the evolution of polychronous groups actually activated in our experiments. All the potential
polychronous groups in the internal network, depending on its topology and the values of the internal transmis-
sion delays (that are kept fixed), have been inventoried (ordinate numbers, on Figure 11). We have referenced
only the polychronous groups with 3 triggering neurons (seeFigure 10 for examples). The evolution of acti-
vated polychronous groups is entirely governed by STDP, theonly learning process acting inside the internal
network.
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6.1 Learning Process Justification

We observe that many polychronous groups are frequently activated during the initial random stimulation that
generates a strong disordered activity in the internal network (before2000ms). At the beginning of the learning
phase (which goes from2000ms to 17000ms), many groups are activated, and then, roughly after5000ms,
the activation landscape becomes very stable, with a few specific polychronous groups associated to each class:
groups 3, 41, 74, 75 and 83, switching to 85, for class 1, whereas groups 12, 36, 95, sometimes 99, and 49,
switching to 67, for class 2.
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Figure 11: Evolution of polychronous groups that are activated during the learning and generalization phases
of experiments reported in Section 4.

Several interesting observations can be reported. As noticed by Izhikevich, there exist groups that start to
be activated only after a large number of repeated stimulations (e.g. 41, 49, 67 and 85), but we also observe that
other groups stop their activation after a while (e.g. 5 and some others [activated until4000/5000ms only],
49, 70, 83 and 99 [later]). A very interesting case is the polychronous group number 95 which is first activated
by both example patterns, and then (around time7500ms) stops responding for class 1, thus specializing its
activity for class 2. Such phenomenon validates that synaptic plasticity provides the network with valuable
adaptability.

The influence of activated polychronous groups on the learning process can be clearly exhibited. We have
registered (Figure 12) the indices of the presynaptic neurons responsible for the application of the output delay
update rule, at each iteration where the example pattern is not yet well classified (cf. algorithm, Section 3). For
instance, neuron#42, which is repeatedly responsible for delay adaptation, is one of the triggering neurons of
the polychronous group number 12, activated for class 2 during the training phase. One will notice that delay
adaptation stops before learning phase is over, which meanslearning process is already efficient around time
10000

In the generalization phase (after17000ms), the main and most frequently activated groups are those iden-
tified during the learning phase. This observation accredits the hypothesis that polychronous groups are repre-
sentative of the class encoding realized by our two-scale learning mechanism.
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Figure 12: Neurons that triggered a delay change. Figure focuses on internal excitatory neurons: inhibitory
neurons wouldn’t produce a delay shift as they wouldn’t trigger a spike of an output neuron. Red "+": class 1;
blue "x": class 2

6.2 Polychronous Groups vs Cell Assemblies

The behavior of our internal network could bring new arguments in the debate about the definition of cell
assemblies and their role in percept memory processing. We observe that the subsets of inactive / highly active
neurons are nearly the same for the two different input patterns (see Figure 5, left) and that the phenomenon
remains, even when learning is achieved (right). Hence, a spatial definition of cell assemblies fails to validate
the hypothesis of different assemblies coding for different input patterns. However, the spike-timing patterns
of polychronous groups appear to be clearly characteristicof the pattern class encoding. These observations
could give new tracks for neurophysiological investigations, in order to understand the underlying processes
that govern percept memorization.

7 Conclusion

With supervised classification as a goal task, we have proposed a two-scale learning mechanism for spiking
neuron networks, with unconstraint topology. This mechanism presents several interests. First, the algorithm
for delay adaptation is computationally easy to implement.Second, the way the learning algorithm operates
can be well explained by the concept of polychronization andthe internal network is no longer a black-box,
contrary to the ESN or LSM models. Third, the model helps to better understand the functional links between
the percept memorization process and the activation of internal neurons, thus enhancing the advantage of the
concept of spike-timing patterns over the idea of spatial cell assemblies. Finally, the model has shown promis-
ing performance for learning and generalization on a classification task. This latter point is currently being
further tested in larger scale experiments using realisticbenchmark input patterns. Hence for instance, initial
experiments on a two-class version of the well known USPS digit dataset yielded encouraging results.
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